1
|
Belashov AV, Zhikhoreva AA, Salova AV, Belyaeva TN, Litvinov IK, Kornilova ES, Semenova IV. SLIM-assisted automatic cartography of cell death types and rates resulting from localized photodynamic treatment. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:C72-C81. [PMID: 39889066 DOI: 10.1364/josaa.534241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/20/2024] [Indexed: 02/02/2025]
Abstract
We report a spatial light interference microscopy (SLIM)-based methodology aimed at automatic monitoring and analysis of changes in cellular morphology within extended fields of view in cytological samples. The experimental validation was performed on HeLa cells in vitro subjected to localized photodynamic treatment. The performed long-term noninvasive monitoring using the SLIM technique allowed us to estimate quantitative parameters characterizing the dynamics of average phase shift in individual cells and to reveal changes in their morphology specific for different mechanisms of cell death. The results obtained evidenced that the proposed SLIM-based methodology provides an opportunity for identification of cell death type and quantification of cell death rate in an automatic mode. The major sources of potential errors that can affect the results obtained are discussed. The developed methodology is promising for automatic monitoring of large ensembles of individual cells and for quantitative characterization of their response to various treatment modalities.
Collapse
|
2
|
Cheng H, Zhang H, Lu W, Zhang Q, Hu Z. An enhanced multimode phase imaging method based on the transport of intensity equation. JOURNAL OF BIOPHOTONICS 2024; 17:e202400137. [PMID: 38894526 DOI: 10.1002/jbio.202400137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Label-free biological cell imaging relies on rapid multimode phase imaging of biological samples in natural settings. To improve image contrast, phase is encoded into intensity information using the differential interference contrast (DIC) and Zernike phase contrast (ZPC) techniques. To enable multimode contrast-enhanced observation of unstained specimens, this paper proposes an improved multimode phase imaging method based on the transport of intensity equation (TIE), which combines conventional microscopy with computational imaging. The ZPC imaging module based on adaptive aperture adjustment is applied when the quantitative phase results of biological samples have been obtained by solving the TIE. Simultaneously, a rotationally symmetric shear-based technique is used that can yield isotropic DIC. In this paper, we describe numerical simulation and optical experiments carried out to validate the accuracy and viability of this technology. The calculated Michelson contrast of the ZPC image in the resolution plate experiment increased from 0.196 to 0.394.
Collapse
Affiliation(s)
- Hong Cheng
- Key Laboratory of Intelligent Computing & Signal Processing, Anhui University, Hefei, Anhui, China
| | - HongYi Zhang
- Key Laboratory of Intelligent Computing & Signal Processing, Anhui University, Hefei, Anhui, China
| | - Wei Lu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - QuanBing Zhang
- Key Laboratory of Intelligent Computing & Signal Processing, Anhui University, Hefei, Anhui, China
| | - Zijing Hu
- Key Laboratory of Intelligent Computing & Signal Processing, Anhui University, Hefei, Anhui, China
| |
Collapse
|
3
|
Fernández A, Llaguno JM, Silva A, Alonso JR. Real-time phase retrieval in division of aperture microscopy with the transport of intensity equation. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:A55-A62. [PMID: 38437430 DOI: 10.1364/josaa.507385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024]
Abstract
The transport of intensity equation (TIE) allows to recover the phase of a microscopy sample from differently focused intensity measures along the axial direction of its optical field. In the present work, we propose a cost-effective technique for snapshot phase retrieval with TIE. The optics of a commercially available camera is replaced with a doublet system consisting of a microscope objective and a lenslet array with an extra lens mask attached to it. The system allows to obtain, in real-time and with no mechanical shift of either the sample or the sensor, the in-focus as well as a defocused image of the sample. From these two sub-aperture images, the intensity derivative term in TIE can then be approximated after image rectification. Phase is then retrieved for static as well as dynamic samples over the common view area. Validation experiments are presented.
Collapse
|
4
|
Fan C, Li J, Du Y, Hu Z, Chen H, Yang Z, Zhang G, Zhang L, Zhao Z, Zhao H. Flexible dynamic quantitative phase imaging based on division of focal plane polarization imaging technique. OPTICS EXPRESS 2023; 31:33830-33841. [PMID: 37859154 DOI: 10.1364/oe.498239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023]
Abstract
This paper proposes a flexible and accurate dynamic quantitative phase imaging (QPI) method using single-shot transport of intensity equation (TIE) phase retrieval achieved by division of focal plane (DoFP) polarization imaging technique. By exploiting the polarization property of the liquid crystal spatial light modulator (LC-SLM), two intensity images of different defocus distances contained in orthogonal polarization directions can be generated simultaneously. Then, with the help of the DoFP polarization imaging, these images can be captured with single exposure, enabling accurate dynamic QPI by solving the TIE. In addition, our approach gains great flexibility in defocus distance adjustment by adjusting the pattern loaded on the LC-SLM. Experiments on microlens array, phase plate, and living human gastric cancer cells demonstrate the accuracy, flexibility, and dynamic measurement performance for various objects. The proposed method provides a simple, flexible, and accurate approach for real-time QPI without sacrificing the field of view.
Collapse
|
5
|
Sun A, Li Y, Zhu P, He X, Jiang Z, Kong Y, Liu C, Wang S. Dual-view transport of intensity phase imaging flow cytometry. BIOMEDICAL OPTICS EXPRESS 2023; 14:5199-5207. [PMID: 37854577 PMCID: PMC10581798 DOI: 10.1364/boe.504863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 10/20/2023]
Abstract
In this work, we design multi-parameter phase imaging flow cytometry based on dual-view transport of intensity (MPFC), which integrates phase imaging and microfluidics to a microscope, to obtain single-shot quantitative phase imaging on cells flowing in the microfluidic channel. The MPFC system has been proven with simple configuration, accurate phase retrieval, high imaging contrast, and real-time imaging and has been successfully employed not only in imaging, recognizing, and analyzing the flowing cells even with high-flowing velocities but also in tracking cell motilities, including rotation and binary rotation. Current results suggest that our proposed MPFC provides an effective tool for imaging and analyzing cells in microfluidics and can be potentially used in both fundamental and clinical studies.
Collapse
Affiliation(s)
- Aihui Sun
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yaxi Li
- Radiology Department, Jiangnan University Medical Center, Wuxi, Jiangsu, 214122, China
| | - Pengfei Zhu
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaoliang He
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhilong Jiang
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yan Kong
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Cheng Liu
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Shouyu Wang
- Jiangsu Province Engineering Research Center of Integrated Circuit Reliability Technology and Testing System & School of Electronics and Information Engineering, OptiX+ Laboratory, Wuxi University, Wuxi, Jiangsu 214105, China
- Single Molecule Nanometry Laboratory, China
| |
Collapse
|
6
|
Ma Y, Dai T, Yu L, Ma L, An S, Wang Y, Liu M, Zheng J, Kong L, Zuo C, Gao P. Reflectional quantitative differential phase microscopy using polarized wavefront phase modulation. JOURNAL OF BIOPHOTONICS 2023; 16:e202200325. [PMID: 36752421 DOI: 10.1002/jbio.202200325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 01/10/2023] [Indexed: 06/07/2023]
Abstract
Quantitative phase microscopy (QPM), as a label-free and nondestructive technique, has been playing an indispensable tool in biomedical imaging and industrial inspection. Herein, we introduce a reflectional quantitative differential phase microscopy (termed RQDPM) based on polarized wavefront phase modulation and partially coherent full-aperture illumination, which has high spatial resolution and spatio-temporal phase sensitivity and is applicable to opaque surfaces and turbid biological specimens. RQDPM does not require additional polarized devices and can be easily switched from reflectional mode to transmission mode. In addition, RQDPM inherits the characteristic of high axial resolution of differential interference contrast microscope, thereby providing topography for opaque surfaces. We experimentally demonstrate the reflectional phase imaging ability of RQDPM with several samples: semiconductor wafer, thick biological tissues, red blood cells, and Hela cells. Furthermore, we dynamically monitor the flow state of microspheres in a self-built microfluidic channel by using RQDPM converted into the transmission mode.
Collapse
Affiliation(s)
- Ying Ma
- School of Physics, Xidian University, Xi'an, China
| | - Taiqiang Dai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Lan Yu
- School of Physics, Xidian University, Xi'an, China
| | - Lin Ma
- School of Physics, Xidian University, Xi'an, China
| | - Sha An
- School of Physics, Xidian University, Xi'an, China
| | - Yang Wang
- School of Physics, Xidian University, Xi'an, China
| | - Min Liu
- School of Physics, Xidian University, Xi'an, China
| | | | - Liang Kong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Chao Zuo
- School of Physics, Xidian University, Xi'an, China
| | - Peng Gao
- School of Physics, Xidian University, Xi'an, China
| |
Collapse
|
7
|
Micó V, Rogalski M, Picazo-Bueno JÁ, Trusiak M. Single-shot wavelength-multiplexed phase microscopy under Gabor regime in a regular microscope embodiment. Sci Rep 2023; 13:4257. [PMID: 36918618 PMCID: PMC10015059 DOI: 10.1038/s41598-023-31300-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Phase imaging microscopy under Gabor regime has been recently reported as an extremely simple, low cost and compact way to update a standard bright-field microscope with coherent sensing capabilities. By inserting coherent illumination in the microscope embodiment and producing a small defocus distance of the sample at the input plane, the digital sensor records an in-line Gabor hologram of the target sample, which is then numerically post-processed to finally achieve the sample's quantitative phase information. However, the retrieved phase distribution is affected by the two well-known drawbacks when dealing with Gabor's regime, that is, coherent noise and twin image disturbances. Here, we present a single-shot technique based on wavelength multiplexing for mitigating these two effects. A multi-illumination laser source (including 3 diode lasers) illuminates the sample and a color digital sensor (conventional RGB color camera) is used to record the wavelength-multiplexed Gabor hologram in a single exposure. The technique is completed by presenting a novel algorithm based on a modified Gerchberg-Saxton kernel to finally retrieve an enhanced quantitative phase image of the sample, enhanced in terms of coherent noise removal and twin image minimization. Experimental validations are performed in a regular Olympus BX-60 upright microscope using a 20X 0.46NA objective lens and considering static (resolution test targets) and dynamic (living spermatozoa) phase samples.
Collapse
Affiliation(s)
- Vicente Micó
- Departamento de Óptica y Optometría y Ciencias de la Visión, Universidad de Valencia, C/Doctor Moliner 50, 46100, Burjassot, Spain.
| | - Mikołaj Rogalski
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02‑525, Warsaw, Poland
| | - José Ángel Picazo-Bueno
- Departamento de Óptica y Optometría y Ciencias de la Visión, Universidad de Valencia, C/Doctor Moliner 50, 46100, Burjassot, Spain
| | - Maciej Trusiak
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02‑525, Warsaw, Poland
| |
Collapse
|
8
|
Singh K, Dudley A, Forbes A. Versatile all-digital transport-of-intensity based wavefront sensor and adaptive optics using a DMD. OPTICS EXPRESS 2023; 31:8987-8997. [PMID: 36860001 DOI: 10.1364/oe.481767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Measuring and correcting wavefront aberrations is an important process in a wide variety of disciplines, from ophthalmology, laser cutting, and astronomy to free-space communication and microscopy, and always relies on measuring intensities to infer phase. One approach is to use the transport-of-intensity as a means for phase retrieval, exploiting the connection between observed energy flow in optical fields and their wavefronts. Here we present a simple scheme, using a digital micro-mirror device (DMD), to perform angular spectrum propagation and extract the wavefront of optical fields at various wavelengths, dynamically, with high resolution and tuneable sensitivity. We verify the capability of our approach by extracting common Zernike aberrations, turbulent phase screens, and lens phases under static and dynamic conditions at multiple wavelengths and polarizations. We use this setup for adaptive optics, correcting distortion using a second DMD to apply conjugate phase modulation. We observed effective wavefront recovery under a variety of conditions which allowed for convenient real-time adaptive correction in a compact arrangement. Our approach provides an all-digital system that is versatile, cheap, fast, accurate, broadband and polarization invariant.
Collapse
|
9
|
Zhang W, Li B, Song J, Zhao S, Li J. Expanded field of view frequency-selective incoherent holography by using a triple-beam setup. OPTICS EXPRESS 2023; 31:31-43. [PMID: 36606947 DOI: 10.1364/oe.475520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
We propose a new, to the best of our knowledge, method of incoherent optical frequency selection called three-pack frequency-selective incoherent holography. Compressed holography is reconstructed using phase shift intercepts and spatial transfer function convolution in the form of separation without loss of magnification or resolution. The frequency-selective reconstruction process removes the conjugate and DC terms along with the interception of the object wave. This work attempts three-dimensional reconstruction and selected-frequency phase extraction of axial slices in submicron steps, and the experimental results show the potential of the proposed method in areas such as compressed holography, extended field of view, and slice tomography.
Collapse
|
10
|
Ma Y, Wang Y, Ma L, Zheng J, Liu M, Gao P. Reflectional quantitative phase-contrast microscopy (RQPCM) with annular epi-illumination. APPLIED OPTICS 2022; 61:3641-3647. [PMID: 36256403 DOI: 10.1364/ao.451761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/30/2022] [Indexed: 06/16/2023]
Abstract
Quantitative phase microscopy (QPM) is a label-free microscopic technique that exploits the phase of a wave passing through a sample; hence, it has been applied to many fields, including biomedical research and industrial inspection. However, the high spatiotemporal resolution imaging of reflective samples still challenges conventional transmission QPM. In this paper, we propose reflectional quantitative phase-contrast microscopy based on annular epi-illumination of light-emitting diodes. The unscattered wave from the sample is successively phase-retarded by 0, π/2, π, and 3π/2 through a spatial light modulator, and high-resolution phase-contrast images are obtained, revealing the finer structure or three-dimensional tomography of reflective samples. With this system, we have quantitatively obtained the contour of tissue slices and silicon semiconductor wafers. We believe that the proposed system will be very helpful for the high-resolution imaging of industrial devices and biomedical dynamics.
Collapse
|
11
|
Real-Time Phase Retrieval Based on Cube-Corner Prisms Single Exposure. PHOTONICS 2022. [DOI: 10.3390/photonics9040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The phase retrieval method based on the Transport of Intensity Equation needs to record the light intensity information on two or more planes perpendicular to the optical axis propagating along the optical axis. Usually, a single CCD camera is moved back and forth for recording, which not only brings the corresponding mechanical errors, but also has a certain time difference between the collected intensity images, which cannot meet the real-time requirements. In this paper, a single phase retrieval technique based on cube-corner prisms is proposed. This method can simultaneously collect the required initial intensity image in a single exposure, and then calculate the phase after registration and repair, so as to obtain high-precision results. According to the parallel reflection characteristics of the cube-corner prisms, the experimental system designed correspondingly can not only stagger the two beams separated by the beam splitter, but also ensure that the upper and lower propagation distances of a single beam are equal. Finally, the accuracy and effectiveness of the proposed method are fully verified by simulation experiments and experimental measurements.
Collapse
|
12
|
Ma Y, Dai T, Lei Y, Zheng J, Liu M, Sui B, Smith ZJ, Chu K, Kong L, Gao P. Label-free imaging of intracellular organelle dynamics using flat-fielding quantitative phase contrast microscopy (FF-QPCM). OPTICS EXPRESS 2022; 30:9505-9520. [PMID: 35299377 DOI: 10.1364/oe.454023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Panoramic and long-term observation of nanosized organelle dynamics and interactions with high spatiotemporal resolution still hold great challenge for current imaging platforms. In this study, we propose a live-organelle imaging platform, where a flat-fielding quantitative phase contrast microscope (FF-QPCM) visualizes all the membrane-bound subcellular organelles, and an intermittent fluorescence channel assists in specific organelle identification. FF-QPCM features a high spatiotemporal resolution of 245 nm and 250 Hz and strong immunity against external disturbance. Thus, we could investigate several important dynamic processes of intracellular organelles from direct perspectives, including chromosome duplication in mitosis, mitochondrial fusion and fission, filaments, and vesicles' morphologies in apoptosis. Of note, we have captured, for the first time, a new type of mitochondrial fission (entitled mitochondrial disintegration), the generation and fusion process of vesicle-like organelles, as well as the mitochondrial vacuolization during necrosis. All these results bring us new insights into spatiotemporal dynamics and interactions among organelles, and hence aid us in understanding the real behaviors and functional implications of the organelles in cellular activities.
Collapse
|
13
|
Xing X, Zhu L, Chen C, Sun N, Yang C, Yan K, Xue L, Wang S. Transformer oil quality evaluation using quantitative phase microscopy. APPLIED OPTICS 2022; 61:422-428. [PMID: 35200879 DOI: 10.1364/ao.440583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Transformer oil used in oil-filled electrical power transformers aims at insulating, stopping arcing and corona discharge, and dissipating transformer heat. Transformer running inevitably induces molecule decomposition, thus leading to gases released into transformer oil. The released gases not only reduce the transformer oil's performance but also possibly induce transformer fault. To prevent catastrophic failure, approaches using, e.g., chromatography and spectroscopy, precisely measure dissolved gases to monitor transformer oil quality; however, many of these approaches still suffer from complicated operations, expensive costs, or slow speed. To solve these problems, we provide a new transformer oil quality evaluation method based on quantitative phase microscopy. Using our designed phase real-time microscopic camera (PhaseRMiC), under- and over-focus images of gas bubbles in transformer oil can be simultaneously captured during field of view scanning. Further, oil-to-gas-volume ratio can be computed after phase retrieval via solving the transport of intensity equation to evaluate transformer oil quality. Compared with traditionally and widely used approaches, this newly designed method can successfully distinguish transformer oil quality by only relying on rapid operations and low costs, thus delivering a new solution for transformer prognosis and diagnosis.
Collapse
|
14
|
Picazo-Bueno JA, Micó V. Optical module for single-shot quantitative phase imaging based on the transport of intensity equation with field of view multiplexing. OPTICS EXPRESS 2021; 29:39904-39919. [PMID: 34809345 DOI: 10.1364/oe.439047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
We present a cost-effective, simple, and robust method that enables single-shot quantitative phase imaging (QPI) based on the transport of intensity equation (TIE) using an add-on optical module that can be assembled into the exit port of any regular microscope. The module integrates a beamsplitter (BS) cube (placed in a non-conventional way) for duplicating the output image onto the digital sensor (field of view - FOV - multiplexing), a Stokes lens (SL) for astigmatism compensation (introduced by the BS cube), and an optical quality glass plate over one of the FOV halves for defocusing generation (needed for single-shot TIE algorithm). Altogether, the system provides two laterally separated intensity images that are simultaneously recorded and slightly defocused one to each other, thus enabling accurate QPI by conventional TIE-based algorithms in a single snapshot. The proposed optical module is first calibrated for defining the configuration providing best QPI performance and, second, experimentally validated by using different phase samples (static and dynamic ones). The proposed configuration might be integrated in a compact three-dimensional (3D) printed module and coupled to any conventional microscope for QPI of dynamic transparent samples.
Collapse
|
15
|
Chen C, Lu YN, Huang H, Yan K, Jiang Z, He X, Kong Y, Liu C, Liu F, Xue L, Wang S. PhaseRMiC: phase real-time microscope camera for live cell imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:5261-5271. [PMID: 34513255 PMCID: PMC8407842 DOI: 10.1364/boe.430115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 05/20/2023]
Abstract
We design a novel phase real-time microscope camera (PhaseRMiC) for live cell phase imaging. PhaseRMiC has a simple and cost-effective configuration only consisting of a beam splitter and a board-level camera with two CMOS imaging chips. Moreover, integrated with 3-D printed structures, PhaseRMiC has a compact size of 136×91×60 mm3, comparable to many commercial microscope cameras, and can be directly connected to the microscope side port. Additionally, PhaseRMiC can be well adopted in real-time phase imaging proved with satisfied accuracy, good stability and large field of view. Considering its compact and cost-effective device design as well as real-time phase imaging capability, PhaseRMiC is a preferred solution for live cell imaging.
Collapse
Affiliation(s)
- Chao Chen
- Computational Optics Laboratory, School of Sciences, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yu-Nan Lu
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | - Huachuan Huang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Keding Yan
- Advanced Institute of Micro-Nano Intelligent Sensing (AIMNIS), School of Electronic Information Engineering, Xi'an Technological University, Xi'an, Shaanxi 710032, China
| | - Zhilong Jiang
- Computational Optics Laboratory, School of Sciences, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoliang He
- Computational Optics Laboratory, School of Sciences, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Kong
- Computational Optics Laboratory, School of Sciences, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cheng Liu
- Computational Optics Laboratory, School of Sciences, Jiangnan University, Wuxi, Jiangsu 214122, China
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Fei Liu
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Xue
- College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Shouyu Wang
- Computational Optics Laboratory, School of Sciences, Jiangnan University, Wuxi, Jiangsu 214122, China
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Engay E, Huo D, Malureanu R, Bunea AI, Lavrinenko A. Polarization-Dependent All-Dielectric Metasurface for Single-Shot Quantitative Phase Imaging. NANO LETTERS 2021; 21:3820-3826. [PMID: 33886339 DOI: 10.1021/acs.nanolett.1c00190] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phase retrieval is a noninterferometric quantitative phase imaging technique that has become an essential tool in optical metrology and label-free microscopy. Phase retrieval techniques require multiple intensity measurements traditionally recorded by camera or sample translation, which limits their applicability mostly to static objects. In this work, we propose the use of a single polarization-dependent all-dielectric metasurface to facilitate the simultaneous recording of two images, which are utilized in phase calculation based on the transport-of-intensity equation. The metasurface acts as a multifunctional device that splits two orthogonal polarization components and adds a propagation phase shift onto one of them. As a proof-of-principle, we demonstrate the technique in the wavefront sensing of technical samples using a standard imaging setup. Our metasurface-based approach fosters a fast and compact configuration that can be integrated into commercial imaging systems.
Collapse
Affiliation(s)
- Einstom Engay
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Dewang Huo
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
- Institute of Modern Optics, Department of Physics, Harbin Institute of Technology, Harbin 15000, China
| | - Radu Malureanu
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Ada-Ioana Bunea
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Andrei Lavrinenko
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
17
|
Yoneda N, Onishi A, Saita Y, Komuro K, Nomura T. Single-shot higher-order transport-of-intensity quantitative phase imaging based on computer-generated holography. OPTICS EXPRESS 2021; 29:4783-4801. [PMID: 33726027 DOI: 10.1364/oe.415598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The imaging quality of quantitative phase imaging (QPI) based on the transport of intensity equation (TIE) can be improved using a higher-order approximation for defocused intensity distributions. However, this requires mechanically scanning an image sensor or object along the optical axis, which in turn requires a precisely aligned optical setup. To overcome this problem, a computer-generated hologram (CGH) technique is introduced to TIE-based QPI. A CGH generating defocused point spread function is inserted in the Fourier plane of an object. The CGH acts as a lens and grating with various focal lengths and orientations, allowing multiple defocused intensity distributions to be simultaneously detected on an image sensor plane. The results of a numerical simulation and optical experiment demonstrated the feasibility of the proposed method.
Collapse
|
18
|
Hai N, Rosen J. Phase contrast-based phase retrieval: a bridge between qualitative phase contrast and quantitative phase imaging by phase retrieval algorithms. OPTICS LETTERS 2020; 45:5812-5815. [PMID: 33057291 DOI: 10.1364/ol.403020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
In the last five decades, iterative phase retrieval methods have drawn a lot of interest across the research community as a non-interferometric approach to recover quantitative phase distributions from one (or more) intensity measurement. However, in cases where a unique solution does exist, these methods often require oversampling and high computational resources, which limit the use of this approach in important applications. On the other hand, phase contrast methods are based on a single camera exposure, but provide only a qualitative description of the phase; thus, they are not useful for applications in which the quantitative phase description is needed. In this Letter, we establish a combined approach based on the two above-mentioned methods to overcome their respective drawbacks. We show that a modified phase retrieval algorithm easily converges to the correct solution by initializing the algorithm with a phase-induced intensity measurement, namely with a phase contrast image of the examined object. Accurate quantitative phase measurements for both binary and continuously varying phase objects are demonstrated to support the suggested system as a single-shot quantitative phase contrast microscope.
Collapse
|
19
|
Pan A, Zuo C, Yao B. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:096101. [PMID: 32679569 DOI: 10.1088/1361-6633/aba6f0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fourier ptychographic microscopy (FPM) is a promising and fast-growing computational imaging technique with high resolution, wide field-of-view (FOV) and quantitative phase recovery, which effectively tackles the problems of phase loss, aberration-introduced artifacts, narrow depth-of-field and the trade-off between resolution and FOV in conventional microscopy simultaneously. In this review, we provide a comprehensive roadmap of microscopy, the fundamental principles, advantages, and drawbacks of existing imaging techniques, and the significant roles that FPM plays in the development of science. Since FPM is an optimization problem in nature, we discuss the framework and related work. We also reveal the connection of Euler's formula between FPM and structured illumination microscopy. We review recent advances in FPM, including the implementation of high-precision quantitative phase imaging, high-throughput imaging, high-speed imaging, three-dimensional imaging, mixed-state decoupling, and introduce the prosperous biomedical applications. We conclude by discussing the challenging problems and future applications. FPM can be extended to a kind of framework to tackle the phase loss and system limits in the imaging system. This insight can be used easily in speckle imaging, incoherent imaging for retina imaging, large-FOV fluorescence imaging, etc.
Collapse
Affiliation(s)
- An Pan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, People's Republic of China. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | |
Collapse
|
20
|
Li Y, Di J, Wang K, Wang S, Zhao J. Classification of cell morphology with quantitative phase microscopy and machine learning. OPTICS EXPRESS 2020; 28:23916-23927. [PMID: 32752380 DOI: 10.1364/oe.397029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
We describe and compare two machine learning approaches for cell classification based on label-free quantitative phase imaging with transport of intensity equation methods. In one approach, we design a multilevel integrated machine learning classifier including various individual models such as artificial neural network, extreme learning machine and generalized logistic regression. In another approach, we apply a pretrained convolutional neural network using transfer learning for the classification. As a validation, we show the performances of both approaches on classification between macrophages cultured in normal gravity and microgravity with quantitative phase imaging. The multilevel integrated classifier achieves average accuracy 93.1%, which is comparable to the average accuracy 93.5% obtained by convolutional neural network. The presented quantitative phase imaging system with two classification approaches could be helpful to biomedical scientists for easy and accurate cell analysis.
Collapse
|
21
|
Wittkopp JM, Khoo TC, Carney S, Pisila K, Bahreini SJ, Tubbesing K, Mahajan S, Sharikova A, Petruccelli JC, Khmaladze A. Comparative phase imaging of live cells by digital holographic microscopy and transport of intensity equation methods. OPTICS EXPRESS 2020; 28:6123-6133. [PMID: 32225868 PMCID: PMC7347524 DOI: 10.1364/oe.385854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 06/02/2023]
Abstract
We describe a microscopic setup implementing phase imaging by digital holographic microscopy (DHM) and transport of intensity equation (TIE) methods, which allows the results of both measurements to be quantitatively compared for either live cell or static samples. Digital holographic microscopy is a well-established method that provides robust phase reconstructions, but requires a sophisticated interferometric imaging system. TIE, on the other hand, is directly compatible with bright-field microscopy, but is more susceptible to noise artifacts. We present results comparing DHM and TIE on a custom-built microscope system that allows both techniques to be used on the same cells in rapid succession, thus permitting the comparison of the accuracy of both methods.
Collapse
Affiliation(s)
- Jeremy M. Wittkopp
- Department of Physics, SUNY University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Ting Chean Khoo
- Department of Physics, SUNY University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Shane Carney
- Department of Physics, SUNY University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Kai Pisila
- Department of Physics, SUNY University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Shahab J. Bahreini
- Department of Physics, SUNY University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Kate Tubbesing
- Department of Physics, SUNY University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Supriya Mahajan
- Department of Medicine, SUNY University at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Anna Sharikova
- Department of Physics, SUNY University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Jonathan C. Petruccelli
- Department of Physics, SUNY University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Alexander Khmaladze
- Department of Physics, SUNY University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
22
|
Wang K, Li Y, Kemao Q, Di J, Zhao J. One-step robust deep learning phase unwrapping. OPTICS EXPRESS 2019; 27:15100-15115. [PMID: 31163947 DOI: 10.1364/oe.27.015100] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Phase unwrapping is an important but challenging issue in phase measurement. Even with the research efforts of a few decades, unfortunately, the problem remains not well solved, especially when heavy noise and aliasing (undersampling) are present. We propose a database generation method for phase-type objects and a one-step deep learning phase unwrapping method. With a trained deep neural network, the unseen phase fields of living mouse osteoblasts and dynamic candle flame are successfully unwrapped, demonstrating that the complicated nonlinear phase unwrapping task can be directly fulfilled in one step by a single deep neural network. Excellent anti-noise and anti-aliasing performances outperforming classical methods are highlighted in this paper.
Collapse
|
23
|
Shan Y, Gong Q, Wang J, Xu J, Wei Q, Liu C, Xue L, Wang S, Liu F. Measurements on ATP induced cellular fluctuations using real-time dual view transport of intensity phase microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:2337-2354. [PMID: 31143493 PMCID: PMC6524602 DOI: 10.1364/boe.10.002337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 05/20/2023]
Abstract
Dual view transport of intensity phase microscopy is adopted to quantitatively study the regulation of adenosine triphosphate (ATP) on cellular mechanics. It extracts cell phases in real time from simultaneously captured under- and over-focus images. By computing the root-mean-square phase and correlation time, it is found that the cellular fluctuation amplitude and speed increased with ATP compared to those with ATP depletion. Besides, when adenylyl-imidodiphosphate (AMP-PNP) was introduced, it competed with ATP to bind to the ATP binding site, and the cellular fluctuation amplitude and speed decreased. The results prove that ATP is a factor in the regulation of cellular mechanics. To our best knowledge, it is the first time that the dual view transport of intensity phase microscopy was used for live cell phase imaging and analysis. Our work not only provides direct measurements on cellular fluctuations to study ATP regulation on cellular mechanics, but it also proves that our proposed dual view transport of intensity phase microscopy can be well used, especially in quantitative phase imaging of live cells in biological and medical applications.
Collapse
Affiliation(s)
- Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- These authors contributed equally to this work
| | - Qingtao Gong
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Computational Optics Laboratory, School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
- These authors contributed equally to this work
| | - Jian Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jing Xu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Computational Optics Laboratory, School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qi Wei
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Computational Optics Laboratory, School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cheng Liu
- Computational Optics Laboratory, School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Liang Xue
- College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Computational Optics Laboratory, School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
24
|
Hu J, Kong Y, Jiang Z, Xue L, Liu F, Liu C, Wang S. Adaptive dual-exposure fusion-based transport of intensity phase microscopy. APPLIED OPTICS 2018; 57:7249-7258. [PMID: 30182986 DOI: 10.1364/ao.57.007249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Via the transport of intensity phase microscopy, quantitative phase can be retrieved directly from captured multi-focal intensities. The accuracy of the retrieved phases depends highly on the quality of the recorded images; therefore, the exposure time should be carefully chosen for high-quality intensity captures. However, it is difficult to record well-exposure intensities to maintain rather a high signal to noise ratio and to avoid over-exposure due to the complex samples. In order to simplify the exposure determination, here the adaptive dual-exposure fusion-based transport of intensity phase microscopy is proposed: with captured short- and long-exposure images, the well-exposure multi-focal images can be numerically reconstructed, and then high-accurate phase can be computed from these reconstructed intensities. With both simulations and experiments provided in this paper, it is proved that the adaptive dual-exposure fusion-based transport of intensity phase microscopy not only provides numerically reconstructed well-exposure image with simple operation and fast speed but also extracts highly accurate retrieved phase. Moreover, the exposure time selection scope of the proposed method is much wider than that based on single exposure, and even though there is an over-exposure region in the long-exposure image, a well-exposure image can still be reconstructed with high precision. Considering its advantages of high accuracy, fast speed, simple operation, and wide application scope, the proposed technique can be adopted as quantitative phase microscopy for high-quality observations and measurements.
Collapse
|