1
|
Zalewski A, Musiał W, Jankowska-Konsur A. Photodynamic Therapy in Primary Cutaneous Skin Lymphoma-Systematic Review. J Clin Med 2025; 14:2956. [PMID: 40363989 PMCID: PMC12073078 DOI: 10.3390/jcm14092956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Background/Objectives: Primary cutaneous lymphomas (CLs) are a group of skin-limited lymphoproliferative disorders, including cutaneous T-cell (CTCLs) and B-cell lymphomas (CBCLs). Photodynamic therapy (PDT), a non-invasive, light-activated treatment, has gained attention as a skin-directed therapy for early-stage CLs due to its selectivity and favorable safety profile. This systematic review evaluates the current evidence on the clinical use of PDT in managing CLs. Methods: A systematic literature search was conducted in PubMed, Scopus, and Embase through 1 September 2024 following PRISMA guidelines. Search terms included "primary cutaneous skin lymphoma", "CTCL", "CBCL", "mycosis fungoides", "lymphomatoid papulosis", and "photodynamic therapy". After screening 1033 records, 30 studies were included. Data were extracted and categorized by lymphoma subtype and clinical outcomes. Results: Of the included studies, 23 focused on mycosis fungoides (MF), 5 on lymphomatoid papulosis (LyP), and 2 on CBCL. PDT demonstrated notable clinical efficacy in early-stage and localized disease, particularly MF, using methyl aminolevulinate (MAL) or 5-aminolevulinic acid (5-ALA) as photosensitizers. Adjunctive techniques like microneedling and laser-assisted delivery improved treatment outcomes. PDT was generally well tolerated, with mild, transient side effects; rare complications such as localized neuropathy were reported. Conclusions: PDT is a promising, non-invasive treatment for early-stage CLs, especially MF and indolent CBCL variants. While current evidence supports its safety and effectiveness, further comparative and prospective studies are needed to refine protocols, evaluate long-term efficacy, and compare different photosensitizers.
Collapse
Affiliation(s)
- Adam Zalewski
- Clinical Department of Oncodermatology, University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland;
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland;
| | - Alina Jankowska-Konsur
- Clinical Department of Oncodermatology, University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland;
| |
Collapse
|
2
|
Ain QT. Recent development of nanomaterials-based PDT to improve immunogenic cell death. Photochem Photobiol Sci 2024; 23:1983-1998. [PMID: 39320675 DOI: 10.1007/s43630-024-00638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Photodynamic therapy (PDT) is a clinically approved therapeutic modality for treating oncological and non-oncological disorders. PDT has proclaimed multiple benefits over further traditional cancer therapies including its minimal systemic toxicity and selective ability to eliminate irradiated tumors. In PDT, a photosensitizing substance localizes in tumor tissues and becomes active when exposed to a particular wavelength of laser light. This produces reactive oxygen species (ROS), which induce neoplastic cells to die and lead to the regression of tumors. The contributions of ROS to PDT-induced tumor destruction are described by three basic processes including direct or indirect cell death, vascular destruction, and immunogenic cell death. However, the efficiency of PDT is significantly limited by the inherent nature and tumor microenvironment. Combining immunotherapy with PDT has recently been shown to improve tumor immunogenicity while decreasing immunoregulatory repression, thereby gently modifying the anticancer immune response with long-term immunological memory effects. This review highlights the fundamental ideas, essential elements, and mechanisms of PDT as well as nanomaterial-based PDT to boost tumor immunogenicity. Moreover, the synergistic use of immunotherapy in combination with PDT to enhance immune responses against tumors is emphasized.
Collapse
Affiliation(s)
- Qura Tul Ain
- Department of Physics, The Women University Multan, Khawajabad, Multan, Pakistan.
| |
Collapse
|
3
|
Roa-Tort K, Saavedra Y, Villanueva-Martínez A, Ganem-Rondero A, Pérez-Carranza LA, de la Rosa-Vázquez JM, Ugalde-Femat G, Molina-Alejandre O, Becerril-Osnaya AA, Rivera-Fernández JD. In Vitro Antimicrobial Photodynamic Therapy for Pseudomonas aeruginosa ( P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) Inhibition Using a Green Light Source. Pharmaceutics 2024; 16:518. [PMID: 38675180 PMCID: PMC11053950 DOI: 10.3390/pharmaceutics16040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Photodynamic therapy (PDT) has been based on using photosensitizers (PS) and applying light of a specific wavelength. When this technique is used for treating infections, it is known as antimicrobial photodynamic therapy (aPDT). Currently, the use of lighting sources for in vitro studies using aPDT is generally applied in multiwell cell culture plates; however, depending on the lighting arrangement, there are usually errors in the application of the technique because the light from a well can affect the neighboring wells or it may be that not all the wells are used in the same experiment. In addition, one must be awarded high irradiance values, which can cause unwanted photothermal problems in the studies. Thus, this manuscript presents an in vitro antimicrobial photodynamic therapy for a Pseudomonas aeruginosa (P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) inhibition study using an arrangement of thermally isolated and independently illuminated green light source systems for eight tubes in vitro aPDT, determining the effect of the following factors: (i) irradiance level, (ii) exposure time, and (iii) Rose Bengal (RB) concentration (used as a PS), registering the Pseudomonas aeruginosa (P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) inhibition rates. The results show that in the dark, RB had a poor antimicrobial rate for P. aeruginosa, finding the maximum inhibition (2.7%) at 30 min with an RB concentration of 3 µg/mL. However, by applying light in a correct dosage (time × irradiance) and the adequate RB concentration, the inhibition rate increased by over 37%. In the case of MRSA, there was no significant inhibition with RB in complete darkness and, in contrast, the rate was 100% for those experiments that were irradiated.
Collapse
Affiliation(s)
- Karen Roa-Tort
- Laboratorio de Optomecatrónica, UPIIH, Instituto Politécnico Nacional, Distrito de Educación, Salud, Ciencia, Tecnología e Innovación, San Agustín Tlaxiaca 42162, Mexico;
| | - Yael Saavedra
- Laboratorio de Biofotónica, ESIME ZAC, Instituto Politécnico Nacional, Gustavo A. Madero, Ciudad de México 07738, Mexico; (Y.S.); (J.M.d.l.R.-V.); (G.U.-F.)
| | - Angélica Villanueva-Martínez
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica (L-322), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (A.V.-M.); (A.G.-R.); (O.M.-A.)
| | - Adriana Ganem-Rondero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica (L-322), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (A.V.-M.); (A.G.-R.); (O.M.-A.)
| | - Laura Abril Pérez-Carranza
- Laboratorio de Bacteriología Diagnóstica de la Sección de Ciencias de la Salud Humana (anexo al L-513, Campo1), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico;
| | - José M. de la Rosa-Vázquez
- Laboratorio de Biofotónica, ESIME ZAC, Instituto Politécnico Nacional, Gustavo A. Madero, Ciudad de México 07738, Mexico; (Y.S.); (J.M.d.l.R.-V.); (G.U.-F.)
| | - Gabriel Ugalde-Femat
- Laboratorio de Biofotónica, ESIME ZAC, Instituto Politécnico Nacional, Gustavo A. Madero, Ciudad de México 07738, Mexico; (Y.S.); (J.M.d.l.R.-V.); (G.U.-F.)
| | - Omar Molina-Alejandre
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica (L-322), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (A.V.-M.); (A.G.-R.); (O.M.-A.)
| | - Andrea Angela Becerril-Osnaya
- Laboratorio de Bacteriología Diagnóstica de la Sección de Ciencias de la Salud Humana (anexo al L-513, Campo1), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico;
| | - Josué D. Rivera-Fernández
- Laboratorio de Optomecatrónica, UPIIH, Instituto Politécnico Nacional, Distrito de Educación, Salud, Ciencia, Tecnología e Innovación, San Agustín Tlaxiaca 42162, Mexico;
| |
Collapse
|
4
|
Pignatelli P, Umme S, D'Antonio DL, Piattelli A, Curia MC. Reactive Oxygen Species Produced by 5-Aminolevulinic Acid Photodynamic Therapy in the Treatment of Cancer. Int J Mol Sci 2023; 24:ijms24108964. [PMID: 37240309 DOI: 10.3390/ijms24108964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is the leading cause of death worldwide and several anticancer therapies take advantage of the ability of reactive oxygen species to kill cancer cells. Added to this is the ancient hypothesis that light alone can be used to kill cancer cells. 5-aminolevulinic acid-photodynamic therapy (5-ALA-PDT) is a therapeutic option for a variety of cutaneous and internal malignancies. PDT uses a photosensitizer that, activated by light in the presence of molecule oxygen, forms ROS, which are responsible for the apoptotic activity of the malignant tissues. 5-ALA is usually used as an endogenous pro-photosensitizer because it is converted to Protoporphyrin IX (PpIX), which enters into the process of heme synthesis and contextually becomes a photosensitizer, radiating a red fluorescent light. In cancer cells, the lack of the ferrochelatase enzyme leads to an accumulation of PpIX and consequently to an increased production of ROS. PDT has the benefit of being administered before or after chemotherapy, radiation, or surgery, without impairing the efficacy of these treatment techniques. Furthermore, sensitivity to PDT is unaffected by the negative effects of chemotherapy or radiation. This review focuses on the studies done so far on 5-ALA-PDT and its efficacy in the treatment of various cancer pathologies.
Collapse
Affiliation(s)
- Pamela Pignatelli
- COMDINAV DUE, Nave Cavour, Italian Navy, Stazione Navale Mar Grande, Viale Ionio, 74122 Taranto, Italy
| | - Samia Umme
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Domenica Lucia D'Antonio
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
- Fondazione Villaserena per la Ricerca, Città Sant'Angelo, 65013 Pescara, Italy
- Casa di Cura Villa Serena, Città Sant'Angelo, 65013 Pescara, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences, 00131 Rome, Italy
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
5
|
Mušković M, Pokrajac R, Malatesti N. Combination of Two Photosensitisers in Anticancer, Antimicrobial and Upconversion Photodynamic Therapy. Pharmaceuticals (Basel) 2023; 16:613. [PMID: 37111370 PMCID: PMC10143496 DOI: 10.3390/ph16040613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Photodynamic therapy (PDT) is a special form of phototherapy in which oxygen is needed, in addition to light and a drug called a photosensitiser (PS), to create cytotoxic species that can destroy cancer cells and various pathogens. PDT is often used in combination with other antitumor and antimicrobial therapies to sensitise cells to other agents, minimise the risk of resistance and improve overall outcomes. Furthermore, the aim of combining two photosensitising agents in PDT is to overcome the shortcomings of the monotherapeutic approach and the limitations of individual agents, as well as to achieve synergistic or additive effects, which allows the administration of PSs in lower concentrations, consequently reducing dark toxicity and preventing skin photosensitivity. The most common strategies in anticancer PDT use two PSs to combine the targeting of different organelles and cell-death mechanisms and, in addition to cancer cells, simultaneously target tumour vasculature and induce immune responses. The use of PDT with upconversion nanoparticles is a promising approach to the treatment of deep tissues and the goal of using two PSs is to improve drug loading and singlet oxygen production. In antimicrobial PDT, two PSs are often combined to generate various reactive oxygen species through both Type I and Type II processes.
Collapse
Affiliation(s)
| | | | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (M.M.); (R.P.)
| |
Collapse
|
6
|
Yang F, Wu X, Cui H, Ou Z, Jiang S, Cai S, Zhou Q, Wong BG, Huang H, Hong G. A biomineral-inspired approach of synthesizing colloidal persistent phosphors as a multicolor, intravital light source. SCIENCE ADVANCES 2022; 8:eabo6743. [PMID: 35905189 PMCID: PMC9337768 DOI: 10.1126/sciadv.abo6743] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/14/2022] [Indexed: 05/19/2023]
Abstract
Many in vivo biological techniques, such as fluorescence imaging, photodynamic therapy, and optogenetics, require light delivery into biological tissues. The limited tissue penetration of visible light discourages the use of external light sources and calls for the development of light sources that can be delivered in vivo. A promising material for internal light delivery is persistent phosphors; however, there is a scarcity of materials with strong persistent luminescence of visible light in a stable colloid to facilitate systemic delivery in vivo. Here, we used a bioinspired demineralization (BID) strategy to synthesize stable colloidal solutions of solid-state phosphors in the range of 470 to 650 nm and diameters down to 20 nm. The exceptional brightness of BID-produced colloids enables their utility as multicolor luminescent tags in vivo with favorable biocompatibility. Because of their stable dispersion in water, BID-produced nanophosphors can be delivered systemically, acting as an intravascular colloidal light source to internally excite genetically encoded fluorescent reporters within the mouse brain.
Collapse
Affiliation(s)
- Fan Yang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Xiang Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Han Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Shan Jiang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Sa Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Qi Zhou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Bryce G. Wong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Hans Huang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021; 13:pharmaceutics13091332. [PMID: 34575408 PMCID: PMC8470722 DOI: 10.3390/pharmaceutics13091332] [Citation(s) in RCA: 478] [Impact Index Per Article: 119.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality that has gained great attention in the past years as a new therapy for cancer treatment. PDT uses photosensitizers that, after being excited by light at a specific wavelength, react with the molecular oxygen to create reactive oxygen species in the target tissue, resulting in cell death. Compared to conventional therapeutic modalities, PDT presents greater selectivity against tumor cells, due to the use of photosensitizers that are preferably localized in tumor lesions, and the precise light irradiation of these lesions. This paper presents a review of the principles, mechanisms, photosensitizers, and current applications of PDT. Moreover, the future path on the research of new photosensitizers with enhanced tumor selectivity, featuring the improvement of PDT effectiveness, has also been addressed. Finally, new applications of PDT have been covered.
Collapse
|
8
|
A Warp-Knitted Light-Emitting Fabric-Based Device for In Vitro Photodynamic Therapy: Description, Characterization, and Application on Human Cancer Cell Lines. Cancers (Basel) 2021; 13:cancers13164109. [PMID: 34439263 PMCID: PMC8394325 DOI: 10.3390/cancers13164109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary While photodynamic therapy appears to be a promising approach to treating cancers, the complexity of its parameters prevents wide acceptance. Accurate light dose measurement is one of the keys to photodynamic effect assessment, but it remains challenging when comparing different technologies. This work provides a complete demonstration of the technical performance of a homemade optical device, based on knitted light-emitting fabrics, called CELL-LEF. Thermal and optical distributions and related safeties are investigated. The results are discussed in relation to the requirements of photodynamic therapy. The usability of CELL-LEF is investigated on human cancer cell lines as a proof of concept. This study highlights that new light-emitting fabric-based technologies can be relevant light sources for in vitro photodynamic therapy studies of tomorrow. Abstract Photodynamic therapy (PDT) appears to be a promising strategy in biomedical applications. However, the complexity of its parameters prevents wide acceptance. This work presents and characterizes a novel optical device based on knitted light-emitting fabrics and dedicated to in vitro PDT involving low irradiance over a long illumination period. Technical characterization of this device, called CELL-LEF, is performed. A cytotoxic study of 5-ALA-mediated PDT on human cancer cell lines is provided as a proof of concept. The target of delivering an irradiance of 1 mW/cm2 over 750 cm2 is achieved (mean: 0.99 mW/cm2; standard deviation: 0.13 mW/cm2). The device can maintain a stable temperature with the mean thermal distribution of 35.1 °C (min: 30.7 °C; max: 38.4 °C). In vitro outcomes show that 5-ALA PDT using CELL-LEF consistently and effectively induced a decrease in tumor cell viability: Almost all the HepG2 cells died after 80 min of illumination, while less than 60% of U87 cell viability remained. CELL-LEF is suitable for in vitro PDT involving low irradiance over a long illumination period.
Collapse
|
9
|
Systematic Review and Meta-Analysis of In Vitro Anti-Human Cancer Experiments Investigating the Use of 5-Aminolevulinic Acid (5-ALA) for Photodynamic Therapy. Pharmaceuticals (Basel) 2021; 14:ph14030229. [PMID: 33800109 PMCID: PMC8000125 DOI: 10.3390/ph14030229] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is an amino acid derivative and a precursor of protoporphyrin IX (PpIX). The photophysical feature of PpIX is clinically used in photodynamic diagnosis (PDD) and photodynamic therapy (PDT). These clinical applications are potentially based on in vitro cell culture experiments. Thus, conducting a systematic review and meta-analysis of in vitro 5-ALA PDT experiments is meaningful and may provide opportunities to consider future perspectives in this field. We conducted a systematic literature search in PubMed to summarize the in vitro 5-ALA PDT experiments and calculated the effectiveness of 5-ALA PDT for several cancer cell types. In total, 412 articles were identified, and 77 were extracted based on our inclusion criteria. The calculated effectiveness of 5-ALA PDT was statistically analyzed, which revealed a tendency of cancer-classification-dependent sensitivity to 5-ALA PDT, and stomach cancer was significantly more sensitive to 5-ALA PDT compared with cancers of different origins. Based on our analysis, we suggest a standardized in vitro experimental protocol for 5-ALA PDT.
Collapse
|
10
|
Kirino I, Fujita K, Sakanoue K, Sugita R, Yamagishi K, Takeoka S, Fujie T, Uemoto S, Morimoto Y. Metronomic photodynamic therapy using an implantable LED device and orally administered 5-aminolevulinic acid. Sci Rep 2020; 10:22017. [PMID: 33328544 PMCID: PMC7744509 DOI: 10.1038/s41598-020-79067-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/02/2020] [Indexed: 11/23/2022] Open
Abstract
Metronomic photodynamic therapy (mPDT) is a form of PDT that induces cancer cell death by intermittent continuous irradiation with a relatively weak power of light for a long duration (several days). We previously developed a wirelessly powered, fully implantable LED device and reported a significant anti-tumor effect of mPDT. Considering application in clinical practice, the method used for repeated administrations of photosensitizers required for mPDT should not have a high patient burden such as the burden of transvenous administration. Therefore, in this study, we selected 5-aminolevulinic acid (ALA), which can be administered orally, as a photosensitizer, and we studied the antitumor effects of mPDT. In mice with intradermal tumors that were orally administered ALA (200 mg/kg daily for 5 days), the tumor in each mouse was simultaneously irradiated (8 h/day for 5 days) using a wirelessly powered implantable green LED device (532 nm, 0.05 mW). Tumor growth in the mPDT-treated mice was suppressed by about half compared to that in untreated mice. The results showed that mPDT using the wirelessly powered implantable LED device exerted an antitumor effect even with the use of orally administered ALA, and this treatment scheme can reduce the burden of photosensitizer administration for a patient.
Collapse
Affiliation(s)
- Izumi Kirino
- Department of Physiology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsuhiko Fujita
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | | | - Rin Sugita
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kento Yamagishi
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
| | - Shinji Takeoka
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Toshinori Fujie
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Shinji Uemoto
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Morimoto
- Department of Physiology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan.
| |
Collapse
|
11
|
Panetta JV, Cvetkovic D, Chen X, Chen L, Ma CMC. Radiodynamic therapy using 15-MV radiation combined with 5-aminolevulinic acid and carbamide peroxide for prostate cancer in vivo. Phys Med Biol 2020; 65:165008. [PMID: 32464613 DOI: 10.1088/1361-6560/ab9776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy has been clinically proven to be effective, but its effect is limited to relatively shallow tumors because of its use of visible light. Radiodynamic therapy (RDT) has therefore been investigated as a means to treat deep-seated tumors. In this study, the treatment effect of a novel form of RDT consisting of radiation combined with 5-aminolevulinic acid (5-ALA) and carbamide peroxide was investigated using a mouse model. Male nude mice were injected bilaterally and subcutaneously with human prostate cancer (PC-3) cells and randomized into 8 treatment groups, consisting of various combinations of 15-MV radiotherapy (RT), 5-ALA, and carbamide peroxide. The treatment effect of a single fraction of treatment was measured by calculating tumor growth delay, monitored using weekly MR scans. The ability of the drugs to be delivered to the tumors was qualitatively measured using 18 F-FDG PET/CT scans. RDT was shown to significantly delay the tumor growth for the mouse model and tumor cell line investigated in this work. Tumors treated with RDT showed a decrease in tumor growth of 24 ± 9% and 21 ± 8% at one and two weeks post-treatment, respectively. Peroxide and 5-ALA did not contribute significantly to tumor growth delay when administered alone or separately with RT. Blood perfusion was shown to be able to deliver agents to the tumors investigated in this work, although uptake of 18 F-FDG was shown to be non-uniform.
Collapse
|
12
|
Etcheverry ME, Pasquale MA, Bergna C, Ponzinibbio C, Garavaglia M. Photodynamic therapy in 2D and 3D human cervical carcinoma cell cultures employing LED light sources emitting at different wavelengths. ACTA ACUST UNITED AC 2020; 65:015017. [DOI: 10.1088/1361-6560/ab589a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Sailapu SK, Dutta D, Simon AT, Ghosh SS, Chattopadhyay A. Smartphone controlled interactive portable device for theranostics in vitro. Biosens Bioelectron 2019; 146:111745. [PMID: 31606688 DOI: 10.1016/j.bios.2019.111745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/11/2019] [Accepted: 09/28/2019] [Indexed: 10/25/2022]
Abstract
In this work, a smartphone controlled interactive theranostic device has been developed to perform in vitro photodynamic therapy (PDT) and diagnostic assays for treatment assessment on a single platform. Further, silver nanorod (Ag NR) was identified as a photosensitizer and its effect was studied in three different cell lines. PDT was achieved with Ag NRs using low irradiation (1.4 mW/cm2 at 632 nm) from light emitting diodes (LEDs) in the device. Specifically, PDT in conjugation with widely used chemotherapeutic drug doxorubicin (Dox) proved effective in killing of HeLa cancer cells and multicellular tumor spheroids at a minimum dose of Ag (2.5 μg/mL). The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and LDH (lactate dehydrogenase) assays performed with the device indicated the therapeutic success of the delivered PDT. The device is portable and can be adapted for different wavelength irradiations and radiation doses. Additionally, wireless operation using a custom designed smartphone application makes it convenient to use in complex environments without much of human intervention.
Collapse
Affiliation(s)
- Sunil Kumar Sailapu
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| | - Deepanjalee Dutta
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| | - Anitha T Simon
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| | - Arun Chattopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India; Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
14
|
Carbon-Doped TiO 2 Activated by X-Ray Irradiation for the Generation of Reactive Oxygen Species to Enhance Photodynamic Therapy in Tumor Treatment. Int J Mol Sci 2019; 20:ijms20092072. [PMID: 31035468 PMCID: PMC6540153 DOI: 10.3390/ijms20092072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Traditional photodynamic therapy (PDT) is limited by the penetration depth of visible light. Although the light source has been changed to near infrared, infrared light is unable to overcome the penetration barrier and it is only effective at the surface of the tumors. In this study, we used X-ray as a light source for deep-seated tumor treatment. A particle with a narrow band gap when exposed to soft X-rays would produce reactive oxygen species (ROS) to kill tumor cell, with less damage to the normal tissues. Anatase TiO2 has been studied as a photosensitizer in PDT. In the experiment, C was doped into the anatase lattice at an optimum atomic ratio to make the band gap narrower, which would be activated by X-ray to produce more ROS and kill tumor cells under stress. The results showed that the synthesized TiO2:C particles were identified as crystal structures of anatase. The synthesized particles could be activated effectively by soft X-rays to produce ROS, to degrade methylene blue by up to 30.4%. Once TiO2:C was activated by X-ray irradiation, the death rate of A549 cells in in vitro testing was as high as 16.57%, on day 2. In the animal study, the tumor size gradually decreased after treatment with TiO2:C and exposure to X-rays on day 0 and day 8. On day 14, the tumor declined to nearly half of its initial volume, while the tumor in the control group was twice its initial volume. After the animal was sacrificed, blood, and major organs were harvested for further analysis and examination, with data fully supporting the safety of the treatment. Based on the results of the study, we believe that TiO2:C when exposed to X-rays could overcome the limitation of penetration depth and could improve PDT effects by inhibiting tumor growth effectively and safely, in vivo.
Collapse
|
15
|
LaRochelle EPM, Marra K, LeBlanc RE, Chapman MS, Maytin EV, Pogue BW. Modeling PpIX effective light fluence at depths into the skin for PDT dose comparison. Photodiagnosis Photodyn Ther 2019; 25:425-435. [PMID: 30685548 DOI: 10.1016/j.pdpdt.2019.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/04/2019] [Accepted: 01/18/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Daylight-activated PDT has seen increased support in recent years as a treatment method for actinic keratosis and other non-melanoma skin cancers. The inherent variability observed in broad-spectrum light used in this methodology makes it difficult to plan and monitor light dose, or compare to lamp light doses. METHODS The present study expands on the commonly used PpIX-weighted effective surface irradiance metric by introducing a Monte Carlo method for estimating effective fluence rates into depths of the skin. The fluence rates are compared between multiple broadband and narrowband sources that have been reported in previous studies, and an effective total fluence for various treatment times is reported. A dynamic estimate of PpIX concentration produced during pro-drug incubation and treatment is used with the fluence estimates to calculate a photodynamic dose. RESULTS Even when there is up to a 5x reduction between the effective surface irradiance of the broadband light sources, the effective fluence below 250 μm depth is predicted to be relatively equivalent. An effective threshold fluence value (0. 70Jeff/cm2) is introduced based on a meta-analysis of previously published ALA-PpIX induced cell death. This was combined with a threshold PpIX concentration (50 nM) to define a threshold photodynamic dose of 0.035 u M Jeff/cm2. CONCLUSIONS The threshold was used to generate lookup tables to prescribe minimal treatment times to achieve depth-dependent cytotoxic effect based on incubation times and irradiance values for each light source.
Collapse
Affiliation(s)
| | - Kayla Marra
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Robert E LeBlanc
- Department Pathology & Laboratory Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - M Shane Chapman
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Edward V Maytin
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; Department of Surgery, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| |
Collapse
|
16
|
Alimoradi H, Barzegar-Fallah A, Sammut IA, Greish K, Giles GI. Encapsulation of tDodSNO generates a photoactivated nitric oxide releasing nanoparticle for localized control of vasodilation and vascular hyperpermeability. Free Radic Biol Med 2019; 130:297-305. [PMID: 30367997 DOI: 10.1016/j.freeradbiomed.2018.10.433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/07/2018] [Accepted: 10/18/2018] [Indexed: 11/25/2022]
Abstract
We report the synthesis and characterization of a photoactive nitric oxide (NO) releasing nanoparticle (NP) by encapsulation of the NO donor tert-dodecane S-nitrosothiol (tDodSNO) into a co-polymer of styrene and maleic anhydride (SMA) to afford SMA-tDodSNO. Encapsulation did not affect tDodSNO's stability or NO release profile, but imparted water solubility and protection from degradation reactions with glutathione. Under photoactivation the NP acted as a potent NO donor, with photoactivation acting as a switch to induce localized vasodilation in aortic rings (EC50* 660 nM at 2700 W/m2) and cause vascular hyperpermeability in mesenteric beds (8-fold increase in dye uptake at 1 µM SMA-tDodSNO with 460 W/m2 photoactivation). The NP was markedly superior as a photoactive NO donor in comparison to the S-nitrosothiols GSNO and SNAP, which are commonly used in experimental studies, as well as sodium nitroprusside, a clinically used vasodilator. Future development of this NP may find wide ranging therapeutic applications for treating cardiovascular disease and other disorders related to NO signaling, as well as enhancing macromolecular drug delivery to target organs through selective hyperpermeability. Supporting information describing the biophysical characterization of SMA-tDodSNO is supplied in an accompanying Data in Brief article (Alimoradi et al., doi: 10.1016/j.dib.2018.10.149).
Collapse
Affiliation(s)
- Houman Alimoradi
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Anita Barzegar-Fallah
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Ivan A Sammut
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Khaled Greish
- College of Medicine and Medical Sciences, Department of Molecular Medicine, Nanomedicine Unit, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Gregory I Giles
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
17
|
Massiot J, Makky A, Di Meo F, Chapron D, Trouillas P, Rosilio V. Impact of lipid composition and photosensitizer hydrophobicity on the efficiency of light-triggered liposomal release. Phys Chem Chem Phys 2018; 19:11460-11473. [PMID: 28425533 DOI: 10.1039/c7cp00983f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photo-triggerable liposomes are considered nowadays as promising drug delivery devices due to their potential to release encapsulated drugs in a spatial and temporal manner. In this work, we have investigated the photopermeation efficiency of three photosensitizers (PSs), namely verteporfin, pheophorbide a and m-THPP when incorporated into liposomes with well-defined lipid compositions (SOPC, DOPC or SLPC). By changing the nature of phospholipids and PSs, the illumination of the studied systems was shown to significantly alter their lipid bilayer properties via the formation of lipid peroxides. The system efficiency depends on the PS/phospholipid association, and the ability of the PS to peroxidize acyl chains. Our results demonstrated the possible use of these three clinically approved (or under investigation) PSs as potential candidates for photo-triggerable liposome conception.
Collapse
Affiliation(s)
- Julien Massiot
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France.
| | | | | | | | | | | |
Collapse
|
18
|
Zhang H, Guo L, Ding S, Xiong J, Chen B. Targeted photo-chemo therapy of malignancy on the chest wall while cardiopulmonary avoidance based on Fe3O4@ZnO nanocomposites. Oncotarget 2017; 7:36602-36613. [PMID: 27153557 PMCID: PMC5095024 DOI: 10.18632/oncotarget.9123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/18/2016] [Indexed: 12/11/2022] Open
Abstract
Treatment of malignancies on the chest wall, like chest wall recurrence of tumor, advanced cutaneous neoplasm and lymphoma, is still a challenge due to the involvement of the critical structures of heart and lung by the conventional strategy. The aim of the current study was to investigate targeted photo-chemo therapy mediated by Fe3O4@ZnO nanocomposites for malignancy on the chest wall while cardiopulmonary avoidance. Fe3O4@ZnO/Dox nanocomposites, the synthesis of the core-shell Fe3O4@ZnO nanocomposites followed by loading doxorubicin (Dox), were prepared to act as multifunctional drug delivery system (DDS). The synergistic anticancer effects on tumor on the chest wall and protection performance of heart and lung were evaluated in vitro and in vivo using cell viability assay, apoptosis detection, histopathologic examination, and serum biochemistry tests. Our observations demonstrated that Fe3O4@ZnO/Dox nanocomposites, could play the role of magnetic drug targeting to deliver Dox into tumor tissues and cells to enhance its chemotherapeutic efficiency. Besides, with ultraviolet (UV) illumination, Fe3O4@ZnO showed the excellent property of photosensitizer, further attacking the cancer cells by photodynamic therapy (PDT). Thus, apoptosis was synergistically induced by the photo-chemo therapy, resulting in a distinct improvement in anticancer activity. Since UV has a limited penetration distance in tissue, causing PDT to fail in the critical structures of heart and lung, cardiopulmonary hurt could be avoided during the treatment. Therefore, targeted photo-chemo therapy mediated by Fe3O4@ZnO nanocomposites may have promise as a potent treatment option for superficial malignancies on the chest wall while cardiopulmonary avoidance.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Liting Guo
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Shuang Ding
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Jian Xiong
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Baoan Chen
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
19
|
Jamali Z, Hejazi SM, Ebrahimi SM, Moradi-Sardareh H, Paknejad M. Effects of LED-Based photodynamic therapy using red and blue lights, with natural hydrophobic photosensitizers on human glioma cell line. Photodiagnosis Photodyn Ther 2017; 21:50-54. [PMID: 29126958 DOI: 10.1016/j.pdpdt.2017.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/03/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
Photodynamic therapy (PDT) has received high attention in cancer treatment due to its minimal side effects, specific cancer-targeting, non-invasion and low cost. It utilizes a specific group of anti-cancer drugs called photosensitizers (PS), which can be only activated under a certain wavelength light illumination and kills cancer cells. To screen the potential of PS and setup of PDT treatment protocol, it is essential to assess the PDT efficacy in vitro. In this study, a light-emitting diode- (LED-) based illumination system at two wavelengths (red & blue) with homogeneous and stable irradiation, and constant temperature conditions in 96-well plates was provided. The photodynamic effect of curcumin (CUR) and methyl ester of 5-aminolevulinic acid (MAL) using LED light on human glioma cell line was investigated. The obtained results indicate that this homemade LED-based illumination system is a favorable light source for in vitro PDT in 96-well plates. The PDT using CUR and MAL was efficient at final concentrations of 25μM and 2mM, and light doses of 60J/cm2 and 40J/cm2 respectively. The blue PDT efficiency was dependent on the light and PS doses. MAL-PDT and CUR-PDT using blue LED significantly decreased cell viability in the treatment groups compared with control groups. Furthermore, MAL-PDT using blue LEDs was more effective in comparison with conventional red LEDs on the human glioma cell line.
Collapse
Affiliation(s)
- Zahra Jamali
- Department of Medical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Marjaneh Hejazi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Bio Optical Imaging Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Ebrahimi
- Bio Optical Imaging Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Hemen Moradi-Sardareh
- Department of Medical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Paknejad
- Department of Medical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Chouikrat R, Baros F, André JC, Vanderesse R, Viana B, Bulin AL, Dujardin C, Arnoux P, Verelst M, Frochot C. A Photosensitizer Lanthanide Nanoparticle Formulation that Induces Singlet Oxygen with Direct Light Excitation, But Not By Photon or X-ray Energy Transfer. Photochem Photobiol 2017; 93:1439-1448. [DOI: 10.1111/php.12799] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Rima Chouikrat
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
- UPR 8011; CNRS, Centre d'Elaboration de Matériaux et d'Etudes Structurales; Université de Toulouse (CEMES); Toulouse France
| | - Francis Baros
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| | - Jean-Claude André
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| | - Régis Vanderesse
- Laboratoire de Chimie Physique Macromoléculaire (LCPM); UMR CNRS 7375; Université de Lorraine; Nancy France
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR CNRS 7375; CNRS; Nancy France
| | | | - Anne-Laure Bulin
- Institut Lumière Matière; UMR5306; Université Lyon 1-CNRS; Villeurbanne France
| | - Christophe Dujardin
- Institut Lumière Matière; UMR5306; Université Lyon 1-CNRS; Villeurbanne France
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| | - Marc Verelst
- UPR 8011; CNRS, Centre d'Elaboration de Matériaux et d'Etudes Structurales; Université de Toulouse (CEMES); Toulouse France
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| |
Collapse
|
21
|
A targeted illumination optical fiber probe for high resolution fluorescence imaging and optical switching. Sci Rep 2017; 7:45654. [PMID: 28368033 PMCID: PMC5377356 DOI: 10.1038/srep45654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/01/2017] [Indexed: 12/30/2022] Open
Abstract
An optical imaging probe with targeted multispectral and spatiotemporal illumination features has applications in many diagnostic biomedical studies. However, these systems are mostly adapted in conventional microscopes, limiting their use for in vitro applications. We present a variable resolution imaging probe using a digital micromirror device (DMD) with an achievable maximum lateral resolution of 2.7 μm and an axial resolution of 5.5 μm, along with precise shape selective targeted illumination ability. We have demonstrated switching of different wavelengths to image multiple regions in the field of view. Moreover, the targeted illumination feature allows enhanced image contrast by time averaged imaging of selected regions with different optical exposure. The region specific multidirectional scanning feature of this probe has facilitated high speed targeted confocal imaging.
Collapse
|
22
|
Nuclear medicine for photodynamic therapy in cancer: Planning, monitoring and nuclear PDT. Photodiagnosis Photodyn Ther 2017; 18:236-243. [PMID: 28300723 DOI: 10.1016/j.pdpdt.2017.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/27/2017] [Accepted: 03/09/2017] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a modality with promising results for the treatment of various cancers. PDT is increasingly included in the standard of care for different pathologies. This therapy relies on the effects of light delivered to photosensitized cells. At different stages of delivery, PDT requires imaging to plan, evaluate and monitor treatment. The contribution of molecular imaging in this context is important and continues to increase. In this article, we review the contribution of nuclear medicine imaging in oncology to PDT for planning and therapeutic monitoring purposes. Several solutions have been proposed to plan PDT from nuclear medicine imaging. For instance, photosensitizer biodistribution has been evaluated with a radiolabeled photosensitizer or with conventional radiopharmaceuticals on positron emission tomography. The effects of PDT delivery have also been explored with specific SPECT or PET radiopharmaceuticals to evaluate the effects on cells (apoptosis, necrosis, proliferation, metabolism) or vascular damage. Finally, the synergy between photosensitizers and radiopharmaceuticals has been studied considering the Cerenkov effect to activate photosensitized cells.
Collapse
|
23
|
Hartl BA, Hirschberg H, Marcu L, Cherry SR. Activating Photodynamic Therapy in vitro with Cerenkov Radiation Generated from Yttrium-90. J Environ Pathol Toxicol Oncol 2017; 35:185-92. [PMID: 27481495 DOI: 10.1615/jenvironpatholtoxicoloncol.2016016903] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The translation of photodynamic therapy (PDT) to the clinical setting has primarily been limited to easily accessible and/or superficial diseases, for which traditional light delivery can be performed noninvasively. Cerenkov radiation, as generated from medically relevant radionuclides, has been suggested as a means to deliver light to deeper tissues noninvasively to overcome this depth limitation. This article investigates the utility of Cerenkov radiation, as generated from the radionuclide yttrium-90, for activating the PDT process using clinically approved aminolevulinic acid at 1.0 mm and also the more efficient porphyrin-based photosensitizer mesotetraphenylporphine with two sulfonate groups on adjacent phenyl rings (TPPS2a) at 1.2 µm. Experiments were conducted with monolayer cultured glioma and breast tumor cell lines. Although aminolevulinic acid proved to be ineffective for generating a therapeutic effect at all but the highest activity levels, TPPS2a produced at least a 20% therapeutic effect at activities ranging from 6 to 60 µCi/well for the C6 glioma cell line. Importantly, these results demonstrate for the first time, to our knowledge, that Cerenkov radiation generated from a radionuclide can be used to activate PDT using clinically relevant photosensitizers. These results therefore provide evidence that it may be possible to generate a phototherapeutic effect in vivo using Cerenkov radiation and clinically relevant photosensitizers.
Collapse
Affiliation(s)
- Brad A Hartl
- Department of Biomedical Engineering, University of California, Davis, CA
| | - Henry Hirschberg
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV 89154; Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612
| | - Laura Marcu
- Department of Biomedical Engineering, University of California, Davis, CA
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California, Davis, CA
| |
Collapse
|
24
|
Malatesti N, Harej A, Kraljević Pavelić S, Lončarić M, Zorc H, Wittine K, Andjelkovic U, Josic D. Synthesis, characterisation and in vitro investigation of photodynamic activity of 5-(4-octadecanamidophenyl)-10,15,20-tris(N-methylpyridinium-3-yl)porphyrin trichloride on HeLa cells using low light fluence rate. Photodiagnosis Photodyn Ther 2016; 15:115-26. [PMID: 27431589 DOI: 10.1016/j.pdpdt.2016.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/10/2016] [Indexed: 01/09/2023]
Abstract
Photodynamic therapy (PDT) is a treatment that aims to kill cancer cells by reactive oxygen species, mainly singlet oxygen, produced through light activation of a photosensitiser (PS). Amongst photosensitisers that attracted the most attention in the last decade are cationic and amphiphilic molecules based on porphyrin, chlorin and phthalocyanine structures. Our aim was to join this search for more optimal balance of the lipophilic and hydrophilic moieties in a PS. A new amphiphilic porphyrin, 5-(4-octadecanamidophenyl)-10,15,20-tris(N-methylpyridinium-3-yl)porphyrin trichloride (5) was synthesised and characterised by (1)H NMR, UV-vis and fluorescence spectroscopy, and by MALDI-TOF/TOF spectrometry. In vitro photodynamic activity of 5 was evaluated on HeLa cell lines and compared to the activity of the hydrophilic 5-(4-acetamidophenyl)-10,15,20-tris(N-methylpyridinium-3-yl)porphyrin trichloride (7). Low fluence rate (2mWcm(-2)) of red light (643nm) was used for the activation, and both porphyrins showed a drug dose-response as well as a light dose-response relationship, but the amphiphilic porphyrin was presented with significantly lower IC50 values. The obtained IC50 values for 5 were 1.4μM at 15min irradiation time and 0.7μM when the time of irradiation was 30min, while for 7 these values were 37 and 6 times higher, respectively. These results confirm the importance of the lipophilic component in a PS and show a potential for 5 to be used as a PS in PDT applications.
Collapse
Affiliation(s)
- Nela Malatesti
- Department of Biotechnology, Centre for high-throughput technologies, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Anja Harej
- Department of Biotechnology, Centre for high-throughput technologies, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Sandra Kraljević Pavelić
- Department of Biotechnology, Centre for high-throughput technologies, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Martin Lončarić
- Laboratory for Photonics and Quantum Optics, Division of Experimental Physics, Ruđer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia.
| | - Hrvoje Zorc
- Laboratory of Optics and Optical Thin Films, Division of Materials Physics, Ruđer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia.
| | - Karlo Wittine
- Department of Biotechnology, Centre for high-throughput technologies, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Uros Andjelkovic
- Department of Biotechnology, Centre for high-throughput technologies, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Djuro Josic
- Department of Biotechnology, Centre for high-throughput technologies, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| |
Collapse
|
25
|
de Faria CMG, Inada NM, Kurachi C, Bagnato VS. Determination of the threshold dose distribution in photodynamic action from in vitro experiments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:168-175. [DOI: 10.1016/j.jphotobiol.2016.06.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 12/28/2022]
|
26
|
Opoku-Damoah Y, Wang R, Zhou J, Ding Y. Versatile Nanosystem-Based Cancer Theranostics: Design Inspiration and Predetermined Routing. Theranostics 2016; 6:986-1003. [PMID: 27217832 PMCID: PMC4876623 DOI: 10.7150/thno.14860] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/24/2016] [Indexed: 01/10/2023] Open
Abstract
The relevance of personalized medicine, aimed at a more individualized drug therapy, has inspired research into nano-based concerted diagnosis and therapeutics (theranostics). As the intention is to "kill two birds with one stone", scientists have already described the emerging concept as a treasured tailor for the future of cancer therapy, wherein the main idea is to design "smart" nanosystems to concurrently discharge both therapeutic and diagnostic roles. These nanosystems are expected to offer a relatively clearer view of the ingenious cellular trafficking pathway, in-situ diagnosis, and therapeutic efficacy. We herein present a detailed review of versatile nanosystems, with prominent examples of recently developed intelligent delivery strategies which have gained attention in the field of theranostics. These nanotheranostics include various mechanisms programmed in novel platforms to enable predetermined delivery of cargo to specific sites, as well as techniques to overcome the notable challenges involved in the efficacy of theranostics.
Collapse
Affiliation(s)
| | | | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
27
|
Gorbe M, Barba-Bon A, de la Torre C, Gil S, Costero AM, Sancenón F, Murguía JR, Martínez-Máñez R. Synthesis and In Vitro Evaluation of a Photosensitizer-BODIPY Derivative for Potential Photodynamic Therapy Applications. Chem Asian J 2015; 10:2121-5. [PMID: 26282179 DOI: 10.1002/asia.201500325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 11/09/2022]
Abstract
A new photosensitizer (1) based on the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) scaffold has been synthesized. 1 is water soluble and showed an intense absorption band at 490 nm (ɛ=77,600 cm(-1) m(-1)) and an emission at 514 nm. In vitro toxicity of 1 in the presence of light and in darkness has been studied with HeLa, HaCaT, MCF-7, and SCC-13 cell lines. Moreover, internalization studies of 1 in these cell lines were also performed. These results suggested that 1 is more toxic for SCC-13 and HeLa carcinoma cells than for the HaCaT non-cancerous immortal human keratinocytes. Toxicity upon light irradiation was due to the formation of singlet oxygen and reactive oxygen species (ROS). Cellular co-localization experiments revealed preferential localization of the dye in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Mónica Gorbe
- Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain.,Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Andrea Barba-Bon
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia.,Departamento de Química Orgánica, Universitat de Valencia, Doctor Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Cristina de la Torre
- Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain.,Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Salvador Gil
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia.,Departamento de Química Orgánica, Universitat de Valencia, Doctor Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Ana M Costero
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia. .,Departamento de Química Orgánica, Universitat de Valencia, Doctor Moliner 50, 46100, Burjassot, Valencia, Spain.
| | - Félix Sancenón
- Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain.,Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Jose Ramón Murguía
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN).,Departamento de Biotecnología, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain
| | - Ramón Martínez-Máñez
- Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain. .,Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN).
| |
Collapse
|
28
|
Glaser AK, Zhang R, Andreozzi JM, Gladstone DJ, Pogue BW. Cherenkov radiation fluence estimates in tissue for molecular imaging and therapy applications. Phys Med Biol 2015; 60:6701-18. [PMID: 26270125 PMCID: PMC5145313 DOI: 10.1088/0031-9155/60/17/6701] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cherenkov radiation has recently emerged as an interesting phenomenon for a number of applications in the biomedical sciences. Its unique properties, including broadband emission spectrum, spectral weight in the ultraviolet and blue wavebands, and local generation of light within a given tissue, have made it an attractive new source of light within tissue for molecular imaging and phototherapy applications. While several studies have investigated the total Cherenkov light yield from radionuclides in units of [photons/decay], further consideration of the light propagation in tissue is necessary to fully consider the utility of this signal in vivo. Therefore, to help further guide the development of this novel field, quantitative estimates of the light fluence rate of Cherenkov radiation from both radionuclides and radiotherapy beams in a biological tissue are presented for the first time. Using Monte Carlo simulations, these values were found to be on the order of 0.01-1 nW cm(-2) per MBq g(-1) for radionuclides, and 1-100 μW cm(-2) per Gy s(-1) for external radiotherapy beams, dependent on the given waveband, optical properties, and radiation source. For phototherapy applications, the total light fluence was found to be on the order of nJ cm(-2) for radionuclides, and mJ cm(-2) for radiotherapy beams. The results indicate that diagnostic potential is reasonable for Cherenkov excitation of molecular probes, but phototherapy may remain elusive at such exceedingly low fluence values. The results of this study are publicly available for distribution online at www.dartmouth.edu/optmed/.
Collapse
Affiliation(s)
- Adam K. Glaser
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - Rongxiao Zhang
- Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755
| | | | - David J. Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
- Norris Cotton Cancer Center, Lebanon, New Hampshire 03756
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
- Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|