1
|
Harvey M, Cisek R, Tokarz D, Kreplak L. Effect of out of plane orientation on polarization second harmonic generation of single collagen fibrils. BIOMEDICAL OPTICS EXPRESS 2023; 14:6271-6282. [PMID: 38420315 PMCID: PMC10898559 DOI: 10.1364/boe.504304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 03/02/2024]
Abstract
Second harmonic generation (SHG) microscopy has emerged as a powerful technique for visualizing collagen organization within tissues. Amongst the many advantages of SHG is its sensitivity to collagen nanoscale organization, and its presumed sensitivity to the relative out of plane polarity of fibrils. Recent results have shown that circular dichroism SHG (CD-SHG), a technique that has been commonly assumed to reveal the relative out of plane polarity of collagen fibrils, is actually insensitive to changes in fibril polarity. However, results from another research group seem to contradict this conclusion. Both previous results have been based on SHG imaging of collagen fibrils within tissues, therefore, to gain a definitive understanding of the sensitivity of SHG to relative out of plane polarity, the results from individual fibrils are desirable. Here we present polarization resolved SHG microscopy (PSHG) data from individual collagen fibrils oriented out of the image plane by buckling on an elastic substrate. We show through correlation with atomic force microscopy measurements that SHG intensity can be used to estimate the out of plane angle of individual fibrils. We then compare the sensitivity of two PSHG techniques, CD-SHG and polarization-in, polarization-out SHG (PIPO-SHG), to the relative out of plane polarity of individual fibrils. We find that for single fibrils CD-SHG is insensitive to relative out of polarity and we also demonstrate the first direct experimental confirmation that PIPO-SHG reveals the relative out of plane polarity of individual collagen fibrils.
Collapse
Affiliation(s)
- MacAulay Harvey
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada
| | - Richard Cisek
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada
| | - Danielle Tokarz
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada
| | - Laurent Kreplak
- Department of Physics and Atmospheric Science and School of Biomedical Engineering, Dalhousie University, Halifax, NS, B3H 4J5, Canada
| |
Collapse
|
2
|
Chen MC, Govindaraju I, Wang WH, Chen WL, Mumbrekar KD, Mal SS, Sarmah B, Baruah VJ, Srisungsitthisunti P, Karunakara N, Mazumder N, Zhuo GY. Revealing the Structural Organization of Gamma-irradiated Starch Granules Using Polarization-resolved Second Harmonic Generation Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1450-1459. [PMID: 37488816 DOI: 10.1093/micmic/ozad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 07/26/2023]
Abstract
Starch is a semi-crystalline macromolecule with the presence of amorphous and crystalline components. The amorphous amylose and crystalline amylopectin regions in starch granules are susceptible to certain physical modifications, such as gamma irradiation. Polarization-resolved second harmonic generation (P-SHG) microscopy in conjunction with SHG-circular dichroism (CD) was used to assess the three-dimensional molecular order and inherent chirality of starch granules and their reaction to different dosages of gamma irradiation. For the first time, the relationship between starch achirality (χ21/χ16 and χ22/χ16) and chirality (χ14/χ16) determining susceptibility tensor ratios has been elucidated. The results showed that changes in the structure and orientation of long-chain amylopectin were supported by the decrease in the SHG anisotropy factor and the χ22/χ16 ratio. Furthermore, SHG-CD illustrated the molecular tilt angle by revealing the arrangement of amylopectin molecules pointing either upward or downward owing to molecular polarity.
Collapse
Affiliation(s)
- Ming-Chi Chen
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, No. 91, Xueshi Rd., North Dist., Taichung 404333, Taiwan (R.O.C.)
| | - Indira Govindaraju
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium complex, Udupi Dist., Manipal, Karnataka, India
| | - Wei-Hsun Wang
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, No. 91, Xueshi Rd., North Dist., Taichung 404333, Taiwan (R.O.C.)
| | - Wei-Liang Chen
- Center for Condensed Matter Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei 106319, Taiwan (R.O.C.)
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium complex, Udupi Dist., Manipal, Karnataka, India
| | - Sib Sankar Mal
- Materials and Catalysis Lab, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore Dist., Karnataka, 575025, India
| | - Bhaswati Sarmah
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam 785013, India
| | - Vishwa Jyoti Baruah
- Department of Bioinformatics, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Pornsak Srisungsitthisunti
- Department of Production Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Naregundi Karunakara
- Centre for Application of Radioisotopes and Radiation Technology (CARRT), Mangalore University, Mangalore 574199, India
- Center for Advanced Research in Environmental Radioactivity (CARER), Mangalore University, Mangalore 574199, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium complex, Udupi Dist., Manipal, Karnataka, India
| | - Guan-Yu Zhuo
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, No. 91, Xueshi Rd., North Dist., Taichung 404333, Taiwan (R.O.C.)
| |
Collapse
|
3
|
Harvey M, Cisek R, Alizadeh M, Barzda V, Kreplak L, Tokarz D. High numerical aperture imaging allows chirality measurement in individual collagen fibrils using polarization second harmonic generation microscopy. NANOPHOTONICS 2023; 12:2061-2071. [PMID: 37215945 PMCID: PMC10193268 DOI: 10.1515/nanoph-2023-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 05/24/2023]
Abstract
Second harmonic generation (SHG) microscopy is a commonly used technique to study the organization of collagen within tissues. However, individual collagen fibrils, which have diameters much smaller than the resolution of most optical systems, have not been extensively investigated. Here we probe the structure of individual collagen fibrils using polarization-resolved SHG (PSHG) microscopy and atomic force microscopy. We find that longitudinally polarized light occurring at the edge of a focal volume of a high numerical aperture microscope objective illuminated with linearly polarized light creates a measurable variation in PSHG signal along the axis orthogonal to an individual collagen fibril. By comparing numerical simulations to experimental data, we are able to estimate parameters related to the structure and chirality of the collagen fibril without tilting the sample out of the image plane, or cutting tissue at different angles, enabling chirality measurements on individual nanostructures to be performed in standard PSHG microscopes. The results presented here are expected to lead to a better understanding of PSHG results from both collagen fibrils and collagenous tissues. Further, the technique presented can be applied to other chiral nanoscale structures such as microtubules, nanowires, and nanoribbons.
Collapse
Affiliation(s)
- MacAulay Harvey
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, NS, B3H 3C3Canada
| | - Richard Cisek
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, NS, B3H 3C3Canada
| | - Mehdi Alizadeh
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Physics, University of Toronto, 60 St. George St, Toronto, ON, M5S 1A7, Canada
- Laser Research Center, Faculty of Physics, Vilnius University, Sauletekio Av. 9, LT-10222Vilnius, Lithuania
| | - Virginijus Barzda
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Physics, University of Toronto, 60 St. George St, Toronto, ON, M5S 1A7, Canada
- Laser Research Center, Faculty of Physics, Vilnius University, Sauletekio Av. 9, LT-10222Vilnius, Lithuania
| | - Laurent Kreplak
- Department of Physics and Atmospheric Science and School of Biomedical Engineering, Dalhousie University, Halifax, NS, B3H 4J5, Canada
| | - Danielle Tokarz
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, NS, B3H 3C3Canada
| |
Collapse
|
4
|
Aghigh A, Bancelin S, Rivard M, Pinsard M, Ibrahim H, Légaré F. Second harmonic generation microscopy: a powerful tool for bio-imaging. Biophys Rev 2023; 15:43-70. [PMID: 36909955 PMCID: PMC9995455 DOI: 10.1007/s12551-022-01041-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
Second harmonic generation (SHG) microscopy is an important optical imaging technique in a variety of applications. This article describes the history and physical principles of SHG microscopy and its more advanced variants, as well as their strengths and weaknesses in biomedical applications. It also provides an overview of SHG and advanced SHG imaging in neuroscience and microtubule imaging and how these methods can aid in understanding microtubule formation, structuration, and involvement in neuronal function. Finally, we offer a perspective on the future of these methods and how technological advancements can help make SHG microscopy a more widely adopted imaging technique.
Collapse
Affiliation(s)
- Arash Aghigh
- Centre Énergie Matériaux Télécommunications, Institut National de La Recherche Scientifique, Varennes, QC Canada
| | | | - Maxime Rivard
- National Research Council Canada, Boucherville, QC Canada
| | - Maxime Pinsard
- Institut National de Recherche en Sciences Et Technologies Pour L’environnement Et L’agriculture, Paris, France
| | - Heide Ibrahim
- Centre Énergie Matériaux Télécommunications, Institut National de La Recherche Scientifique, Varennes, QC Canada
| | - François Légaré
- Centre Énergie Matériaux Télécommunications, Institut National de La Recherche Scientifique, Varennes, QC Canada
| |
Collapse
|
5
|
Zhang S, Ju W, Chen X, Zhao Y, Feng L, Yin Z, Chen X. Hierarchical ultrastructure: An overview of what is known about tendons and future perspective for tendon engineering. Bioact Mater 2021; 8:124-139. [PMID: 34541391 PMCID: PMC8424392 DOI: 10.1016/j.bioactmat.2021.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
Abnormal tendons are rarely ever repaired to the natural structure and morphology of normal tendons. To better guide the repair and regeneration of injured tendons through a tissue engineering method, it is necessary to have insights into the internal morphology, organization, and composition of natural tendons. This review summarized recent researches on the structure and function of the extracellular matrix (ECM) components of tendons and highlight the application of multiple detection methodologies concerning the structure of ECMs. In addition, we look forward to the future of multi-dimensional biomaterial design methods and the potential of structural repair for tendon ECM components. In addition, focus is placed on the macro to micro detection methods for tendons, and current techniques for evaluating the extracellular matrix of tendons at the micro level are introduced in detail. Finally, emphasis is given to future extracellular matrix detection methods, as well as to how future efforts could concentrate on fabricating the biomimetic tendons. Summarize recent research on the structure and function of the extracellular matrix (ECM) components of tendons. Comments on current research methods concerning the structure of ECMs. Perspective on the future of multi-dimensional detection techniques and structural repair of tendon ECM components.
Collapse
Affiliation(s)
- Shichen Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wei Ju
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyi Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China
| | - Yanyan Zhao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lingchong Feng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zi Yin
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
6
|
Alperstein AM, Molnar KS, Dicke SS, Farrell KM, Makley LN, Zanni MT, Andley UP. Analysis of amyloid-like secondary structure in the Cryab-R120G knock-in mouse model of hereditary cataracts by two-dimensional infrared spectroscopy. PLoS One 2021; 16:e0257098. [PMID: 34520490 PMCID: PMC8439473 DOI: 10.1371/journal.pone.0257098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
αB-crystallin is a small heat shock protein that forms a heterooligomeric complex with αA-crystallin in the ocular lens. It is also widely distributed in tissues throughout the body and has been linked with neurodegenerative diseases such as Alzheimer's, where it is associated with amyloid fibrils. Crystallins can form amorphous aggregates in cataracts as well as more structured amyloid-like fibrils. The arginine 120 to glycine (R120G) mutation in αB-crystallin (Cryab-R120G) results in high molecular weight crystallin protein aggregates and loss of the chaperone activity of the protein in vitro, and it is associated with human hereditary cataracts and myopathy. Characterizing the amorphous (unstructured) versus the highly ordered (amyloid fibril) nature of crystallin aggregates is important in understanding their role in disease and important to developing pharmacological treatments for cataracts. We investigated protein secondary structure in wild-type (WT) and Cryab-R120G knock-in mutant mouse lenses using two-dimensional infrared (2DIR) spectroscopy, which has been used to detect amyloid-like fibrils in human lenses and measure UV radiation-induced changes in porcine lenses. Our goal was to compare the aggregated proteins in this mouse lens model to human lenses and evaluate the protein structural relevance of the Cryab-R120G knock-in mouse model to general age-related cataract disease. In the 2DIR spectra, amide I diagonal peak frequencies were red-shifted to smaller wavenumbers in mutant mouse lenses as compared to WT mouse lenses, consistent with an increase in ordered secondary structure. The cross peak frequency and intensity indicated the presence of amyloid in the mutant mouse lenses. While the diagonal and cross peak changes in location and intensity from the 2DIR spectra indicated significant structural differences between the wild type and mutant mouse lenses, these differences were smaller than those found in human lenses; thus, the Cryab-R120G knock-in mouse lenses contain less amyloid-like secondary structure than human lenses. The results of the 2DIR spectroscopy study confirm the presence of amyloid-like secondary structure in Cryab-R120G knock-in mice with cataracts and support the use of this model to study age-related cataract.
Collapse
Affiliation(s)
- Ariel M. Alperstein
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kathleen S. Molnar
- ViewPoint Therapeutics, San Francisco, California, United States of America
| | - Sidney S. Dicke
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kieran M. Farrell
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Leah N. Makley
- ViewPoint Therapeutics, San Francisco, California, United States of America
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Usha P. Andley
- Washington University School of Medicine, Department of Ophthalmology and Visual Sciences St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
7
|
Chen CH, Nair AV, Chuang SC, Lin YS, Cheng MH, Lin CY, Chang CY, Chen SJ, Lien CH. Dual-LC PSHG microscopy for imaging collagen type I and type II gels with pixel-resolution analysis. BIOMEDICAL OPTICS EXPRESS 2021; 12:3050-3065. [PMID: 34168914 PMCID: PMC8194623 DOI: 10.1364/boe.416193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 05/27/2023]
Abstract
Collagen of type I (Col I) and type II (Col II) are critical for cartilage and connective tissues in the human body, and several diseases may alter their properties. Assessing the identification and quantification of fibrillar collagen without biomarkers is a challenge. Advancements in non-invasive polarization-resolved second-harmonic generation (PSHG) microscopy have provided a method for the non-destructive investigation of collagen molecular level properties. Here we explored an alternative polarization modulated approach, dual-LC PSHG, that is based on two liquid crystal devices (Liquid crystal polarization rotators, LPRs) operating simultaneously with a laser scanning SHG microscope. We demonstrated that this more accessible technology allows the quick and accurate generation of any desired linear and circular polarization state without any mechanical parts. This study demonstrates that this method can aid in improving the ability to quantify the characteristics of both types of collagen, including pitch angle, anisotropy, and circular dichroism analysis. Using this approach, we estimated the effective pitch angle for Col I and Col II to be 49.7° and 51.6°, respectively. The effective peptide pitch angle for Col II gel was first estimated and is similar to the value obtained for Col I gel in the previous studies. Additionally, the difference of the anisotropy parameter of both collagen type gels was assessed to be 0.293, which reflects the different type molecular fibril assembly. Further, our work suggests a potential method for monitoring and differentiating different collagen types in biological tissues, especially cartilage or connective tissue.
Collapse
Affiliation(s)
- Chung-Hwan Chen
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Shu-Chun Chuang
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Hsin Cheng
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Yu Lin
- College of Photonics, National Chiao Tung University, Tainan, Taiwan
| | - Chia-Ying Chang
- College of Photonics, National Chiao Tung University, Tainan, Taiwan
| | - Shean-Jen Chen
- College of Photonics, National Chiao Tung University, Tainan, Taiwan
| | - Chi-Hsiang Lien
- Department of Mechanical Engineering, National United University, Miaoli, Taiwan
| |
Collapse
|
8
|
Gogoi A, Konwer S, Zhuo GY. Polarimetric Measurements of Surface Chirality Based on Linear and Nonlinear Light Scattering. Front Chem 2021; 8:611833. [PMID: 33644001 PMCID: PMC7902787 DOI: 10.3389/fchem.2020.611833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/31/2020] [Indexed: 01/21/2023] Open
Abstract
A molecule, molecular aggregate, or protein that cannot be superimposed on its mirror image presents chirality. Most living systems are organized by chiral building blocks, such as amino acids, peptides, and carbohydrates, and any change in their molecular structure (i.e., handedness or helicity) alters the biochemical and pharmacological functions of the molecules, many of which take place at surfaces. Therefore, studying surface chirogenesis at the nanoscale is fundamentally important and derives various applications. For example, since proteins contain highly ordered secondary structures, the intrinsic chirality can be served as a signature to measure the dynamics of protein adsorption and protein conformational changes at biological surfaces. Furthermore, a better understanding of chiral recognition and separation at bio-nanointerfaces is helpful to standardize chiral drugs and monitor the synthesis of adsorbents with high precision. Thus, exploring the changes in surface chirality with polarized excitations would provide structural and biochemical information of the adsorbed molecules, which has led to the development of label-free and noninvasive measurement tools based on linear and nonlinear optical effects. In this review, the principles and selected applications of linear and nonlinear optical methods for quantifying surface chirality are introduced and compared, aiming to conceptualize new ideas to address critical issues in surface biochemistry.
Collapse
Affiliation(s)
- Ankur Gogoi
- Department of Physics, Jagannath Barooah College, Jorhat, India
| | - Surajit Konwer
- Department of Chemistry, Dibrugarh University, Dibrugarh, India
| | - Guan-Yu Zhuo
- Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
An Optical Frequency Domain Angle Measurement Method Based on Second Harmonic Generation. SENSORS 2021; 21:s21020670. [PMID: 33477976 PMCID: PMC7835813 DOI: 10.3390/s21020670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 11/22/2022]
Abstract
This paper proposes a new optical angle measurement method in the optical frequency domain based on second harmonic generation with a mode-locked femtosecond laser source by making use of the unique characteristic of the high peak power and wide spectral range of the femtosecond laser pulses. To get a wide measurable range of angle measurement, a theoretical calculation for several nonlinear optical crystals is performed. As a result, LiNbO3 crystal is employed in the proposed method. In the experiment, the validity of the use of a parabolic mirror is also demonstrated, where the chromatic aberration of the focusing beam caused the localization of second harmonic generation in our previous research. Moreover, an experimental demonstration is also carried out for the proposed angle measurement method. The measurable range of 10,000 arc-seconds is achieved.
Collapse
|