1
|
Toprakcioglu Z, Wiita EG, Jayaram AK, Gregory RC, Knowles TPJ. Selenium Silk Nanostructured Films with Antifungal and Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10452-10463. [PMID: 36802477 PMCID: PMC9982822 DOI: 10.1021/acsami.2c21013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The rapid emergence of drug-resistant bacteria and fungi poses a threat for healthcare worldwide. The development of novel effective small molecule therapeutic strategies in this space has remained challenging. Therefore, one orthogonal approach is to explore biomaterials with physical modes of action that have the potential to generate antimicrobial activity and, in some cases, even prevent antimicrobial resistance. Here, to this effect, we describe an approach for forming silk-based films that contain embedded selenium nanoparticles. We show that these materials exhibit both antibacterial and antifungal properties while crucially also remaining highly biocompatible and noncytotoxic toward mammalian cells. By incorporating the nanoparticles into silk films, the protein scaffold acts in a 2-fold manner; it protects the mammalian cells from the cytotoxic effects of the bare nanoparticles, while also providing a template for bacterial and fungal eradication. A range of hybrid inorganic/organic films were produced and an optimum concentration was found, which allowed for both high bacterial and fungal death while also exhibiting low mammalian cell cytotoxicity. Such films can thus pave the way for next-generation antimicrobial materials for applications such as wound healing and as agents against topical infections, with the added benefit that bacteria and fungi are unlikely to develop antimicrobial resistance to these hybrid materials.
Collapse
Affiliation(s)
- Zenon Toprakcioglu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Elizabeth G. Wiita
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Akhila K. Jayaram
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Rebecca C. Gregory
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P. J. Knowles
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
2
|
Liu M, Millard PE, Urch H, Zeyons O, Findley D, Konradi R, Marelli B. Microencapsulation of High-Content Actives Using Biodegradable Silk Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201487. [PMID: 35802906 DOI: 10.1002/smll.202201487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/25/2022] [Indexed: 06/15/2023]
Abstract
There is a compelling need across several industries to substitute non-degradable, intentionally added microplastics with biodegradable alternatives. Nonetheless, stringent performance criteria in actives' controlled release and manufacturing at scale of emerging materials hinder the replacement of polymers used for microplastics fabrication with circular ones. Here, the authors demonstrate that active microencapsulation in a structural protein such as silk fibroin can be achieved by modulating protein protonation and chain relaxation at the point of material assembly. Silk fibroin micelles' size is tuned from several to hundreds of nanometers, enabling the manufacturing-by retrofitting spray drying and spray freeze drying techniques-of microcapsules with tunable morphology and structure, that is, hollow-spongy, hollow-smooth, hollow crumpled matrices, and hollow crumpled multi-domain. Microcapsules degradation kinetics and sustained release of soluble and insoluble payloads typically used in cosmetic and agriculture applications are controlled by modulating fibroin's beta-sheet content from 20% to near 40%. Ultraviolet-visible studies indicate that burst release of a commonly used herbicide (i.e., saflufenacil) significantly decreases from 25% to 0.8% via silk fibroin microencapsulation. As a proof-of-concept for agrochemicals applications, a 6-day greenhouse trial demonstrates that saflufenacil delivered on corn plants via silk microcapsules reduces crop injury when compared to the non-encapsulated version.
Collapse
Affiliation(s)
- Muchun Liu
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Henning Urch
- BASF SE, BASF Agricultural Center, Speyerer Str. 2, 67117, Limburgerhof, Germany
| | - Ophelie Zeyons
- BASF SE, Carl-Bosch-Straße 38, 67063, Ludwigshafen am Rhein, Germany
| | - Douglas Findley
- BASF Corporation, Research Triangle Park, Durham, NC, 27709, USA
| | - Rupert Konradi
- BASF Corporation, Harvard University, Pierce Hall 113, 29 Oxford St, Cambridge, MA, 02138, USA
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
3
|
Cao J, Cheng Y, Xu B, Wang Y, Wang F. Determination of Different Selenium Species in Selenium-Enriched Polysaccharide by HPLC-ICP-MS. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Chao YK, Liau I. One-dimensional scanning multiphoton imaging reveals prolonged calcium transient and sarcomere contraction in a zebrafish model of doxorubicin cardiotoxicity. BIOMEDICAL OPTICS EXPRESS 2021; 12:7162-7172. [PMID: 34858707 PMCID: PMC8606141 DOI: 10.1364/boe.438836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic agent known to induce cardiotoxicity. Here we applied one-dimensional scanning multiphoton imaging to investigate the derangement of cardiac dynamics induced by DOX on a zebrafish model. DOX changed the cell morphology and significantly prolonged calcium transient and sarcomere contraction, leading to an arrhythmia-like contractile disorder. The restoration phase of calcium transient dominated the overall prolongation, indicating that DOX perturbed primarily the protein functions responsible for recycling cytosolic calcium ions. This novel finding supplements the existing mechanism of DOX cardiotoxicity. We anticipate that this approach should help mechanistic studies of drug-induced cardiotoxicity or heart diseases.
Collapse
Affiliation(s)
- Yu Kai Chao
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ian Liau
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
5
|
Borlan R, Focsan M, Perde-Schrepler M, Soritau O, Campu A, Gaina L, Pall E, Pop B, Baldasici O, Gherman C, Stoia D, Maniu D, Astilean S. Antibody-functionalized theranostic protein nanoparticles for the synergistic deep red fluorescence imaging and multimodal therapy of ovarian cancer. Biomater Sci 2021; 9:6183-6202. [PMID: 34346411 DOI: 10.1039/d1bm01002f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Among women, ovarian cancer is the fifth most frequent type of cancer, and despite benefiting from current standard treatment plans, 90% of patients relapse in the subsequent 18 months and, eventually, perish. As a result, via embracing nanotechnological advancements in the field of medical science, researchers working in the areas of cancer therapy and imaging are looking for the next breakthrough treatment strategy to ensure lower cancer recurrence rates and improved outcomes for patients. Herein, we design a novel phototheranostic agent with optical features in the biological window of the electromagnetic spectrum via encapsulating a newly synthesized phthalocyanine dye within biocompatible protein nanoparticles, allowing the targeted fluorescence imaging and synergistic dual therapy of ovarian cancer. The nanosized agent displays great biocompatibility and enhanced aqueous biostability and photothermal activity, as well as high reactive-oxygen-species generation efficiency. To achieve the active targeting of the desired malignant tissue and suppress the rapid clearance of the photosensitive agent from the peritoneal cavity, the nanoparticles are biofunctionalized with an anti-folate receptor antibody. A2780 ovarian cancer cells are employed to confirm the improved targeting capabilities and the in vitro cytotoxic efficiency of the theranostic nanoparticles after exposure to a 660 nm LED lamp; upon measurement via MTT and flow cytometry assays, a significant 95% decrease in the total number of viable cells is seen. Additionally, the therapeutic performance of our newly designed nanoparticles was evaluated in vivo, via real-time thermal monitoring and histopathological assays, upon the irradiation of tumour-bearing mice with a 660 nm LED lamp (0.05 W cm-2). Foremost, separately from steady-state fluorescence imaging, we found that, via utilizing FLIM investigations, the differences in fluorescence lifetimes of antibody biofunctionalized and non-functionalized nanoparticles can be correlated to different intracellular localization and internalization pathways of the fluorescent agent, which is relevant for the development of a cutting-edge method for the detection of cancer cells that overexpress folate receptors at their surfaces.
Collapse
Affiliation(s)
- Raluca Borlan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania. and Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania.
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania.
| | - Maria Perde-Schrepler
- Department of Radiobiology and Tumor Biology, Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Cluj, Romania
| | - Olga Soritau
- Department of Radiobiology and Tumor Biology, Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Cluj, Romania
| | - Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania.
| | - Luiza Gaina
- The Research Centre on Fundamental and Applied Heterochemistry, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Emoke Pall
- Department of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Cluj, Romania
| | - Bogdan Pop
- Department of Pathology, Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Cluj, Romania and Department of Pathology, University of Medicine and Pharmacy Iuliu HaŢieganu, Cluj-Napoca, Cluj, Romania
| | - Oana Baldasici
- Department of Functional Genomics, Proteomics and Experimental Pathology, Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Cluj, Romania
| | - Claudia Gherman
- Department of Functional Genomics, Proteomics and Experimental Pathology, Oncology Institute Prof. Dr Ion Chiricuta, Cluj-Napoca, Cluj, Romania
| | - Daria Stoia
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania.
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania. and Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania.
| | - Simion Astilean
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania. and Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania.
| |
Collapse
|
6
|
Caine M, Bian S, Tang Y, Garcia P, Henman A, Dreher M, Daly D, Carlisle R, Stride E, Willis SL, Lewis AL. In situ evaluation of spatiotemporal distribution of doxorubicin from Drug-eluting Beads in a tissue mimicking phantom. Eur J Pharm Sci 2021; 160:105772. [PMID: 33621612 DOI: 10.1016/j.ejps.2021.105772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/18/2023]
Abstract
Understanding the intra-tumoral distribution of chemotherapeutic drugs is extremely important in predicting therapeutic outcome. Tissue mimicking gel phantoms are useful for studying drug distribution in vitro but quantifying distribution is laborious due to the need to section phantoms over the relevant time course and individually quantify drug elution. In this study we compare a bespoke version of the traditional phantom sectioning approach, with a novel confocal microscopy technique that enables dynamic in situ measurements of drug concentration. Release of doxorubicin from Drug-eluting Embolization Beads (DEBs) was measured in phantoms composed of alginate and agarose over comparable time intervals. Drug release from several different types of bead were measured. The non-radiopaque DC Bead™ generated a higher concentration at the boundary between the beads and the phantom and larger drug penetration distance within the release period, compared with the radiopaque DC Bead LUMI™. This is likely due to the difference of compositional and structural characteristics of the hydrogel beads interacting differently with the loaded drug. Comparison of in vitro results against historical in vivo data show good agreement in terms of drug penetration, when confounding factors such as geometry, elimination and bead chemistry were accounted for. Hence these methods have demonstrated potential for both bead and gel phantom validation, and provide opportunities for optimisation of bead design and embolization protocols through in vitro-in vivo comparison.
Collapse
Affiliation(s)
- Marcus Caine
- Boston Scientific, Lakeview, Watchmoor Park, Camberley, GU15 3YL, UK
| | - Shuning Bian
- Oxford Institute of Biomedical Engineering, University of Oxford, OX3 7DQ, UK
| | - Yiqing Tang
- Boston Scientific, Lakeview, Watchmoor Park, Camberley, GU15 3YL, UK.
| | - Pedro Garcia
- Boston Scientific, Lakeview, Watchmoor Park, Camberley, GU15 3YL, UK
| | - Alexander Henman
- Boston Scientific, Lakeview, Watchmoor Park, Camberley, GU15 3YL, UK
| | - Matthew Dreher
- Boston Scientific, 300 Boston Scientific Way, Marlborough, Massachusetts, 01752, United States
| | - Dan Daly
- Lein Applied Diagnostics, Reading Enterprise Centre, University of Reading, Earley Gate, Whiteknights Road, Reading, RG6 6BU, UK
| | - Robert Carlisle
- Oxford Institute of Biomedical Engineering, University of Oxford, OX3 7DQ, UK
| | - Eleanor Stride
- Oxford Institute of Biomedical Engineering, University of Oxford, OX3 7DQ, UK
| | - Sean L Willis
- Boston Scientific, Lakeview, Watchmoor Park, Camberley, GU15 3YL, UK
| | - Andrew L Lewis
- Boston Scientific, Lakeview, Watchmoor Park, Camberley, GU15 3YL, UK.
| |
Collapse
|
7
|
Moh ESX, Packer NH. Enzymatic Azido-GalNAc-Functionalized Silk Fibroin for Click Chemistry Conjugation. Biomacromolecules 2021; 22:1752-1755. [PMID: 33765388 DOI: 10.1021/acs.biomac.0c01791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silk is a popular protein biomaterial that has been used for various purposes such as tissue scaffolding, textiles and hydrogels. Various methods for covalent conjugation of functional molecules such as small molecule sensors and enzymes have been developed to create functionalized silk biomaterials. Here, we report a method for silk functionalization by using O-GalNAc-transferases and azide-modified UDP-GalNAc nucleotide sugar substrates to incorporate azide functional groups onto the silk fibroin protein for functionalization with cycloalkynes by click chemistry. Using ppGalNAc-T1 and T13 enzymes, we could transfer azide-modified GalNAc monosaccharides onto fibroin and as a proof of concept, conjugated a strain-alkyne-functionalized Cy5 fluorophore to produce a Cy5-conjugated fibroin hydrogel. This facile azido functionalization of the silk has the potential for attachment of any cycloalkyne moiety.
Collapse
Affiliation(s)
- Edward S X Moh
- ARC Centre of Excellence for Nanoscale BioPhotonics, Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Sydney, Australia
| | - Nicolle H Packer
- ARC Centre of Excellence for Nanoscale BioPhotonics, Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Sydney, Australia
| |
Collapse
|
8
|
Borlan R, Focsan M, Maniu D, Astilean S. Interventional NIR Fluorescence Imaging of Cancer: Review on Next Generation of Dye-Loaded Protein-Based Nanoparticles for Real-Time Feedback During Cancer Surgery. Int J Nanomedicine 2021; 16:2147-2171. [PMID: 33746512 PMCID: PMC7966856 DOI: 10.2147/ijn.s295234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The use of fluorescence imaging technique for visualization, resection and treatment of cancerous tissue, attained plenty of interest once the promise of whole body and deep tissue near-infrared (NIR) imaging emerged. Why is NIR so desired? Contrast agents with optical properties in the NIR spectral range offer an upgrade for the diagnosis and treatment of cancer, by dint of the deep tissue penetration of light in the NIR region of the electromagnetic spectrum, also known as the optical window in biological tissue. Thus, the development of a new generation of NIR emitting and absorbing contrast agents able to overcome the shortcomings of the basic free dye administration is absolutely essential. Several examples of nanoparticles (NPs) have been successfully implemented as carriers for NIR dye molecules to the tumour site owing to their prolonged blood circulation time and enhanced accumulation within the tumour, as well as their increased fluorescence signal relative to free fluorophore emission and active targeting of cancerous cells. Due to their versatile structure, good biocompatibility and capability to efficiently load dyes and bioconjugate with diverse cancer-targeting ligands, the research area of developing protein-based NPs encapsulated or conjugated with NIR dyes is highly promising but still in its infancy. The current review aims to provide an up-to-date overview on the biocompatibility, specific targeting and versatility offered by protein-based NPs loaded with different classes of NIR dyes as next-generation fluorescent agents. Moreover, this study brings to light the newest and most relevant advances involving the state-of-the-art NIR fluorescent agents for the real-time interventional NIR fluorescence imaging of cancer in clinical trials.
Collapse
Affiliation(s)
- Raluca Borlan
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania.,Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Simion Astilean
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania.,Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| |
Collapse
|
9
|
Silk Fibroin Coated Magnesium Oxide Nanospheres: A Biocompatible and Biodegradable Tool for Noninvasive Bioimaging Applications. NANOMATERIALS 2021; 11:nano11030695. [PMID: 33802102 PMCID: PMC7998877 DOI: 10.3390/nano11030695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022]
Abstract
Fluorescent nanoparticles (NPs) have been increasingly studied as contrast agents for better understanding of biological processes at the cellular and molecular level. However, their use as bioimaging tools is strongly dependent on their optical emission as well as their biocompatibility. This work reports the fabrication and characterization of silk fibroin (SF) coated magnesium oxide (MgO) nanospheres, containing oxygen, Cr3+ and V2+ related optical defects, as a nontoxic and biodegradable hybrid platform for bioimaging applications. The MgO-SF spheres demonstrated enhanced emission efficiency compared to noncoated MgO NPs. Furthermore, SF sphere coating was found to overcome agglomeration limitations of the MgO NPs. The hybrid nanospheres were investigated as an in vitro bioimaging tool by recording their cellular uptake, trajectories, and mobility in human skin keratinocytes cells (HaCaT), human glioma cells (U87MG) and breast cancer cells (MCF7). Enhanced cellular uptake and improved intracellular mobilities of MgO-SF spheres compared to MgO NPs was demonstrated in three different cell lines. Validated infrared and bright emission of MgO-SF NP indicate their prospects for in vivo imaging. The results identify the potential of the hybrid MgO-SF nanospheres for bioimaging. This study may also open new avenues to optimize drug delivery through biodegradable silk and provide noninvasive functional imaging feedback on the therapeutic processes through fluorescent MgO.
Collapse
|
10
|
Zou S, Wang X, Fan S, Yao X, Zhang Y, Shao H. Electrospun regenerated Antheraea pernyi silk fibroin scaffolds with improved pore size, mechanical properties and cytocompatibility using mesh collectors. J Mater Chem B 2021; 9:5514-5527. [PMID: 34152355 DOI: 10.1039/d1tb00944c] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Generally, electrospun silk fibroin scaffolds collected by traditional plates present limited pore size and mechanical properties, which may restrict their biomedical applications. Herein, regenerated Antheraea pernyi silk fibroin (RASF) with excellent inherent cell adhesion property was chosen as a raw material and the conductive metal meshes were used as collectors to prepare modified RASF scaffolds by electrospinning from its aqueous solution. A traditional intact plate was used as a control. The morphology and mechanical properties of the obtained scaffolds were investigated. Schwann cells were further used to assess the cytocompatibility and cell migration ability of the typical scaffolds. Interestingly, compared with the traditional intact plate, the mesh collector with an appropriate gap size (circa 7 mm) could significantly improve the pore size, porosity and mechanical properties of the RASF scaffolds simultaneously. In addition, the scaffold collected under this condition (RASF-7mmG) showed higher cell viability, deeper cell permeation and faster cell migration of Schwann cells. Combined with the excellent inherent properties of ASF and the obviously enhanced scaffold cytocompatibility and mechanical properties, the RASF-7mmG scaffold is expected to be a candidate with great potential for biomedical applications.
Collapse
Affiliation(s)
- Shengzhi Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xinru Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China. and Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical & Materials Engineering, Huaiyin Institute of Technology, Huai'an, 223003, People's Republic of China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
11
|
Khalid A, Bai D, Abraham AN, Jadhav A, Linklater D, Matusica A, Nguyen D, Murdoch BJ, Zakhartchouk N, Dekiwadia C, Reineck P, Simpson D, Vidanapathirana AK, Houshyar S, Bursill CA, Ivanova EP, Gibson BC. Electrospun Nanodiamond-Silk Fibroin Membranes: A Multifunctional Platform for Biosensing and Wound-Healing Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48408-48419. [PMID: 33047948 DOI: 10.1021/acsami.0c15612] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Next generation wound care technology capable of diagnosing wound parameters, promoting healthy cell growth, and reducing pathogenic infections noninvasively would provide patients with an improved standard of care and accelerated wound repair. Temperature is one of the indicating biomarkers specific to chronic wounds. This work reports a hybrid, multifunctional optical material platform-nanodiamond (ND)-silk membranes as biopolymer dressings capable of temperature sensing and promoting wound healing. The hybrid structure was fabricated through electrospinning, and 3D submicron fibrous membranes with high porosity were formed. Silk fibers are capable of compensating for the lack of an extracellular matrix at the wound site, supporting the wound-healing process. Negatively charged nitrogen vacancy (NV-) color centers in NDs exhibit optically detected magnetic resonance (ODMR) and act as nanoscale thermometers. This can be exploited to sense temperature variations associated with the presence of infection or inflammation in a wound, without physically removing the dressing. Our results show that the presence of NDs in the hybrid ND-silk membranes improves the thermal stability of silk fibers. NV- color centers in NDs embedded in silk fibers exhibit well-retained fluorescence and ODMR. Using the NV- centers as fluorescent nanoscale thermometers, we achieved temperature sensing in 25-50 °C, including the biologically relevant temperature window, for cell-grown ND-silk membranes. An enhancement (∼1.5× on average) in the temperature sensitivity of the NV- centers was observed for the hybrid materials. The hybrid membranes were further tested in vivo in a murine wound-healing model and demonstrated biocompatibility and equivalent wound closure rates as the control wounds. Additionally, the hybrid ND-silk membranes exhibited selective antifouling and biocidal propensity toward Gram-negative Pseudomonas aeruginosa and Escherichia coli, while no effect was observed on Gram-positive Staphylococcus aureus.
Collapse
Affiliation(s)
- Asma Khalid
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Dongbi Bai
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Amanda N Abraham
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Amit Jadhav
- School of Fashion and Textiles, RMIT University, Brunswick, Victoria 3056, Australia
| | - Denver Linklater
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Alex Matusica
- School of Computer Science, Engineering and Mathematics, Flinders University, Clovelly Park, South Australia 5042, Australia
| | - Duy Nguyen
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | | | | | | | - Philipp Reineck
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - David Simpson
- School of Physics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Achini K Vidanapathirana
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5001, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Christina A Bursill
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5001, Australia
| | - Elena P Ivanova
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Brant C Gibson
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
12
|
Perevedentseva E, Lin YC, Cheng CL. A review of recent advances in nanodiamond-mediated drug delivery in cancer. Expert Opin Drug Deliv 2020; 18:369-382. [PMID: 33047984 DOI: 10.1080/17425247.2021.1832988] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Nanodiamond (ND) refers to diamond particles with sizes from few to near 100 nanometers. For its superb physical, chemical and spectroscopic properties, it has been proposed and studied with the aims for bio imaging and drug delivery. Many modalities on conjugating drug molecules on ND to form ND-X for more efficient drug delivery have been demonstrated in the cellular and animal models. AREA COVERED Many novel drug delivery approaches utilizing nanodiamond as a platform have been demonstrated recently. This review summarizes recent developments on the nanodiamond facilitated drug delivery, from the ND-X complexes preparations to tests in the cellular and animal models. The outlook on clinical translation is discussed. EXPERT OPINION Nanodiamond and drug complexes (ND-X) produced from different methods are realized for drug delivery; almost all studies reported ND-X being more efficient compared to pure drug alone. However, ND of particle size less than 10 nm are found more toxic due to size and surface structure, and strongly aggregate. In vivo studies demonstrate ND accumulation in animal organs and no confirmed long-term effect studies on their release from organs are available. Standardized nanodiamond materials and drug delivery approaches are needed to advance the applications to the clinical level.
Collapse
Affiliation(s)
- Elena Perevedentseva
- Department of Physics, National Dong Hwa University, Shoufeng, Taiwan.,Russian Academy of Sciences, P.N. Lebedev Physics Institute, Moskva, Russian Federation
| | - Yu-Chung Lin
- Department of Physics, National Dong Hwa University, Shoufeng, Taiwan
| | - Chia-Liang Cheng
- Department of Physics, National Dong Hwa University, Shoufeng, Taiwan
| |
Collapse
|
13
|
Hu F, Lin N, Liu XY. Interplay between Light and Functionalized Silk Fibroin and Applications. iScience 2020; 23:101035. [PMID: 32311584 PMCID: PMC7168770 DOI: 10.1016/j.isci.2020.101035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 11/15/2022] Open
Abstract
Silkworm silk has been considered to be a luxurious textile for more than five thousand years. Native silk fibroin (SF) films have excellent (ca. 90%) optical transparency and exhibit fluorescence under UV light. The silk dyeing process is very important and difficult, and methods such as pigmentary coloration and structural coloration have been tested for coloring silk fabrics. To functionalize silk that exhibits fluorescence, the in vivo and in vitro assembly of functional compounds with SF and the resulting amplification of fluorescence emission are examined. Finally, we discuss the applications of SF materials in basic optical elements, light energy conversion devices, photochemical reactions, sensing, and imaging. This review is expected to provide insight into the interaction between light and silk and to inspire researchers to develop silk materials with a consideration of history, material properties, and future prospects.
Collapse
Affiliation(s)
- Fan Hu
- Institute of Advanced Materials, East China Jiaotong University, No. 808 Shuanggang East Street, Nanchang 330013, China; Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Materials, Xiamen University, Shenzhen Research Institute of Xiamen University, 422 Siming South Road, Xiamen 361005, China
| | - Naibo Lin
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Materials, Xiamen University, Shenzhen Research Institute of Xiamen University, 422 Siming South Road, Xiamen 361005, China.
| | - X Y Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Singapore.
| |
Collapse
|
14
|
Rodionov IA, Abdullah N, Kaplan DL. Microporous drug-eluting large silk particles through cryo-granulation. ADVANCED ENGINEERING MATERIALS 2019; 21:1801242. [PMID: 31892840 PMCID: PMC6938394 DOI: 10.1002/adem.201801242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Indexed: 06/10/2023]
Abstract
A facile method for the preparation of large, microporous, drug-loaded particles is presented. High shear bollus injections of silk with cross-linker and drug colloids into super-cooled hexane were utilized to trigger phase separation of silk droplets, followed by immediate freezing at -60°C. A subsequent -20°C freeze-thaw of the frozen droplets resulted in self-assembly (crystallization) of the silk. The silk particles developed an internal interconnected microporous morphology with 0.1-10 µm in diameter pores. The silk particles ranged in diameter from 100 to 1,300 µm, with particle mean diameter and polydispersity controlled by the starting concentration of the cross-linking agent and silk, the rheology of the reaction mixture, and the injection pressure (80 - 300kPa). Cryogranulation provided a one-step process to produce microporous meso-scale silk particles with encapsulated drugs, such as doxorubicin chloride (DoxR), tobramycin sulfate (TS), kanamycin sulfate (KS) or gentamicin sulfate (GS). Almost 100% drug encapsulation efficiency was achieved in the process, and subsequent release profiles depended on the starting concentration of both the drug, silk, and pH of the elution medium. Kirby-Bauer tests and bioluminescent imaging confirmed the retention of anti-bacterial potency of the antibiotics pre-encapsulated in the cryo-particles, and macroparticles cytocompatibility towards human fibroblast and kidney cells.
Collapse
Affiliation(s)
- Ilya A. Rodionov
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Nadia Abdullah
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
15
|
Mehrotra S, Chouhan D, Konwarh R, Kumar M, Jadi PK, Mandal BB. Comprehensive Review on Silk at Nanoscale for Regenerative Medicine and Allied Applications. ACS Biomater Sci Eng 2019; 5:2054-2078. [PMID: 33405710 DOI: 10.1021/acsbiomaterials.8b01560] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Materials at the nanoscale offer numerous avenues to be explored and exploited in diverse realms. Among others, proteinaceous biomaterials such as silk hold immense prospects in the domain of nanoengineering. Silk offers a unique combination of desirable facets like biocompatibility; extraordinary mechanical properties, such as elongation, elasticity, toughness, and modulus; and tunable biodegradability which are far better than most naturally occurring and engineered materials. Much of these properties are due to the molecular structure of the silk protein and it is self-assembly into hierarchical structures. Taking advantage of the hierarchical assembly, a large number of fabrication strategies have now emerged that allow the tailoring of silk structure of at the nanoscale. Harnessing the favorable properties of silk, such methods offer a promising direction toward producing structurally and functionally optimized silk nanomaterials. This review discusses the critical structure-property relationship in silk that occurs at the nanoscale and also aims to bring out the recent status in the approaches for fabrication, characterization, and the gamut of applications of various silk-based nanomaterials (nanoparticles, nanofibers, and nanocomposites) in the niche of translational research. Harnessing the favorable nanostructure of silk, the review also takes into account the impetus of silk in avant-garde applications such as chemo-biosensing, energy harvesting, microfluidics, and environmental applications.
Collapse
Affiliation(s)
- Shreya Mehrotra
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Dimple Chouhan
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Rocktotpal Konwarh
- Biotechnology Department, Addis Ababa Science and Technology University, Addis Ababa-16417, Ethiopia
| | - Manishekhar Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Praveen Kumar Jadi
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
16
|
Lee S, Hwang G, Kim TH, Kwon SJ, Kim JU, Koh K, Park B, Hong H, Yu KJ, Chae H, Jung Y, Lee J, Kim TI. On-Demand Drug Release from Gold Nanoturf for a Thermo- and Chemotherapeutic Esophageal Stent. ACS NANO 2018; 12:6756-6766. [PMID: 29878749 DOI: 10.1021/acsnano.8b01921] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stimuli-responsive delivery systems for cancer therapy have been increasingly used to promote the on-demand therapeutic efficacy of anticancer drugs and, in some cases, simultaneously generate heat in response to a stimulus, resulting in hyperthermia. However, their application is still limited due to the systemic drawbacks of intravenous delivery, such as rapid clearance from the bloodstream and the repeat injections required for sustained safe dosage, which can cause overdosing. Here, we propose a gold (Au)-coated nanoturf structure as an implantable therapeutic interface for near-infrared (NIR)-mediated on-demand hyperthermia chemotherapy. The Au nanoturf possessed long-lasting doxorubicin (DOX) duration, which helps facilitate drug release in a sustained and prolonged manner. Moreover, the Au-coated nanoturf provides reproducible hyperthermia induced by localized surface plasmon resonances under NIR irradiation. Simultaneously, the NIR-mediated temperature increase can promote on-demand drug release at desired time points. For in vivo analysis, the Au nanoturf structure was applied on an esophageal stent, which needs sustained anticancer treatment to prevent tumor recurrence on the implanted surface. This thermo- and chemo-esophageal stent induced significant cancer cell death with released drug and hyperthermia. These phenomena were also confirmed by theoretical analysis. The proposed strategy provides a solution to achieve enhanced thermo-/chemotherapy and has broad applications in sustained cancer treatments.
Collapse
Affiliation(s)
| | - Gyoyeon Hwang
- Division of Bio-Medical Science & Technology , KIST School, Korea University of Science and Technology , Seoul 02792 , Republic of Korea
| | - Tae Hee Kim
- KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul 136-705 , Republic of Korea
| | | | | | | | | | | | - Ki Jun Yu
- School of Electrical and Electronic Engineering , Yonsei University , Seoul 03722 , Republic of Korea
| | | | - Youngmee Jung
- Division of Bio-Medical Science & Technology , KIST School, Korea University of Science and Technology , Seoul 02792 , Republic of Korea
| | - Jiyeon Lee
- Division of Bio-Medical Science & Technology , KIST School, Korea University of Science and Technology , Seoul 02792 , Republic of Korea
| | | |
Collapse
|
17
|
Kucharczyk K, Weiss M, Jastrzebska K, Luczak M, Ptak A, Kozak M, Mackiewicz A, Dams-Kozlowska H. Bioengineering the spider silk sequence to modify its affinity for drugs. Int J Nanomedicine 2018; 13:4247-4261. [PMID: 30050299 PMCID: PMC6055833 DOI: 10.2147/ijn.s168081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Silk is a biocompatible and biodegradable material, able to self-assemble into different morphological structures. Silk structures may be used for many biomedical applications, including carriers for drug delivery. The authors designed a new bioengineered spider silk protein, EMS2, and examined its property as a carrier of chemotherapeutics. MATERIALS AND METHODS To obtain EMS protein, the MS2 silk monomer (that was based on the MaSp2 spidroin of Nephila clavipes) was modified by the addition of a glutamic acid residue. Both bioengineered silks were produced in an Escherichia coli expression system and purified by thermal method. The silk spheres were produced by mixing with potassium phosphate buffer. The physical properties of the particles were characterized using scanning electron microscopy, atomic force microscopy, Fourier-transform infrared spectroscopy, and zeta potential measurements. The MTT assay was used to examine the cytotoxicity of spheres. The loading and release profiles of drugs were studied spectrophotometrically. RESULTS The bioengineered silk variant, EMS2, was constructed, produced, and purified. The EMS2 silk retained the self-assembly property and formed spheres. The spheres made of EMS2 and MS2 silks were not cytotoxic and had a similar secondary structure content but differed in morphology and zeta potential values; EMS2 particles were more negatively charged than MS2 particles. Independently of the loading method (pre- or post-loading), the loading of drugs into EMS2 spheres was more efficient than the loading into MS2 spheres. The advantageous loading efficiency and release rate made EMS2 spheres a good choice to deliver neutral etoposide (ETP). Despite the high loading efficiency of positively charged mitoxantrone (MTX) into EMS2 particles, the fast release rate made EMS2 unsuitable for the delivery of this drug. A faster release rate from EMS2 particles compared to MS2 particles was observed for positively charged doxorubicin (DOX). CONCLUSION By modifying its sequence, silk affinity for drugs can be controlled.
Collapse
Affiliation(s)
- Kamil Kucharczyk
- Department of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland,
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland,
| | - Marek Weiss
- Division of Computational Physics and Nanomechanics, Institute of Physics, Faculty of Technical Physics, Poznan University of Technology, Poznan, Poland
| | - Katarzyna Jastrzebska
- Department of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland,
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland,
| | - Magdalena Luczak
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Organic Chemistry, Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Arkadiusz Ptak
- Division of Computational Physics and Nanomechanics, Institute of Physics, Faculty of Technical Physics, Poznan University of Technology, Poznan, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Adam Mickiewicz University, Poznan, Poland
- Joint Laboratory for SAXS Studies, Adam Mickiewicz University, Poznan, Poland
| | - Andrzej Mackiewicz
- Department of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland,
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland,
| | - Hanna Dams-Kozlowska
- Department of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland,
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland,
| |
Collapse
|
18
|
Gou Y, Miao D, Zhou M, Wang L, Zhou H, Su G. Bio-Inspired Protein-Based Nanoformulations for Cancer Theranostics. Front Pharmacol 2018; 9:421. [PMID: 29755355 PMCID: PMC5934525 DOI: 10.3389/fphar.2018.00421] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/11/2018] [Indexed: 01/09/2023] Open
Abstract
Over the past decade, more interests have been aroused in engineering protein-based nanoformulations for cancer treatment. This excitement originates from the success of FDA approved Abraxane (Albumin-based paclitaxel nanoparticles) in 2005. The new generation of biocompatible endogenous protein-based nanoformulations is currently constructed through delivering cancer therapeutic and diagnostic agents simultaneously, as named potential theranostics. Protein nanoformulations are commonly incorporated with dyes, contrast agents, drug payloads or inorganic nanoclusters, serving as imaging-guided combinatorial cancer therapeutics. Employing the nature identity of proteins, the theranostics, escape the clearance by reticuloendothelial cells and have a long blood circulation time. The nanoscale sizet allows them to be penetrated deeply into tumor tissues. In addition, stimuli release and targeted molecules are incorporated to improve the delivery efficiency. The ongoing advancement of protein-based nanoformulations for cancer theranostics in recent 5 years is reviewed in this paper. Fine-designed nanoformulations based on albumin, ferritin, gelatin, and transferrin are highlighted from the literature. Finally, the current challenges are identified in translating protein-based nanoformulations from laboratory to clinical trials.
Collapse
Affiliation(s)
- Yi Gou
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Targets, School of Pharmacy, Nantong University, Nantong, China
| | - Dandan Miao
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Targets, School of Pharmacy, Nantong University, Nantong, China
| | - Min Zhou
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Targets, School of Pharmacy, Nantong University, Nantong, China
| | - Lijuan Wang
- Guangzhou Key Laboratory of Environmental Exposure and Health and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Hongyu Zhou
- Guangzhou Key Laboratory of Environmental Exposure and Health and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Gaoxing Su
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Targets, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
19
|
Co-delivery of paclitaxel and cetuximab by nanodiamond enhances mitotic catastrophe and tumor inhibition. Sci Rep 2017; 7:9814. [PMID: 28852020 PMCID: PMC5575327 DOI: 10.1038/s41598-017-09983-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/01/2017] [Indexed: 01/18/2023] Open
Abstract
The poor intracellular uptake and non-specific binding of anticancer drugs into cancer cells are the bottlenecks in cancer therapy. Nanocarrier platforms provide the opportunities to improve the drug efficacy. Here we show a carbon-based nanomaterial nanodiamond (ND) that carried paclitaxel (PTX), a microtubule inhibitor, and cetuximab (Cet), a specific monoclonal antibody against epidermal growth factor receptor (EGFR), inducing mitotic catastrophe and tumor inhibition in human colorectal cancer (CRC). ND-PTX blocked the mitotic progression, chromosomal separation, and induced apoptosis in the CRC cells; however, NDs did not induce these effects. Conjugation of ND-PTX with Cet (ND-PTX-Cet) was specifically binding to the EGFR-positive CRC cells and enhanced the mitotic catastrophe and apoptosis induction. Besides, ND-PTX-Cet markedly decreased tumor size in the xenograft EGFR-expressed human CRC tumors of nude mice. Moreover, ND-PTX-Cet induced the mitotic marker protein phospho-histone 3 (Ser10) and apoptotic protein active-caspase 3 for mitotic catastrophe and apoptosis. Taken together, this study demonstrated that the co-delivery of PTX and Cet by ND enhanced the effects of mitotic catastrophe and apoptosis in vitro and in vivo, which may be applied in the human CRC therapy.
Collapse
|
20
|
Xiao L, Lu G, Lu Q, Kaplan DL. Direct Formation of Silk Nanoparticles for Drug Delivery. ACS Biomater Sci Eng 2016; 2:2050-2057. [DOI: 10.1021/acsbiomaterials.6b00457] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liying Xiao
- Collaborative
Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
- National
Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, People’s Republic of China
| | - Guozhong Lu
- Department
of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi 214041, People’s Republic of China
| | - Qiang Lu
- Collaborative
Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
- National
Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, People’s Republic of China
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|