1
|
Marčiulionytė V, Banys J, Vengelis J, Grigutis R, Tamošauskas G, Dubietis A. Low-threshold supercontinuum generation in a homogeneous bulk material at 76 MHz pulse repetition rate. OPTICS LETTERS 2023; 48:4609-4612. [PMID: 37656567 DOI: 10.1364/ol.495493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023]
Abstract
We report on high average power, low threshold supercontinuum generation in a homogeneous bulk material at 76 MHz pulse repetition rate with amplified as well as unamplified pulses from a Yb:KGW oscillator. An octave-spanning supercontinuum was produced in undoped potassium gadolinium tungstate (KGW), which demonstrated robust, damage-free long-term performance with a total average pump power of 6.4 W. The supercontinuum generation was unambiguously attested by the distinctive features of the phenomenon: beam filamentation visualized via filament-induced luminescence; conical emission and its characteristic angular distribution captured by angle-resolved spectral measurements; and pulse splitting that produced the sub-pulses with well-behaved phases, as retrieved from the measurements employing a second harmonic frequency-resolved optical gating technique.
Collapse
|
2
|
Liu Y, Zhao J, Wei Z, Kärtner FX, Chang G. High-power, high-repetition-rate tunable longwave mid-IR sources based on DFG in the OPA regime. OPTICS LETTERS 2023; 48:1052-1055. [PMID: 36791008 DOI: 10.1364/ol.482461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
We demonstrate high-power longwave mid-IR ultrafast sources based on a high-power Er-fiber laser system at 1.55 µm with a 32-MHz repetition rate. Compared with previous 1.03-µm-driven difference frequency generation (DFG), our current configuration allows tighter focusing in the GaSe crystal thanks to an increased damage threshold at 1.55 µm. Consequently, the 1.55-µm-driven DFG can operate in the regime of optical parametric amplification (OPA), in which the mid-IR power grows exponentially with respect to the square root of the pumping power. We experimentally demonstrate this operation regime and achieve broadband mid-IR pulses that are tunable in the 7.7-17.3 µm range with a maximum average power of 58.3 mW, which is also confirmed by our numerical simulation.
Collapse
|
3
|
Szewczyk O, Tarnowski K, Głuszek A, Szulc D, Stefańska K, Mergo P, Soboń G. All-normal dispersion supercontinuum vs frequency-shifted solitons pumped at 1560 nm as seed sources for thulium-doped fiber amplifiers. OPTICS EXPRESS 2021; 29:18122-18138. [PMID: 34154078 DOI: 10.1364/oe.430292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
We present a direct comparison between two types of femtosecond 2 µm sources used for seeding of an ultrafast thulium-doped fiber amplifier based on all-normal dispersion supercontinuum and soliton self-frequency shift. Both nonlinear effects were generated in microstructured silica fibers, pumped with low-power femtosecond pulses at 1.56 µm originating from an erbium-doped fiber laser. We performed a full characterization of both nonlinear processes, including their shot-to-shot stability, phase coherence, and relative intensity noise. The results revealed that the solitons show comparable performance to supercontinuum in terms of relative intensity noise and shot-to-shot stability, despite the anomalous dispersion regime. Both sources can be successfully used as seeds for Tm-doped fiber amplifiers as an alternative to Tm-doped oscillators. The results show that the sign of chromatic dispersion of the fiber is not crucial for obtaining a stable, high-quality, and low-noise spectral conversion process when pumped with sub-50 fs laser pulses.
Collapse
|
4
|
Santamaria L, Di Sarno V, Aiello R, De Rosa M, Ricciardi I, De Natale P, Maddaloni P. Infrared Comb Spectroscopy of Buffer-Gas-Cooled Molecules: Toward Absolute Frequency Metrology of Cold Acetylene. Int J Mol Sci 2020; 22:E250. [PMID: 33383699 PMCID: PMC7795711 DOI: 10.3390/ijms22010250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 11/20/2022] Open
Abstract
We review the recent developments in precision ro-vibrational spectroscopy of buffer-gas-cooled neutral molecules, obtained using infrared frequency combs either as direct probe sources or as ultra-accurate optical rulers. In particular, we show how coherent broadband spectroscopy of complex molecules especially benefits from drastic simplification of the spectra brought about by cooling of internal temperatures. Moreover, cooling the translational motion allows longer light-molecule interaction times and hence reduced transit-time broadening effects, crucial for high-precision spectroscopy on simple molecules. In this respect, we report on the progress of absolute frequency metrology experiments with buffer-gas-cooled molecules, focusing on the advanced technologies that led to record measurements with acetylene. Finally, we briefly discuss the prospects for further improving the ultimate accuracy of the spectroscopic frequency measurement.
Collapse
Affiliation(s)
- Luigi Santamaria
- Agenzia Spaziale Italiana, Contrada Terlecchia, 75100 Matera, Italy;
| | - Valentina Di Sarno
- Consiglio Nazionale delle Ricerche-Istituto Nazionale di Ottica, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (V.D.S.); (R.A.); (M.D.R.); (I.R.)
- Istituto Nazionale di Fisica Nucleare, Sez. di Napoli, Complesso Universitario di M.S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Roberto Aiello
- Consiglio Nazionale delle Ricerche-Istituto Nazionale di Ottica, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (V.D.S.); (R.A.); (M.D.R.); (I.R.)
- Istituto Nazionale di Fisica Nucleare, Sez. di Napoli, Complesso Universitario di M.S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Maurizio De Rosa
- Consiglio Nazionale delle Ricerche-Istituto Nazionale di Ottica, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (V.D.S.); (R.A.); (M.D.R.); (I.R.)
- Istituto Nazionale di Fisica Nucleare, Sez. di Napoli, Complesso Universitario di M.S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Iolanda Ricciardi
- Consiglio Nazionale delle Ricerche-Istituto Nazionale di Ottica, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (V.D.S.); (R.A.); (M.D.R.); (I.R.)
- Istituto Nazionale di Fisica Nucleare, Sez. di Napoli, Complesso Universitario di M.S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Paolo De Natale
- Consiglio Nazionale delle Ricerche-Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze, Italy;
- Istituto Nazionale di Fisica Nucleare, Sez. di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Pasquale Maddaloni
- Consiglio Nazionale delle Ricerche-Istituto Nazionale di Ottica, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (V.D.S.); (R.A.); (M.D.R.); (I.R.)
- Istituto Nazionale di Fisica Nucleare, Sez. di Napoli, Complesso Universitario di M.S. Angelo, Via Cintia, 80126 Napoli, Italy
| |
Collapse
|
5
|
Heidt AM, Modupeh Hodasi J, Rampur A, Spangenberg DM, Ryser M, Klimczak M, Feurer T. Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise. Sci Rep 2020; 10:16734. [PMID: 33028876 PMCID: PMC7541617 DOI: 10.1038/s41598-020-73753-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/17/2020] [Indexed: 11/22/2022] Open
Abstract
We report a low noise, broadband, ultrafast Thulium/Holmium co-doped all-fiber chirped pulse amplifier, seeded by an Erbium-fiber system spectrally broadened via coherent supercontinuum generation in an all-normal dispersion photonic crystal fiber. The amplifier supports a − 20 dB bandwidth of more than 300 nm and delivers high quality 66 fs pulses with more than 70 kW peak power directly from the output fiber. The total relative intensity noise (RIN) integrated from 10 Hz to 20 MHz is 0.07%, which to our knowledge is the lowest reported RIN for wideband ultrafast amplifiers operating at 2 µm to date. This is achieved by eliminating noise-sensitive anomalous dispersion nonlinear dynamics from the spectral broadening stage. In addition, we identify the origin of the remaining excess RIN as polarization modulational instability (PMI), and propose a route towards complete elimination of this excess noise. Hence, our work paves the way for a next generation of ultra-low noise frequency combs and ultrashort pulse sources in the 2 µm spectral region that rival or even outperform the excellent noise characteristics of Erbium-fiber technology.
Collapse
Affiliation(s)
- Alexander M Heidt
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland.
| | | | - Anupamaa Rampur
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | | | - Manuel Ryser
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Mariusz Klimczak
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Thomas Feurer
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| |
Collapse
|
6
|
O'Donnell CF, Chaitanya Kumar S, Schunemann PG, Ebrahim-Zadeh M. Femtosecond optical parametric oscillator continuously tunable across 3.6-8 μm based on orientation-patterned gallium phosphide. OPTICS LETTERS 2019; 44:4570-4573. [PMID: 31517933 DOI: 10.1364/ol.44.004570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
We report a synchronously-pumped femtosecond optical parametric oscillator (OPO) based on orientation-patterned gallium phosphide (OP-GaP), providing continuously tunable mid-infrared (mid-IR) idler radiation across 3570-7892 nm (2801-1267 cm-1), by exploiting pump wavelength tuning. We generate up to 54 mW of output average power at 80 MHz, and quantum conversion efficiencies up to 28.9% are achieved by use of synchronized pump retroreflection. With the inclusion of intracavity dispersion compensation in an OP-GaP OPO, near-transform-limited signal pulse durations of 112 fs at 1288 nm are measured, and peak powers up to 3 kW in the mid-IR are inferred. Finally, evidence of three-photon absorption is observed and characterized near the pump wavelength.
Collapse
|
7
|
Kowzan G, Charczun D, Cygan A, Trawiński RS, Lisak D, Masłowski P. Broadband Optical Cavity Mode Measurements at Hz-Level Precision With a Comb-Based VIPA Spectrometer. Sci Rep 2019; 9:8206. [PMID: 31160670 PMCID: PMC6547875 DOI: 10.1038/s41598-019-44711-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/08/2019] [Indexed: 11/09/2022] Open
Abstract
Optical frequency comb spectrometers open up new avenues of investigation into molecular structure and dynamics thanks to their accuracy, sensitivity and broadband, high-speed operation. We combine broadband direct frequency comb spectroscopy with a dispersive spectrometer providing single-spectrum acquisition time of a few tens of milliseconds and high spectral resolution. We interleave a few tens of such comb-resolved spectra to obtain profiles of 14-kHz wide cavity resonances and determine their positions with precision of a few hertz. To the best of our knowledge, these are the most precise and highest resolution spectral measurements performed with a broadband spectrometer, either comb-based or non-comb-based. This result pushes the limits of broadband comb-based spectroscopy to Hz-level regime. As a demonstration of these capabilities, we perform simultaneous cavity-enhanced measurements of molecular absorption and dispersion, deriving the gas spectra from cavity mode widths and positions. Such approach is particularly important for gas metrology and was made possible by the Hz-level resolution of the system. The presented method should be especially applicable to monitoring of chemical kinetics in, for example, plasma discharges or measurements of narrow resonances in cold atoms and molecules.
Collapse
Affiliation(s)
- Grzegorz Kowzan
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Ul. Grudziadzka 5, 87-100, Toruń, Poland.
| | - Dominik Charczun
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Ul. Grudziadzka 5, 87-100, Toruń, Poland
| | - Agata Cygan
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Ul. Grudziadzka 5, 87-100, Toruń, Poland
| | - Ryszard S Trawiński
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Ul. Grudziadzka 5, 87-100, Toruń, Poland
| | - Daniel Lisak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Ul. Grudziadzka 5, 87-100, Toruń, Poland
| | - Piotr Masłowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Ul. Grudziadzka 5, 87-100, Toruń, Poland
| |
Collapse
|
8
|
Mid-Infrared Tunable Laser-Based Broadband Fingerprint Absorption Spectroscopy for Trace Gas Sensing: A Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9020338] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vast majority of gaseous chemical substances exhibit fundamental rovibrational absorption bands in the mid-infrared spectral region (2.5–25 μm), and the absorption of light by these fundamental bands provides a nearly universal means for their detection. A main feature of optical techniques is the non-intrusive in situ detection of trace gases. We reviewed primarily mid-infrared tunable laser-based broadband absorption spectroscopy for trace gas detection, focusing on 2008–2018. The scope of this paper is to discuss recent developments of system configuration, tunable lasers, detectors, broadband spectroscopic techniques, and their applications for sensitive, selective, and quantitative trace gas detection.
Collapse
|
9
|
Changala PB, Weichman ML, Lee KF, Fermann ME, Ye J. Rovibrational quantum state resolution of the C 60 fullerene. Science 2019; 363:49-54. [PMID: 30606838 DOI: 10.1126/science.aav2616] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/08/2018] [Indexed: 11/02/2022]
Abstract
The unique physical properties of buckminsterfullerene, C60, have attracted intense research activity since its original discovery. Total quantum state-resolved spectroscopy of isolated C60 molecules has been of particularly long-standing interest. Such observations have, to date, been unsuccessful owing to the difficulty in preparing cold, gas-phase C60 in sufficiently high densities. Here we report high-resolution infrared absorption spectroscopy of C60 in the 8.5-micron spectral region (1180 to 1190 wave number). A combination of cryogenic buffer-gas cooling and cavity-enhanced direct frequency comb spectroscopy has enabled the observation of quantum state-resolved rovibrational transitions. Characteristic nuclear spin statistical intensity patterns confirm the indistinguishability of the 60 carbon-12 atoms, while rovibrational fine structure encodes further details of the molecule's rare icosahedral symmetry.
Collapse
Affiliation(s)
- P Bryan Changala
- JILA, National Institute of Standards and Technology and University of Colorado, Department of Physics, University of Colorado, Boulder, CO 80309, USA.
| | - Marissa L Weichman
- JILA, National Institute of Standards and Technology and University of Colorado, Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Kevin F Lee
- IMRA America, Inc., Ann Arbor, MI 48105, USA
| | | | - Jun Ye
- JILA, National Institute of Standards and Technology and University of Colorado, Department of Physics, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
10
|
Gaida C, Heuermann T, Gebhardt M, Shestaev E, Butler TP, Gerz D, Lilienfein N, Sulzer P, Fischer M, Holzwarth R, Leitenstorfer A, Pupeza I, Limpert J. High-power frequency comb at 2 μm wavelength emitted by a Tm-doped fiber laser system. OPTICS LETTERS 2018; 43:5178-5181. [PMID: 30382961 DOI: 10.1364/ol.43.005178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
We report on the generation of a high-power frequency comb in the 2 μm wavelength regime featuring high amplitude and phase stability with unprecedented laser parameters, combining 60 W of average power with <30 fs pulse duration. The key components of the system are a mode-locked Er:fiber laser, a coherence-preserving nonlinear broadening stage, and a high-power Tm-doped fiber chirped-pulse amplifier with subsequent nonlinear self-compression of the pulses. Phase locking of the system resulted in a phase noise of less than 320 mrad measured within the 10 Hz-30 MHz band and 30 mrad in the band from 10 Hz to 1 MHz.
Collapse
|
11
|
Iwakuni K, Porat G, Bui TQ, Bjork BJ, Schoun SB, Heckl OH, Fermann ME, Ye J. Phase-stabilized 100 mW frequency comb near 10 μm. APPLIED PHYSICS. B, LASERS AND OPTICS 2018; 124:128. [PMID: 30996528 PMCID: PMC6435022 DOI: 10.1007/s00340-018-6996-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/28/2018] [Indexed: 05/31/2023]
Abstract
Long-wavelength mid-infrared (MIR) frequency combs with high power and flexible tunability are highly desired for molecular spectroscopy, including investigation of large molecules such as C60. We present a high power, phase-stabilized frequency comb near 10 μm, generated by a synchronously pumped, singly resonant optical parametric oscillator (OPO) based on AgGaSe2. The OPO can be continuously tuned from 8.4 to 9.5 μm, with a maximum average idler power of 100 mW at the center wavelength of 8.5 μm. Both the repetition rate (f rep) and the carrier-envelope offset frequency (f ceo) of the idler wave are phase-locked to microwave signals referenced to a Cs clock. We describe the detailed design and construction of the frequency comb, and discuss potential applications for precise and sensitive direct frequency comb spectroscopy.
Collapse
Affiliation(s)
- Kana Iwakuni
- Department of Physics, JILA, National Institute of Standards and Technology and University of Colorado, University of Colorado, Boulder, CO 80309 USA
| | - Gil Porat
- Department of Physics, JILA, National Institute of Standards and Technology and University of Colorado, University of Colorado, Boulder, CO 80309 USA
| | - Thinh Q. Bui
- Department of Physics, JILA, National Institute of Standards and Technology and University of Colorado, University of Colorado, Boulder, CO 80309 USA
| | - Bryce J. Bjork
- Department of Physics, JILA, National Institute of Standards and Technology and University of Colorado, University of Colorado, Boulder, CO 80309 USA
- Present Address: Honeywell International, 303 Technology Court, Broomfield, CO 80021 USA
| | - Stephen B. Schoun
- Department of Physics, JILA, National Institute of Standards and Technology and University of Colorado, University of Colorado, Boulder, CO 80309 USA
| | - Oliver H. Heckl
- Department of Physics, JILA, National Institute of Standards and Technology and University of Colorado, University of Colorado, Boulder, CO 80309 USA
- Present Address: Christian Doppler Laboratory for Mid-IR Spectroscopy and Semiconductor Optics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | | | - Jun Ye
- Department of Physics, JILA, National Institute of Standards and Technology and University of Colorado, University of Colorado, Boulder, CO 80309 USA
| |
Collapse
|
12
|
Sotor J, Martynkien T, Schunemann PG, Mergo P, Rutkowski L, Soboń G. All-fiber mid-infrared source tunable from 6 to 9 μm based on difference frequency generation in OP-GaP crystal. OPTICS EXPRESS 2018; 26:11756-11763. [PMID: 29716094 DOI: 10.1364/oe.26.011756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
We report the first fully fiberized difference frequency generation (DFG) source, delivering a broadly tunable idler in the 6 to 9 μm spectral range, using an orientation-patterned gallium phosphide (OP-GaP) crystals with different quasi-phase matching periods (QPM). The mid-infrared radiation (MIR) is obtained via mixing of the output of a graphene-based Er-doped fiber laser at 1.55 μm with coherent frequency-shifted solitons at 1.9 μm generated in a highly nonlinear fiber using the same seed. The presented setup is the first truly all-fiber, all-polarization maintaining, alignment-free DFG source reported so far. Its application to laser spectroscopy was demonstrated by the absorption spectrum measurement of ν4 band of methane in 7.5 - 8.3 µm spectral range. The system simplicity and compactness paves the way for applications in field-deployable optical frequency comb spectroscopy systems for gas sensing.
Collapse
|