1
|
Rout Y, Michel Merkes J, Banala S, Misra R. Dicyanoquinodimethane (DCNQ) linked benzothiadiazole and phenothiazine derivatives for photoacoustic imaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Zheng BD, Ye J, Huang YY, Xiao MT. Phthalocyanine-based photoacoustic contrast agents for imaging and theranostics. Biomater Sci 2021; 9:7811-7825. [PMID: 34755723 DOI: 10.1039/d1bm01435h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phthalocyanine, as an organic dye, has attracted much attention due to its high molar absorption coefficient in the near-infrared region (NIR). It is precisely because of this advantage that phthalocyanine is very beneficial to photoacoustic imaging (PAI). At present, many different strategies have been adopted to design phthalocyanine-based contrast agents with photoacoustic (PA) effect, including increasing water solubility, changing spectral properties, prolonging the circulation time, constructing activatable supramolecular nanoparticles, increasing targeting, etc. Based on this, this minireview highlighted the above ways to enhance the PA effect of phthalocyanine. What's more, the application of phthalocyanine-based PA contrast agents in biomedical imaging and image-guided phototherapy has been discussed. Finally, this minireview also provides the prospects and challenges of phthalocyanine-based PA contrast agents in order to provide some reference for the application of phthalocyanine-based PA contrast agents in biomedical imaging and guiding tumor treatment.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ya-Yan Huang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
3
|
Palma-Chavez J, Pfefer TJ, Agrawal A, Jokerst JV, Vogt WC. Review of consensus test methods in medical imaging and current practices in photoacoustic image quality assessment. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210176VSSR. [PMID: 34510850 PMCID: PMC8434148 DOI: 10.1117/1.jbo.26.9.090901] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/17/2021] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Photoacoustic imaging (PAI) is a powerful emerging technology with broad clinical applications, but consensus test methods are needed to standardize performance evaluation and accelerate translation. AIM To review consensus image quality test methods for mature imaging modalities [ultrasound, magnetic resonance imaging (MRI), x-ray CT, and x-ray mammography], identify best practices in phantom design and testing procedures, and compare against current practices in PAI phantom testing. APPROACH We reviewed scientific papers, international standards, clinical accreditation guidelines, and professional society recommendations describing medical image quality test methods. Observations are organized by image quality characteristics (IQCs), including spatial resolution, geometric accuracy, imaging depth, uniformity, sensitivity, low-contrast detectability, and artifacts. RESULTS Consensus documents typically prescribed phantom geometry and material property requirements, as well as specific data acquisition and analysis protocols to optimize test consistency and reproducibility. While these documents considered a wide array of IQCs, reported PAI phantom testing focused heavily on in-plane resolution, depth of visualization, and sensitivity. Understudied IQCs that merit further consideration include out-of-plane resolution, geometric accuracy, uniformity, low-contrast detectability, and co-registration accuracy. CONCLUSIONS Available medical image quality standards provide a blueprint for establishing consensus best practices for photoacoustic image quality assessment and thus hastening PAI technology advancement, translation, and clinical adoption.
Collapse
Affiliation(s)
- Jorge Palma-Chavez
- University of California San Diego, Department of NanoEngineering, La Jolla, California, United States
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Anant Agrawal
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Jesse V. Jokerst
- University of California San Diego, Department of NanoEngineering, La Jolla, California, United States
- University of California San Diego, Department of Radiology, La Jolla, California, United States
- University of California San Diego, Materials Science and Engineering Program, La Jolla, California, United States
| | - William C. Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| |
Collapse
|
4
|
Park EY, Oh D, Park S, Kim W, Kim C. New contrast agents for photoacoustic imaging and theranostics: Recent 5-year overview on phthalocyanine/naphthalocyanine-based nanoparticles. APL Bioeng 2021; 5:031510. [PMID: 34368604 PMCID: PMC8325568 DOI: 10.1063/5.0047660] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
The phthalocyanine (Pc) and naphthalocyanine (Nc) nanoagents have drawn much attention as contrast agents for photoacoustic (PA) imaging due to their large extinction coefficients and long absorption wavelengths in the near-infrared region. Many investigations have been conducted to enhance Pc/Ncs' photophysical properties and address their poor solubility in an aqueous solution. Many diverse strategies have been adopted, including centric metal chelation, structure modification, and peripheral substitution. This review highlights recent advances on Pc/Nc-based PA agents and their extended use for multiplexed biomedical imaging, multimodal diagnostic imaging, and image-guided phototherapy.
Collapse
Affiliation(s)
| | - Donghyeon Oh
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Sinyoung Park
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Wangyu Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
5
|
Sarbadhikary P, George BP, Abrahamse H. Recent Advances in Photosensitizers as Multifunctional Theranostic Agents for Imaging-Guided Photodynamic Therapy of Cancer. Theranostics 2021; 11:9054-9088. [PMID: 34522227 PMCID: PMC8419035 DOI: 10.7150/thno.62479] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
In recent years tremendous effort has been invested in the field of cancer diagnosis and treatment with an overall goal of improving cancer management, therapeutic outcome, patient survival, and quality of life. Photodynamic Therapy (PDT), which works on the principle of light-induced activation of photosensitizers (PS) leading to Reactive Oxygen Species (ROS) mediated cancer cell killing has received increased attention as a promising alternative to overcome several limitations of conventional cancer therapies. Compared to conventional therapies, PDT offers the advantages of selectivity, minimal invasiveness, localized treatment, and spatio-temporal control which minimizes the overall therapeutic side effects and can be repeated as needed without interfering with other treatments and inducing treatment resistance. Overall PDT efficacy requires proper planning of various parameters like localization and concentration of PS at the tumor site, light dose, oxygen concentration and heterogeneity of the tumor microenvironment, which can be achieved with advanced imaging techniques. Consequently, there has been tremendous interest in the rationale design of PS formulations to exploit their theranostic potential to unleash the imperative contribution of medical imaging in the context of successful PDT outcomes. Further, recent advances in PS formulations as activatable phototheranostic agents have shown promising potential for finely controlled imaging-guided PDT due to their propensity to specifically turning on diagnostic signals simultaneously with photodynamic effects in response to the tumor-specific stimuli. In this review, we have summarized the recent progress in the development of PS-based multifunctional theranostic agents for biomedical applications in multimodal imaging combined with PDT. We also present the role of different imaging modalities; magnetic resonance, optical, nuclear, acoustic, and photoacoustic in improving the pre-and post-PDT effects. We anticipate that the information presented in this review will encourage future development and design of PSs for improved image-guided PDT for cancer treatment.
Collapse
Affiliation(s)
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | | |
Collapse
|
6
|
Yang F, Wang Z, Zhang W, Ma H, Cheng Z, Gu Y, Qiu H, Yang S. Wide-field monitoring and real-time local recording of microvascular networks on small animals with a dual-raster-scanned photoacoustic microscope. JOURNAL OF BIOPHOTONICS 2020; 13:e202000022. [PMID: 32101376 DOI: 10.1002/jbio.202000022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/22/2020] [Indexed: 05/18/2023]
Abstract
Photoacoustic microscopy (PAM) provides a new method for the imaging of small-animals with high-contrast and deep-penetration. However, the established PAM systems have suffered from a limited field-of-view or imaging speed, which are difficult to both monitor wide-field activity of organ and record real-time change of local tissue. Here, we reported a dual-raster-scanned photoacoustic microscope (DRS-PAM) that integrates a two-dimensional motorized translation stage for large field-of-view imaging and a two-axis fast galvanometer scanner for real-time imaging. The DRS-PAM provides a flexible transition from wide-field monitoring the vasculature of organs to real-time imaging of local dynamics. To test the performance of DRS-PAM, clear characterization of angiogenesis and functional detail was illustrated, hemodynamic activities of vasculature in cerebral cortex of a mouse were investigated. Furthermore, response of tumor to treatment were successfully monitored during treatment. The experimental results demonstrate the DRS-PAM holds the great potential for biomedical research of basic biology.
Collapse
Affiliation(s)
- Fei Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhiyang Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wuyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Haigang Ma
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhongwen Cheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Ying Gu
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, China
| | - Haixia Qiu
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
7
|
Photoacoustic Imaging Probes Based on Tetrapyrroles and Related Compounds. Int J Mol Sci 2020; 21:ijms21093082. [PMID: 32349297 PMCID: PMC7247687 DOI: 10.3390/ijms21093082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Photoacoustic imaging (PAI) is a rapidly evolving field in molecular imaging that enables imaging in the depths of ultrasound and with the sensitivity of optical modalities. PAI bases on the photoexcitation of a chromophore, which converts the absorbed light into thermal energy, causing an acoustic pressure wave that can be captured with ultrasound transducers, in generating an image. For in vivo imaging, chromophores strongly absorbing in the near-infrared range (NIR; > 680 nm) are required. As tetrapyrroles have a long history in biomedical applications, novel tetrapyrroles and inspired mimics have been pursued as potentially suitable contrast agents for PAI. The goal of this review is to summarize the current state of the art in PAI applications using tetrapyrroles and related macrocycles inspired by it, highlighting those compounds exhibiting strong NIR-absorption. Furthermore, we discuss the current developments of other absorbers for in vivo photoacoustic (PA) applications.
Collapse
|
8
|
Goh Y, Balasundaram G, Moothanchery M, Attia A, Li X, Lim HQ, Burton NC, Qiu Y, Putti TC, Chan CW, Iau P, Buhari SA, Hartman M, Tang SW, Ng CWQ, Chan YH, Pool FJ, Pillay P, Chua W, Kapur J, Jagmohan P, Sterling E, Quek ST, Olivo M. Ultrasound Guided Optoacoustic Tomography in Assessment of Tumor Margins for Lumpectomies. Transl Oncol 2019; 13:254-261. [PMID: 31869750 PMCID: PMC6931190 DOI: 10.1016/j.tranon.2019.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022] Open
Abstract
PURPOSE: To determine the accuracy of a handheld ultrasound-guided optoacoustic tomography (US-OT) probe developed for human deep-tissue imaging in ex vivo assessment of tumor margins postlumpectomy. METHODS: A custom-built two-dimensional (2D) US-OT–handheld probe was used to scan 15 lumpectomy breast specimens. Optoacoustic signals acquired at multiple wavelengths between 700 and 1100 nm were reconstructed using model linear algorithm, followed by spectral unmixing for lipid and deoxyhemoglobin (Hb). Distribution maps of lipid and Hb on the anterior, posterior, superior, inferior, medial, and lateral margins of the specimens were inspected for margin involvement, and results were correlated with histopathologic findings. The agreement in tumor margin assessment between US-OT and histopathology was determined using the Bland–Altman plot. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of margin assessment using US-OT were calculated. RESULTS: Ninety margins (6 × 15 specimens) were assessed. The US-OT probe resolved blood vessels and lipid up to a depth of 6 mm. Negative and positive margins were discriminated by marked differences in the distribution patterns of lipid and Hb. US-OT assessments were concordant with histopathologic findings in 87 of 89 margins assessed (one margin was uninterpretable and excluded), with diagnostic accuracy of 97.9% (kappa = 0.79). The sensitivity, specificity, PPV, and NPV were 100% (4/4), 97.6% (83/85), 66.7% (4/6), and 100% (83/83), respectively. CONCLUSION: US-OT was capable of providing distribution maps of lipid and Hb in lumpectomy specimens that predicted tumor margins with high sensitivity and specificity, making it a potential tool for intraoperative tumor margin assessment.
Collapse
Affiliation(s)
- Yonggeng Goh
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | | | - Mohesh Moothanchery
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Singapore
| | - Amalina Attia
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Singapore
| | - Xiuting Li
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Singapore
| | - Hann Qian Lim
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Singapore
| | | | - Yi Qiu
- IThera Medical GmbH, Germany
| | | | - Ching Wan Chan
- Department of Breast Surgery, National University Hospital, Singapore
| | - Philip Iau
- Department of Breast Surgery, National University Hospital, Singapore
| | | | - Mikael Hartman
- Department of Breast Surgery, National University Hospital, Singapore
| | - Siau Wei Tang
- Department of Breast Surgery, National University Hospital, Singapore
| | - Celene Wei Qi Ng
- Department of Breast Surgery, National University Hospital, Singapore
| | - Yiong Huak Chan
- Department of Biostatistics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Felicity Jane Pool
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - Premilla Pillay
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - Wynne Chua
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - Jeevesh Kapur
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - Pooja Jagmohan
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - Eide Sterling
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - Swee Tian Quek
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - Malini Olivo
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Singapore.
| |
Collapse
|
9
|
Rizvi W, Berisha N, Farley C, Bhupathiraju NVSDK, Andreou C, Khwaja E, Fuentes GV, Kircher MF, Gao R, Drain CM. Distorted Phthalocyanines by Click Chemistry: Photoacoustic, Photothermal, and Surface-Enhanced Resonance Raman Studies. Chemistry 2019; 25:14517-14521. [PMID: 31515825 PMCID: PMC6861660 DOI: 10.1002/chem.201903463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Indexed: 01/04/2023]
Abstract
Distortion of nominally planar phthalocyanine macrocycles affects the excited state dynamics in that most of the excited-state energy decays through internal conversion. A click-type annulation reaction on a perfluorophthalocyanine platform appending a seven-membered ring to the β-positions on one or more of the isoindoles distorts the macrocycle and modulates solubility. The distorted derivative enables photoacoustic imaging, photothermal effects, and strong surface-enhanced resonance Raman signals.
Collapse
Affiliation(s)
- Waqar Rizvi
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, 10065, USA
- Department of Chemistry, Graduate Center of the City University of New York, New York, New York, 10016, USA
- Department of Chemistry and Physics, Franklin College, Franklin, Indiana, 46131, USA
| | - Naxhije Berisha
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, 10065, USA
- Department of Chemistry, Graduate Center of the City University of New York, New York, New York, 10016, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center New York, New York, 10065, USA
| | - Christopher Farley
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, 10065, USA
- Department of Chemistry, Graduate Center of the City University of New York, New York, New York, 10016, USA
- Department of Natural Sciences, LaGuardia Community College of the City University of New York, New York, New York, 11101, USA
| | | | - Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center New York, New York, 10065, USA
| | - Emaad Khwaja
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, 10065, USA
| | - German V Fuentes
- Institute for Cancer Research and Education, SUNY Old Westbury, Old Westbury, New York, 11568, USA
| | - Moritz F Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center New York, New York, 10065, USA
- Department of Imaging and Radiology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, USA
| | - Ruomei Gao
- Institute for Cancer Research and Education, SUNY Old Westbury, Old Westbury, New York, 11568, USA
| | - Charles Michael Drain
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, 10065, USA
- Department of Chemistry, Graduate Center of the City University of New York, New York, New York, 10016, USA
| |
Collapse
|
10
|
Liang B, Liu W, Zhan Q, Li M, Zhuang M, Liu QH, Yao J. Impacts of the murine skull on high-frequency transcranial photoacoustic brain imaging. JOURNAL OF BIOPHOTONICS 2019; 12:e201800466. [PMID: 30843372 PMCID: PMC11126155 DOI: 10.1002/jbio.201800466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 05/20/2023]
Abstract
Non-invasive photoacoustic tomography (PAT) of mouse brains with intact skulls has been a challenge due to the skull's strong acoustic attenuation, aberration, and reverberation, especially in the high-frequency range (>15 MHz). In this paper, we systematically investigated the impacts of the murine skull on the photoacoustic wave propagation and on the PAT image reconstruction. We studied the photoacoustic acoustic wave aberration due to the acoustic impedance mismatch at the skull boundaries and the mode conversion between the longitudinal wave and shear wave. The wave's reverberation within the skull was investigated for both longitudinal and shear modes. In the inverse process, we reconstructed the transcranial photoacoustic computed tomography (PACT) and photoacoustic microscopy (PAM) images of a point target enclosed by the mouse skull, showing the skull's different impacts on both modalities. Finally, we experimentally validated the simulations by imaging an in vitro mouse skull phantom using representative transcranial PAM and PACT systems. The experimental results agreed well with the simulations and confirmed the accuracy of our forward and inverse models. We expect that our results will provide better understanding of the impacts of the murine skull on transcranial photoacoustic brain imaging and pave the ways for future technical improvements.
Collapse
Affiliation(s)
- Bingyang Liang
- Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen, P. R. China
| | - Wei Liu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Qiwei Zhan
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
| | - Mucong Li
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Mingwei Zhuang
- Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen, P. R. China
| | - Qing H. Liu
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| |
Collapse
|
11
|
Morales J, Pawle RH, Akkilic N, Luo Y, Xavierselvan M, Albokhari R, Calderon IAC, Selfridge S, Minns R, Takiff L, Mallidi S, Clark HA. DNA-Based Photoacoustic Nanosensor for Interferon Gamma Detection. ACS Sens 2019; 4:1313-1322. [PMID: 30973005 DOI: 10.1021/acssensors.9b00209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tracking protein levels in the body is vital in both research and medicine, where understanding their physiological roles provides insight into their regulation in homeostasis and diseases. In medicine, protein levels are actively sampled since they continuously fluctuate, reflecting the status of biological systems and provide insight into patient health. One such protein is interferon gamma, a clinically relevant protein with immunoregulatory functions that play critical roles against infection. New tools for continuously monitoring protein levels in vivo are invaluable in monitoring real-time conditions of patients to allow better care. Here, we developed a DNA-based nanosensor for the photoacoustic detection of interferon gamma. This work demonstrates how we transformed a simple DNA motif, receptors, and a novel phthalocyanine dye into a proof-of-concept photoacoustic nanosensor for protein detection. Surface plasmon resonance kinetic analysis demonstrated that the nanosensor is responsive and reversible to interferon gamma with an affinity in the nanomolar range, KD1 = 167 nM and KD2 = 316 nM. As a reporter, our design includes a novel phthalocyanine-based photoacoustic dye that stacks in a J-aggregate, causing a 22.5% increase in signal. Upon receptor binding, the DNA structure bends to induce phthalocyanine dye stacking, resulting in a 55% increase in photoacoustic signal in the presence of 10 μM interferon gamma. This proof-of-concept nanosensor is a novel approach to the development of a photoacoustic sensor and may be adapted for other proteins of interest in the future for in vivo tracking.
Collapse
Affiliation(s)
- Jennifer Morales
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Robert H. Pawle
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Namik Akkilic
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Yi Luo
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Marvin Xavierselvan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Rayan Albokhari
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Isen Andrew C. Calderon
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Scott Selfridge
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Richard Minns
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Larry Takiff
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Heather A. Clark
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Huang K, Zhang Y, Lin J, Huang P. Nanomaterials for photoacoustic imaging in the second near-infrared window. Biomater Sci 2019; 7:472-479. [PMID: 30255873 DOI: 10.1039/c8bm00642c] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoacoustic imaging (PAI) is a rapidly developing imaging technique for both fundamental research and clinical applications. Recent studies revealed that PAI in the second near-infrared (NIR-II) region exhibits enhanced deep-tissue imaging capability, which benefits from reduced photon scattering, minimized background noise and increased applicable power in comparison to PAI in the first near-infrared (NIR-I) region. This review focuses on the latest achievements on PAI in the NIR-II region. The advantages of shifting PAI from NIR-I to NIR-II is first compared, followed by discussions on nanomaterials as contrast agents for NIR-II PAI. In the end, the challenges and perspectives of PAI in the NIR-II region are also elaborated.
Collapse
Affiliation(s)
- Kai Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | | | | | | |
Collapse
|
13
|
Tsunoi Y, Araki K, Ozeki E, Hara I, Shiotani A, Terakawa M, Sato S. Photoacoustic diagnosis of pharmacokinetics and vascular shutdown effects in photodynamic treatment with indocyanine green-lactosome for a subcutaneous tumor in mice. Photodiagnosis Photodyn Ther 2019; 26:436-441. [PMID: 31054334 DOI: 10.1016/j.pdpdt.2019.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 11/17/2022]
Abstract
Indocyanine green lactosome (ICG-lactosome) is an attractive new-generation agent for photodynamic therapy (PDT) that is characterized by a near-infrared excitation wavelength and high stability in the bloodstream. Fluorescence imaging has been used to examine its pharmacokinetics in vivo, but no depth-resolved information can be obtained with this method. In this study, we applied photoacoustic (PA) imaging to visualize the depth distribution of ICG-lactosome in a mouse subcutaneous tumor model. With this method, the depth distribution of blood vessels can also be visualized, enabling detection of vascular shutdown effects due to PDT. We performed PA imaging of both the distributions of ICG-lactosome and blood vessels in a tumor before and after PDT, and we found that PA signals originating from ICG-lactosome were greatly increased at 18 h after drug injection but rapidly decreased after PDT. These results indicate efficient accumulation of ICG-lactosome and rapid photobleaching due to the PDT reaction in the tumor, respectively. After PDT, PA amplitudes of hemoglobin were significantly decreased, being attributable to vascular shutdown effects. These results show the usefulness of PA imaging for monitoring not only photosensitizer accumulation and bleaching but also vascular responses in PDT with ICG-lactosome. This method can be applied to the diagnosis of many types of PDT processes.
Collapse
Affiliation(s)
- Yasuyuki Tsunoi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Koji Araki
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Eiichi Ozeki
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Isao Hara
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Akihiro Shiotani
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Mitsuhiro Terakawa
- Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan; School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| |
Collapse
|
14
|
Cryodesiccation-driven crystallization preparation approach for zinc(II)-phthalocyanine nanodots in cancer photodynamic therapy and photoacoustic imaging. Mikrochim Acta 2019; 186:237. [DOI: 10.1007/s00604-019-3286-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/22/2019] [Indexed: 01/10/2023]
|
15
|
Lavaud L, Pascal S, Metwally K, Gasteau D, Da Silva A, Chen Z, Elhabiri M, Canard G, Jacquemin D, Siri O. Azacalixphyrins as NIR photoacoustic contrast agents. Chem Commun (Camb) 2018; 54:12365-12368. [PMID: 30325372 DOI: 10.1039/c8cc05851b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Near-infrared (NIR) azacalixphyrins bearing aryl substituents strongly impacting the physico-chemical properties of the macrocycles were designed, enabling hyperchromic and bathochromic shifts of the absorption compared to their N-alkylated analogues. This engineering enhances the photoacoustic response under NIR excitation, making azacalixphyrins promising organic contrast agents that reach the 800-1000 nm range.
Collapse
Affiliation(s)
- Lucien Lavaud
- Aix-Marseille Université, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, 13288 Marseille cedex 09, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hally C, Rodríguez-Amigo B, Bresolí-Obach R, Planas O, Nos J, Boix-Garriga E, Ruiz-González R, Nonell S. Photodynamic Therapy. THERANOSTICS AND IMAGE GUIDED DRUG DELIVERY 2018. [DOI: 10.1039/9781788010597-00086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Photodynamic therapy is a clinical technique for the treatment of cancers, microbial infections and other medical conditions by means of light-induced generation of reactive oxygen species using photosensitising drugs. The intrinsic fluorescence of many such drugs make them potential theranostic agents for simultaneous diagnosis and therapy. This chapter reviews the basic chemical and biological aspects of photodynamic therapy with an emphasis on its applications in theranostics. The roles of nanotechnology is highlighted, as well as emerging trends such as photoimmunotherapy, image-guided surgery and light- and singlet-oxygen dosimetry.
Collapse
Affiliation(s)
- Cormac Hally
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | | | - Roger Bresolí-Obach
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | - Oriol Planas
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | - Jaume Nos
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | - Ester Boix-Garriga
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva Switzerland
| | - Rubén Ruiz-González
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| |
Collapse
|
17
|
Du L, Qin H, Ma T, Zhang T, Xing D. In Vivo Imaging-Guided Photothermal/Photoacoustic Synergistic Therapy with Bioorthogonal Metabolic Glycoengineering-Activated Tumor Targeting Nanoparticles. ACS NANO 2017; 11:8930-8943. [PMID: 28892360 DOI: 10.1021/acsnano.7b03226] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Developing multifunctional phototheranostics with nanoplatforms offers promising potential for effective eradication of malignant solid tumors. In this study, we develop a multifunctional phototheranostic by combining photothermal therapy (PTT) and photoacoustic therapy (PAT) based on a tumor-targeting nanoagent (DBCO-ZnPc-LP). The nanoagent DBCO-ZnPc-LP was facilely prepared by self-assembling of a single lipophilic near-infrared (NIR) dye zinc(II)-phthalocyanine (ZnPc) with a lipid-poly(ethylene glycol) (LP) and following modified further with dibenzyl cyclootyne (DBCO) for introducing the two-step chemical tumor-targeting strategy based on metabolic glycoengineering and click chemistry. The as-prepared DBCO-ZnPc-LP could not only convert NIR light into heat for effective thermal ablation but also induce a thermal-enhanced ultrasound shockwave boost to trigger substantially localized mechanical damage, achieving synergistic antitumor effect both in vitro and in vivo. Moreover, DBCO-ZnPc-LP can be efficiently delivered into tumor cells and solid tumors after being injected intravenously via the two-step tumor-targeting strategy. By integrating the targeting strategy, photoacoustic imaging, and the synergistic interaction between PTT and PAT, a solid tumor could be accurately positioned and thoroughly eradicated in vivo. Therefore, this multifunctional phototheranostic is believed to play an important role in future oncotherapy by the enhanced synergistic effect of PTT and PAT under the guidance of photoacoustic imaging.
Collapse
Affiliation(s)
- Lihua Du
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou 510631, China
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou 510631, China
| | - Teng Ma
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou 510631, China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou 510631, China
| |
Collapse
|
18
|
Banala S, Fokong S, Brand C, Andreou C, Kräutler B, Rueping M, Kiessling F. Quinone-fused porphyrins as contrast agents for photoacoustic imaging. Chem Sci 2017; 8:6176-6181. [PMID: 28989649 PMCID: PMC5628350 DOI: 10.1039/c7sc01369h] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022] Open
Abstract
Photoacoustic (PA) imaging is an emerging non-invasive diagnostic modality with many potential clinical applications in oncology, rheumatology and the cardiovascular field. For this purpose, there is a high demand for exogenous contrast agents with high absorption coefficients in the optical window for tissue imaging, i.e. the near infrared (NIR) range between 680 and 950 nm. We herein report the photoacoustic properties of quinone-fused porphyrins inserted with different transition metals as new highly promising candidates. These dyes exhibit intense NIR absorption, a lack of fluorescence emission, and PA sensitivity in concentrations below 3 nmol mL-1. In this context, the highest PA signal was obtained with a Zn(ii) inserted dye. Furthermore, this dye was stable in blood serum and free thiol solution and exhibited negligible cell toxicity. Additionally, the Zn(ii) probe could be detected with an up to 3.2 fold higher PA intensity compared to the clinically most commonly used PA agent, ICG. Thus, further exploration of the 'quinone-fusing' approach to other chromophores may be an efficient way to generate highly potent PA agents that do not fluoresce and shift their absorption into the NIR range.
Collapse
Affiliation(s)
- Srinivas Banala
- Institute for Experimental Molecular Imaging , University Clinic , RWTH Aachen University , Pauwelstraße 30 , D-52074 Aachen , Germany . ; ; Tel: +49 241 8085566
- Institute of Organic Chemistry , RWTH Aachen University , Landoltweg 1 , D-52074 Aachen , Germany
| | - Stanley Fokong
- Institute for Experimental Molecular Imaging , University Clinic , RWTH Aachen University , Pauwelstraße 30 , D-52074 Aachen , Germany . ; ; Tel: +49 241 8085566
| | - Christian Brand
- Department of Radiology , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , NY 10065 , USA
| | - Chrysafis Andreou
- Department of Radiology , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , NY 10065 , USA
| | - Bernhard Kräutler
- Institute of Organic Chemistry , University of Innsbruck , Innrain 80-82 , A6020 , Innsbruck , Austria
| | - Magnus Rueping
- Institute of Organic Chemistry , RWTH Aachen University , Landoltweg 1 , D-52074 Aachen , Germany
- KAUST Catalysis Center (KCC) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging , University Clinic , RWTH Aachen University , Pauwelstraße 30 , D-52074 Aachen , Germany . ; ; Tel: +49 241 8085566
| |
Collapse
|
19
|
Ertem B, Sarkı G, Yalazan H, Bıyıklıoğlu Z, Kantekin H. The synthesis and electrochemical characterization of new metallophthalocyanines containing 4-aminoantipyrine moieties on peripherally positions. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Liu K, Wang X, Ntziachristos V, Marsch S, Hunziker P. Polymeric nanosystems for near-infrared multispectral photoacoustic imaging: Synthesis, characterization and in vivo evaluation. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Fanchiotti BG, Machado MPZ, de Paula LC, Durmuş M, Nyokong T, da Silva Gonçalves A, da Silva AR. The photobleaching of the free and encapsulated metallic phthalocyanine and its effect on the photooxidation of simple molecules. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 165:10-23. [PMID: 27755995 DOI: 10.1016/j.jphotobiol.2016.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/06/2016] [Accepted: 10/10/2016] [Indexed: 11/25/2022]
Abstract
The photobleaching of an unsubstituted phthalocyanine (gallium(III) phthalocyanine chloride (GaPc)) and a substituted phthalocyanine (1,4-(tetrakis[4-(benzyloxy)phenoxy]phthalocyaninato) indium(III) chloride (InTBPPc)) was monitored for the free photosensitizers and for the phthalocyanines encapsulated into nanoparticles of PEGylated poly(D,L-lactide-co-glycolide) (PLGA-PEG). Phosphate-buffered solutions (PBS) and organic solutions of the free GaPc or the free InTBPPc, and suspensions of each encapsulated photosensitizer (2-15μmol/L) were irradiated using a laser diode of 665nm with a power of 1-104mW and a light dose of 7.5J/cm2. The relative absorbance (RA) of the free GaPc dissolved in 1-methyl-2-pyrrolidone (MP) decreased 8.4 times when the laser power increased from 1mW to 104mW. However, the free or encapsulated GaPc did not suffer the photobleaching in PBS solution. The RA values decreased 2.4 times and 22.2 times for the free InTBPPc dissolved in PBS solution and in dimethylformamide (DMF), respectively, but the encapsulated InTBPPc was only photobleached when the laser power was 104mW at 8μmol/L. The increase of the free GaPc concentration favored the photobleaching in MP until 8μmol/L while the increase from 2μmol/L to 5μmol/L reduced the photodegradation in PBS solution. However, the photobleaching of the free InTBPPc in DMF or in PBS solution, and of each encapsulated photosensitizer was not influenced by increasing the concentration. The influence of the photobleaching on the capability of the free and encapsulated GaPc and InTBPPc to photooxidate the simple molecules was investigated monitoring the fluorescence of dimethylanthracene (DMA) and the tryptophan (Trp). Free InTBPPc was 2.0 and 1.8 times faster to photooxidate the DMA and Trp than it was the free GaPc, but the encapsulated GaPc was 3.4 times more efficient to photooxidize the Trp than it was the encapsulated InTBPPc due to the photodegradation suffered by the encapsulated InTBPPc. The participation of the singlet oxygen was confirmed with the sodium azide in the photobleaching of all free and encapsulated photosensitizer, and in the photooxidation of the DMA and Trp. The asymmetry of InTBPPc increased the solubility of the free compound, decreasing the aggregation state of the photosensitizer and favoring the photobleaching process. The encapsulation shows capability in decreasing the photobleaching of both photosensitizers but the confocal micrographs showed that the increase of the solubility favored the InTBPPc photobleaching during the acquisition of optical cross section.
Collapse
Affiliation(s)
| | | | | | - Mahmut Durmuş
- Gebze Technical University, Department of Chemistry, PO Box 141, Gebze 41400, Turkey
| | - Tebello Nyokong
- Rhodes University, Department of Chemistry, PO Box 94, Grahamstown 6140, South Africa
| | | | | |
Collapse
|
22
|
Zhang Y, Lovell JF. Recent applications of phthalocyanines and naphthalocyanines for imaging and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27439671 DOI: 10.1002/wnan.1420] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/31/2016] [Accepted: 06/24/2016] [Indexed: 12/24/2022]
Abstract
With high extinction coefficients and long absorption wavelengths in the near infrared region, phthalocyanines (Pcs) and naphthalocyanines (Ncs) are well-suited for optical imaging and phototherapies in biological tissues. Pcs and Ncs have been used in a range of theranostic applications. Peripheral and axial substituents can be introduced to Pcs and Ncs for chemical modification. Seamless metal chelation of Pcs or Ncs can expand their possibilities as medical therapeutic and imaging agents. Nanoparticulate approaches enable unique ways to deliver Pcs and Ncs to target tissues and improve their solubility, biocompatibility, biodistribution and stability. Herein, we highlight some recent Pc or Nc nanoscale systems for theranostic applications. WIREs Nanomed Nanobiotechnol 2017, 9:e1420. doi: 10.1002/wnan.1420 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yumiao Zhang
- Department of Biomedical Engineering, University at Buffalo State University of New York, Buffalo, NY, USA.,Department of Chemical and Biological Engineering, University at Buffalo State University of New York, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo State University of New York, Buffalo, NY, USA
| |
Collapse
|
23
|
Attia ABE, Ho CJH, Chandrasekharan P, Balasundaram G, Tay HC, Burton NC, Chuang KH, Ntziachristos V, Olivo M. Multispectral optoacoustic and MRI coregistration for molecular imaging of orthotopic model of human glioblastoma. JOURNAL OF BIOPHOTONICS 2016; 9:701-8. [PMID: 27091626 DOI: 10.1002/jbio.201500321] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 05/24/2023]
Abstract
Multi-modality imaging methods are of great importance in oncologic studies for acquiring complementary information, enhancing the efficacy in tumor detection and characterization. We hereby demonstrate a hybrid non-invasive in vivo imaging approach of utilizing magnetic resonance imaging (MRI) and Multispectral Optoacoustic Tomography (MSOT) for molecular imaging of glucose uptake in an orthotopic glioblastoma in mouse. The molecular and functional information from MSOT can be overlaid on MRI anatomy via image coregistration to provide insights into probe uptake in the brain, which is verified by ex vivo fluorescence imaging and histological validation. In vivo MSOT and MRI imaging of an orthotopic glioma mouse model injected with IRDye800-2DG. Image coregistration between MSOT and MRI enables multifaceted (anatomical, functional, molecular) information from MSOT to be overlaid on MRI anatomy images to derive tumor physiological parameters such as perfusion, haemoglobin and oxygenation.
Collapse
Affiliation(s)
| | - Chris Jun Hui Ho
- Singapore Bioimaging Consortium, 11 Biopolis Way, Helios #01-02, Singapore, 138667
| | | | | | - Hui Chien Tay
- Singapore Bioimaging Consortium, 11 Biopolis Way, Helios #01-02, Singapore, 138667
| | | | - Kai-Hsiang Chuang
- Queensland Brain Institute, University of Queensland, Brisbane, 4072, Australia.
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Neuherberg, Germany
| | - Malini Olivo
- Singapore Bioimaging Consortium, 11 Biopolis Way, Helios #01-02, Singapore, 138667.
- School of Physics, National University of Ireland, Galway, Ireland.
| |
Collapse
|
24
|
Zhou Y, Yao J, Wang LV. Tutorial on photoacoustic tomography. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:61007. [PMID: 27086868 PMCID: PMC4834026 DOI: 10.1117/1.jbo.21.6.061007] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/22/2016] [Indexed: 05/18/2023]
Abstract
Photoacoustic tomography (PAT) has become one of the fastest growing fields in biomedical optics. Unlike pure optical imaging, such as confocal microscopy and two-photon microscopy, PAT employs acoustic detection to image optical absorption contrast with high-resolution deep into scattering tissue. So far, PAT has been widely used for multiscale anatomical, functional, and molecular imaging of biological tissues. We focus on PAT’s basic principles, major implementations, imaging contrasts, and recent applications.
Collapse
Affiliation(s)
- Yong Zhou
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Junjie Yao
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| |
Collapse
|
25
|
Zhou Y, Wang D, Zhang Y, Chitgupi U, Geng J, Wang Y, Zhang Y, Cook TR, Xia J, Lovell JF. A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging. Am J Cancer Res 2016; 6:688-97. [PMID: 27022416 PMCID: PMC4805663 DOI: 10.7150/thno.14555] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/12/2016] [Indexed: 12/11/2022] Open
Abstract
Although photoacoustic computed tomography (PACT) operates with high spatial resolution in biological tissues deeper than other optical modalities, light scattering is a limiting factor. The use of longer near infrared wavelengths reduces scattering. Recently, the rational design of a stable phosphorus phthalocyanine (P-Pc) with a long wavelength absorption band beyond 1000 nm has been reported. Here, we show that when dissolved in liquid surfactants, P-Pc can give rise to formulations with absorbance of greater than 1000 (calculated for a 1 cm path length) at wavelengths beyond 1000 nm. Using the broadly accessible Nd:YAG pulse laser emission output of 1064 nm, P-Pc could be imaged through 11.6 cm of chicken breast with PACT. P-Pc accumulated passively in tumors following intravenous injection in mice as observed by PACT. Following oral administration, P-Pc passed through the intestine harmlessly, and PACT could be used to non-invasively observe intestine function. When the contrast agent placed under the arm of a healthy adult human, a PACT transducer on the top of the arm could readily detect P-Pc through the entire 5 cm limb. Thus, the approach of using contrast media with extreme absorption at 1064 nm readily enables high quality optical imaging in vitro and in vivo in humans at exceptional depths.
Collapse
|
26
|
|
27
|
Kimbrough CW, Khanal A, Zeiderman M, Khanal BR, Burton NC, McMasters KM, Vickers SM, Grizzle WE, McNally LR. Targeting Acidity in Pancreatic Adenocarcinoma: Multispectral Optoacoustic Tomography Detects pH-Low Insertion Peptide Probes In Vivo. Clin Cancer Res 2015; 21:4576-85. [PMID: 26124201 PMCID: PMC4609270 DOI: 10.1158/1078-0432.ccr-15-0314] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/12/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND pH-low insertion peptides (pHLIP) can serve as a targeting moiety that enables pH-sensitive probes to detect solid tumors. Using these probes in conjunction with multispectral optoacoustic tomography (MSOT) is a promising approach to improve imaging for pancreatic cancer. METHODS A pH-sensitive pHLIP (V7) was conjugated to 750 NIR fluorescent dye and evaluated as a targeted probe for pancreatic adenocarcinoma. The pH-insensitive K7 pHLIP served as an untargeted control. Probe binding was assessed in vitro at pH 7.4, 6.8, and 6.6 using human pancreatic cell lines S2VP10 and S2013. Using MSOT, semiquantitative probe accumulation was then assessed in vivo with a murine orthotopic pancreatic adenocarcinoma model. RESULTS In vitro, the V7-750 probe demonstrated significantly higher fluorescence at pH 6.6 compared with pH 7.4 (S2VP10, P = 0.0119; S2013, P = 0.0160), whereas no difference was observed with the K7-750 control (S2VP10, P = 0.8783; S2013, P = 0.921). In the in vivo S2VP10 model, V7-750 probe resulted in 782.5 MSOT a.u. signal compared with 5.3 MSOT a.u. in K7-750 control in tumor (P = 0.0001). Similarly, V7-750 probe signal was 578.3 MSOT a.u. in the S2013 model compared with K7-750 signal at 5.1 MSOT a.u. (P = 0.0005). There was minimal off-target accumulation of the V7-750 probe within the liver or kidney, and probe distribution was confirmed with ex vivo imaging. CONCLUSIONS Compared with pH-insensitive controls, V7-750 pH-sensitive probe specifically targets pancreatic adenocarcinoma and has minimal off-target accumulation. The noninvasive detection of pH-targeted probes by means of MSOT represents a promising modality to improve the detection and monitoring of pancreatic cancer.
Collapse
Affiliation(s)
- Charles W Kimbrough
- The Hiram C. Polk Jr, MD Department of Surgery, University of Louisville, Louisville, Kentucky
| | - Anil Khanal
- Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Matthew Zeiderman
- The Hiram C. Polk Jr, MD Department of Surgery, University of Louisville, Louisville, Kentucky
| | - Bigya R Khanal
- Department of Medicine, University of Louisville, Louisville, Kentucky
| | | | - Kelly M McMasters
- The Hiram C. Polk Jr, MD Department of Surgery, University of Louisville, Louisville, Kentucky
| | | | | | - Lacey R McNally
- Department of Medicine, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
28
|
Lu Y, Chen Y, Gemeinhart RA, Wu W, Li T. Developing nanocrystals for cancer treatment. Nanomedicine (Lond) 2015; 10:2537-52. [PMID: 26293310 DOI: 10.2217/nnm.15.73] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanocrystals are carrier-free solid drug particles that are sized in the nanometer range and have crystalline characteristics. Due to high drug loading (as high as 100%) - free of organic solvents or solubilizing chemicals - nanocrystals have become attractive in the field of drug delivery for cancer treatment. Top-down and bottom-up approaches have been developed for preparing anticancer nanocrystals. In this review, preparation methods and in vivo performance of anticancer nanocrystals are discussed first, followed by an introduction of hybrid nanocrystals in cancer theranostics.
Collapse
Affiliation(s)
- Yi Lu
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.,Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yan Chen
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.,Department of Pharmaceutics, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Richard A Gemeinhart
- Departments of Biopharmaceutical Sciences, Bioengineering & Ophthalmology & Visual Sciences, The University of Illinois, Chicago, IL 60612, USA
| | - Wei Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Tonglei Li
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|