1
|
Rad VF, Mohammadi M, Moradi AR. Morphometric effects of particulate air pollution on an optically trapped single red blood cell. Sci Rep 2025; 15:16068. [PMID: 40341733 PMCID: PMC12062408 DOI: 10.1038/s41598-025-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 05/02/2025] [Indexed: 05/11/2025] Open
Abstract
Particulate air pollution is associated with excess deaths and increases in hospital admissions because of cardiovascular and respiratory diseases. Several scientific studies and assessments have linked particulate pollution to a variety of health problems. In this paper, we provide a single cell in vitro analysis for the effect of the particles, which can enter into blood stream, on red blood cells (RBCs). The RBCs under experiment are incubated with [Formula: see text] particle as the most abundant air pollutants in big cities. The self-referencing digital holographic microscopy (DHM) in Gates' arrangement as a vibration-immune methodology is considered here for live visualization and quantitative analysis of the cells. DHM is a label-free and noninvasive method, therefore, suitable for quantitative and morphometric imaging of biological specimens in arbitrary time scales and at video rates. Single RBCs are immobilized by a blinking multiple optical trapping system integrated to the DHM system. Through post-process numerical reconstruction of the recorded digital holograms, the morphology changes of the pollution-exposed RBCs are tracked and expressed in terms of volume and several statistical morphometry parameters.
Collapse
Affiliation(s)
- Vahideh Farzam Rad
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran
| | - Maryam Mohammadi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Ali-Reza Moradi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran.
- School of Quantum Physics and Matter, Institute for Research in Fundamental Sciences (IPM), 19395-5531, Tehran, Iran.
| |
Collapse
|
2
|
Chu C, Tsai CM, Yamaguchi T, Wang YX, Tanaka T, Chen HW, Luo Y, Tsai DP. Quantitative Phase Imaging with a Meta-Based Interferometric System. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26023-26031. [PMID: 40233216 PMCID: PMC12051180 DOI: 10.1021/acsami.5c02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
Optical phase imaging has become a pivotal tool in biomedical research, enabling label-free visualization of transparent specimens. Traditional optical phase imaging techniques, such as Zernike phase contrast and differential interference contrast microscopy, fall short of providing quantitative phase information. Digital holographic microscopy (DHM) addresses this limitation by offering precise phase measurements; however, off-axis configurations, particularly Mach-Zehnder and Michelson-based setups, are often hindered by environmental susceptibility and bulky optical components due to their separate reference and object beam paths. In this work, we have developed a meta-based interferometric quantitative phase imaging system using a common-path off-axis DHM configuration. A meta-biprism, featuring two opposite gradient phases created using GaN nanopillars selected for their low loss and durability, serves as a compact and efficient beam splitter. Our system effectively captures the complex wavefronts of samples, enabling the retrieval of quantitative phase information, which we demonstrate using standard resolution phase targets and human lung cell lines. Additionally, our system exhibits enhanced temporal phase stability compared to conventional off-axis DHM configurations, reducing phase fluctuations over extended measurement periods. These results not only underline the potential of metasurfaces in advancing the capabilities of quantitative phase imaging but also promise significant advancements in biomedical imaging and diagnostics.
Collapse
Affiliation(s)
- Cheng
Hung Chu
- YongLin
Institute of Health, National Taiwan University, Taipei 10672, Taiwan
| | - Chen-Ming Tsai
- Institute
of Medical Device and Imaging, National
Taiwan University, Taipei 10051, Taiwan
| | - Takeshi Yamaguchi
- Innovative
Photon Manipulation Research Team, RIKEN
Center for Advanced Photonics, Saitama 351-0198, Japan
| | - Yu-Xiang Wang
- Program
for Precision Health and Intelligent Medicine, National Taiwan University, Taipei 106319, Taiwan
| | - Takuo Tanaka
- Innovative
Photon Manipulation Research Team, RIKEN
Center for Advanced Photonics, Saitama 351-0198, Japan
- Metamaterials
Laboratory, RIKEN Cluster for Pioneering
Research, Saitama 351-0198, Japan
| | - Huei-Wen Chen
- Graduate
Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Genome
and Systems Biology Degree Program, National
Taiwan University and Academia Sinica, Taipei 100, Taiwan
| | - Yuan Luo
- YongLin
Institute of Health, National Taiwan University, Taipei 10672, Taiwan
- Institute
of Medical Device and Imaging, National
Taiwan University, Taipei 10051, Taiwan
- Program
for Precision Health and Intelligent Medicine, National Taiwan University, Taipei 106319, Taiwan
- Institute
of Biomedical Engineering, National Taiwan
University, Taipei 10051, Taiwan
| | - Din Ping Tsai
- Department
of Electrical Engineering, City University
of Hong Kong, Kowloon, Hong Kong 999077, China
- Centre
for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- The
State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
3
|
Huang Z, Cao L. Quantitative phase imaging based on holography: trends and new perspectives. LIGHT, SCIENCE & APPLICATIONS 2024; 13:145. [PMID: 38937443 PMCID: PMC11211409 DOI: 10.1038/s41377-024-01453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 06/29/2024]
Abstract
In 1948, Dennis Gabor proposed the concept of holography, providing a pioneering solution to a quantitative description of the optical wavefront. After 75 years of development, holographic imaging has become a powerful tool for optical wavefront measurement and quantitative phase imaging. The emergence of this technology has given fresh energy to physics, biology, and materials science. Digital holography (DH) possesses the quantitative advantages of wide-field, non-contact, precise, and dynamic measurement capability for complex-waves. DH has unique capabilities for the propagation of optical fields by measuring light scattering with phase information. It offers quantitative visualization of the refractive index and thickness distribution of weak absorption samples, which plays a vital role in the pathophysiology of various diseases and the characterization of various materials. It provides a possibility to bridge the gap between the imaging and scattering disciplines. The propagation of wavefront is described by the complex amplitude. The complex-value in the complex-domain is reconstructed from the intensity-value measurement by camera in the real-domain. Here, we regard the process of holographic recording and reconstruction as a transformation between complex-domain and real-domain, and discuss the mathematics and physical principles of reconstruction. We review the DH in underlying principles, technical approaches, and the breadth of applications. We conclude with emerging challenges and opportunities based on combining holographic imaging with other methodologies that expand the scope and utility of holographic imaging even further. The multidisciplinary nature brings technology and application experts together in label-free cell biology, analytical chemistry, clinical sciences, wavefront sensing, and semiconductor production.
Collapse
Affiliation(s)
- Zhengzhong Huang
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Liangcai Cao
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Tsai CM, Vyas S, Luo Y. Common-path digital holographic microscopy based on a volume holographic grating for quantitative phase imaging. OPTICS EXPRESS 2024; 32:7919-7930. [PMID: 38439461 DOI: 10.1364/oe.514225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/03/2024] [Indexed: 03/06/2024]
Abstract
Digital holographic microscopy (DHM) is a powerful quantitative phase imaging (QPI) technique that is capable of recording sample's phase information to enhance image contrast. In off-axis DHM, high-quality QPI images can be generated within a single recorded hologram, and the system stability can be enhanced by common-path configuration. Diffraction gratings are widely used components in common-path DHM systems; however, the presence of multiple diffraction beams leads to system power loss. Here, we propose and demonstrate implementation of a volume holographic grating (VHG) in common-path DHM, which provides single diffraction order. VHG in common-path DHM (i.e., VHG-DHM) helps in improving signal-to-noise ratio as compared to the conventional DHM. In addition, VHG, with inherently high angular selectivity, reduces image noise caused by stray light. With a simple fabrication process, it is convenient to utilize VHG to control the beam separation angle of DHM. Further, by using Bragg-matched wavelength degeneracy to avoid potential cell damaging effect in blue light, the VHG is designed for recording at a maximum sensitive wavelength of ∼488 nm, while our VHG-DHM is operated at the longer wavelength of red 632.8 nm for cell observation. Experimental results, measured by the VHG-DHM, show the measurement of target thickness ranging from 100 nm to 350 nm. In addition, stability of the system is quantitatively measured. High-contrast QPI images of human lung cancer cells are demonstrated.
Collapse
|
5
|
Pensia L, Kumar M, Kumar R. Dual Field-of-View Off-Axis Spatially Multiplexed Digital Holography Using Fresnel's Bi-Mirror. SENSORS (BASEL, SWITZERLAND) 2024; 24:731. [PMID: 38339448 PMCID: PMC10857002 DOI: 10.3390/s24030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Digital holography (DH) is an important method for three-dimensional (3D) imaging since it allows for the recording and reconstruction of an object's amplitude and phase information. However, the field of view (FOV) of a DH system is typically restricted by the finite size of the pixel pitch of the digital image sensor. We proposed a new configuration of the DH system based on Fresnel's bi-mirror to achieve doubling the camera FOV of the existing off-axis DH system which leveraged single-shot acquisition and a common-path optical framework. The dual FOV was obtained by spatial frequency multiplexing corresponding to two different information-carrying beams from an object. Experimental evidence of the proposed dual FOV-DH system's viability was provided by imaging two different areas of the test object and an application to surface profilometry by measuring the step height of the resolution chart which showed excellent agreement with an optical profiler. Due to the simple configuration, the proposed system could find a wide range of applications, including in microscopy and optical metrology.
Collapse
Affiliation(s)
- Lavlesh Pensia
- CSIR—Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India;
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manoj Kumar
- Department of Systems Science, Graduate School of System Informatics, Kobe University, Kobe 657-8501, Japan
- Center of Optical Scattering Image Science, Kobe University, Kobe 657-8501, Japan
| | - Raj Kumar
- CSIR—Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India;
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Ryu D, Bak T, Ahn D, Kang H, Oh S, Min HS, Lee S, Lee J. Deep learning-based label-free hematology analysis framework using optical diffraction tomography. Heliyon 2023; 9:e18297. [PMID: 37576294 PMCID: PMC10412892 DOI: 10.1016/j.heliyon.2023.e18297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Hematology analysis, a common clinical test for screening various diseases, has conventionally required a chemical staining process that is time-consuming and labor-intensive. To reduce the costs of chemical staining, label-free imaging can be utilized in hematology analysis. In this work, we exploit optical diffraction tomography and the fully convolutional one-stage object detector or FCOS, a deep learning architecture for object detection, to develop a label-free hematology analysis framework. Detected cells are classified into four groups: red blood cell, abnormal red blood cell, platelet, and white blood cell. In the results, the trained object detection model showed superior detection performance for blood cells in refractive index tomograms (0.977 mAP) and also showed high accuracy in the four-class classification of blood cells (0.9708 weighted F1 score, 0.9712 total accuracy). For further verification, mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) were compared with values obtained from reference hematology equipment, with our results showing reasonable correlation in both MCV (0.905) and MCH (0.889). This study provides a successful demonstration of the proposed framework in detecting and classifying blood cells using optical diffraction tomography for label-free hematology analysis.
Collapse
Affiliation(s)
- Dongmin Ryu
- Tomocube Inc., Daejeon, 34109, Republic of Korea
| | - Taeyoung Bak
- Department of Computer Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Daewoong Ahn
- Tomocube Inc., Daejeon, 34109, Republic of Korea
| | - Hayoung Kang
- Tomocube Inc., Daejeon, 34109, Republic of Korea
| | - Sanggeun Oh
- Tomocube Inc., Daejeon, 34109, Republic of Korea
| | | | - Sumin Lee
- Tomocube Inc., Daejeon, 34109, Republic of Korea
| | - Jimin Lee
- Department of Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Graduate School of Artificial Intelligence (AIGS), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
7
|
Mach M, Psota P, Žídek K, Mokrý P. On-chip digital holographic interferometry for measuring wavefront deformation in transparent samples. OPTICS EXPRESS 2023; 31:17185-17200. [PMID: 37381459 DOI: 10.1364/oe.486997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/25/2023] [Indexed: 06/30/2023]
Abstract
This paper describes on-chip digital holographic interferometry for measuring the wavefront deformation of transparent samples. The interferometer is based on a Mach-Zehnder arrangement with a waveguide in the reference arm, which allows for a compact on-chip arrangement. The method thus exploits the sensitivity of digital holographic interferometry and the advantages of the on-chip approach, which provides high spatial resolution over a large area, simplicity, and compactness of the system. The method's performance is demonstrated by measuring a model glass sample fabricated by depositing SiO2 layers of different thicknesses on a planar glass substrate and visualizing the domain structure in periodically poled lithium niobate. Finally, the results of the measurement made with the on-chip digital holographic interferometer were compared with those made with a conventional Mach-Zehnder type digital holographic interferometer with lens and with a commercial white light interferometer. The comparison of the obtained results indicates that the on-chip digital holographic interferometer provides accuracy comparable to conventional methods while offering the benefits of a large field of view and simplicity.
Collapse
|
8
|
Nourzadeh H, Lotfi M, Cabrera H, Crespo ML, Dashtdar M. The phase range extension and accuracy improvement in Fresnel biprism-based digital holography microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:2888616. [PMID: 37144944 DOI: 10.1063/5.0145654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
We report a highly stable and affordable dual-wavelength digital holographic microscopy system based on common-path geometry. A Fresnel biprism is used to create an off-axis geometry, and two diode laser sources with different wavelengths λ1 = 532 nm and λ2 = 650 nm generate the dual-wavelength compound hologram. In order to extend the measurement range, the phase distribution is obtained using a synthetic wavelength Λ1 = 2930.5 nm. Furthermore, to improve the system's temporal stability and reduce speckle noise, a shorter wavelength (Λ2 = 292.5 nm) is used. The feasibility of the proposed configuration is validated by the experimental results obtained with Molybdenum trioxide, Paramecium, and red blood cell specimens.
Collapse
Affiliation(s)
- Hasti Nourzadeh
- Department of Physics, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran
| | - Maryam Lotfi
- Department of Physics, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran
| | - Humberto Cabrera
- Optics Lab, STI Unit, The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
| | - Maria Liz Crespo
- Multidisciplinary Laboratory (MLAB), STI Unit, The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
| | - Masoomeh Dashtdar
- Department of Physics, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran
- Optics Lab, STI Unit, The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
| |
Collapse
|
9
|
Micó V, Rogalski M, Picazo-Bueno JÁ, Trusiak M. Single-shot wavelength-multiplexed phase microscopy under Gabor regime in a regular microscope embodiment. Sci Rep 2023; 13:4257. [PMID: 36918618 PMCID: PMC10015059 DOI: 10.1038/s41598-023-31300-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Phase imaging microscopy under Gabor regime has been recently reported as an extremely simple, low cost and compact way to update a standard bright-field microscope with coherent sensing capabilities. By inserting coherent illumination in the microscope embodiment and producing a small defocus distance of the sample at the input plane, the digital sensor records an in-line Gabor hologram of the target sample, which is then numerically post-processed to finally achieve the sample's quantitative phase information. However, the retrieved phase distribution is affected by the two well-known drawbacks when dealing with Gabor's regime, that is, coherent noise and twin image disturbances. Here, we present a single-shot technique based on wavelength multiplexing for mitigating these two effects. A multi-illumination laser source (including 3 diode lasers) illuminates the sample and a color digital sensor (conventional RGB color camera) is used to record the wavelength-multiplexed Gabor hologram in a single exposure. The technique is completed by presenting a novel algorithm based on a modified Gerchberg-Saxton kernel to finally retrieve an enhanced quantitative phase image of the sample, enhanced in terms of coherent noise removal and twin image minimization. Experimental validations are performed in a regular Olympus BX-60 upright microscope using a 20X 0.46NA objective lens and considering static (resolution test targets) and dynamic (living spermatozoa) phase samples.
Collapse
Affiliation(s)
- Vicente Micó
- Departamento de Óptica y Optometría y Ciencias de la Visión, Universidad de Valencia, C/Doctor Moliner 50, 46100, Burjassot, Spain.
| | - Mikołaj Rogalski
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02‑525, Warsaw, Poland
| | - José Ángel Picazo-Bueno
- Departamento de Óptica y Optometría y Ciencias de la Visión, Universidad de Valencia, C/Doctor Moliner 50, 46100, Burjassot, Spain
| | - Maciej Trusiak
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02‑525, Warsaw, Poland
| |
Collapse
|
10
|
Luo J, Tan H, Wu R, Zhu S, Chen H, Zhen J, Li J, Guan C, Wu Y. Reduction in required volume of imaging data and image reconstruction time for adaptive-illumination Fourier ptychographic microscopy. JOURNAL OF BIOPHOTONICS 2023; 16:e202200240. [PMID: 36366908 DOI: 10.1002/jbio.202200240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/20/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Fourier ptychographic microscopy (FPM) is a promising super-resolution computational imaging technology. It stitches a series of low-resolution (LR) images in the Fourier domain by an iterative method. Thus, it obtains a large field of view and high-resolution quantitative phase images. Owing to its capability to perform high-spatial bandwidth product imaging, FPM is widely used in the reconstruction of conventional static samples. However, the influence of the FPM imaging mechanism limits its application in high-speed dynamic imaging. To solve this problem, an adaptive-illumination FPM scheme using regional energy estimation is proposed. Starting with several captured real LR images, the energy distribution of all LR images is estimated, and select the measurement images with large information to perform FPM reconstruction. Simulation and experimental results show that the method produces efficient imaging performance and reduces the required volume of data to more than 65% while ensuring the quality of FPM reconstruction.
Collapse
Affiliation(s)
- Jiaxiong Luo
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
| | - Haishu Tan
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
| | - Ruofei Wu
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
| | - Sicong Zhu
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
| | - Hanbao Chen
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
| | - Junrui Zhen
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
| | - Jiancong Li
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
| | - Caizhong Guan
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
| | - Yanxiong Wu
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Ji Hua Laboratory, Foshan, China
| |
Collapse
|
11
|
Picazo-Bueno JÁ, Barroso Á, Ketelhut S, Schnekenburger J, Micó V, Kemper B. Single capture bright field and off-axis digital holographic microscopy. OPTICS LETTERS 2023; 48:876-879. [PMID: 36790964 DOI: 10.1364/ol.478674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
We report on a single capture approach for simultaneous incoherent bright field (BF) and laser-based quantitative phase imaging (QPI). Common-path digital holographic microscopy (DHM) is implemented in parallel with BF imaging within the optical path of a commercial optical microscope to achieve spatially multiplexed recording of white light images and digital off-axis holograms, which are subsequently numerically demultiplexed. The performance of the proposed multimodal concept is firstly determined by investigations on microspheres. Then, the application for label-free dual-mode QPI and BF imaging of living pancreatic tumor cells is demonstrated.
Collapse
|
12
|
Chen H, Huang L, Liu T, Ozcan A. Fourier Imager Network (FIN): A deep neural network for hologram reconstruction with superior external generalization. LIGHT, SCIENCE & APPLICATIONS 2022; 11:254. [PMID: 35970839 PMCID: PMC9378708 DOI: 10.1038/s41377-022-00949-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 05/25/2023]
Abstract
Deep learning-based image reconstruction methods have achieved remarkable success in phase recovery and holographic imaging. However, the generalization of their image reconstruction performance to new types of samples never seen by the network remains a challenge. Here we introduce a deep learning framework, termed Fourier Imager Network (FIN), that can perform end-to-end phase recovery and image reconstruction from raw holograms of new types of samples, exhibiting unprecedented success in external generalization. FIN architecture is based on spatial Fourier transform modules that process the spatial frequencies of its inputs using learnable filters and a global receptive field. Compared with existing convolutional deep neural networks used for hologram reconstruction, FIN exhibits superior generalization to new types of samples, while also being much faster in its image inference speed, completing the hologram reconstruction task in ~0.04 s per 1 mm2 of the sample area. We experimentally validated the performance of FIN by training it using human lung tissue samples and blindly testing it on human prostate, salivary gland tissue and Pap smear samples, proving its superior external generalization and image reconstruction speed. Beyond holographic microscopy and quantitative phase imaging, FIN and the underlying neural network architecture might open up various new opportunities to design broadly generalizable deep learning models in computational imaging and machine vision fields.
Collapse
Affiliation(s)
- Hanlong Chen
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Luzhe Huang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Tairan Liu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Joglekar M, Trivedi V, Chhaniwal V, Claus D, Javidi B, Anand A. LED based large field of view off-axis quantitative phase contrast microscopy by hologram multiplexing. OPTICS EXPRESS 2022; 30:29234-29245. [PMID: 36299102 DOI: 10.1364/oe.444616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/09/2022] [Indexed: 06/16/2023]
Abstract
In this manuscript, we describe the development of a single shot, self-referencing wavefront division, multiplexing digital holographic microscope employing LED sources for large field of view quantitative phase imaging of biological samples. To address the difficulties arising while performing interferometry with low temporally coherent sources, an optical arrangement utilizing multiple Fresnel Biprisms is used for hologram multiplexing, enhancing the field of view and increasing the signal to noise ratio. Biprisms offers the ease of obtaining interference patterns by automatically matching the path length between the two off-axis beams. The use of low temporally coherent sources reduces the speckle noise and the cost, and the form factor of the setup. The developed technique was implemented using both visible and UV LEDs and tested on polystyrene microspheres and human erythrocytes.
Collapse
|
14
|
Li Y, Liu L, Liu Y, Wang M, Zhong Z, Shan M. Off-axis common-path digital holography using a cube beam splitter. APPLIED OPTICS 2022; 61:5062-5066. [PMID: 36256184 DOI: 10.1364/ao.458168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/16/2022] [Indexed: 06/16/2023]
Abstract
An off-axis common-path digital holography is built up by inserting a 45° tilted cube beam splitter (CBS) into a 4f system that is described in this paper. Two apertures are set as the input of the 4f system, where one supports the object, and the other is vacant. The CBS divides the incoming beam into two copies, which are symmetrical with each other along the semi-reflecting layer. Due to the separation of two beams in a Fourier plane and the flipping of the field of view induced by the CBS, an off-axis hologram can be captured. Moreover, the carrier frequency can be easily modulated by translating the CBS perpendicular to the optical axis. The new proposed scheme has high light utilization, a compact setup, and high temporal stability. The experiments are carried out to demonstrate the validity and stability of the proposed method.
Collapse
|
15
|
Tajbakhsh K, Ebrahimi S, Dashtdar M. Low-coherence quantitative differential phase-contrast microscopy using Talbot interferometry. APPLIED OPTICS 2022; 61:398-402. [PMID: 35200875 DOI: 10.1364/ao.445369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
This paper presents a simple, cost-efficient, and highly stable quantitative differential phase-contrast (PC) microscopy based on Talbot interferometry. The proposed system is composed of an optical microscope coupled with a pair of Ronchi amplitude gratings that utilizes a light-emitting diode as a low temporal coherence light source. The quantitative differential PC images of the microscopic transparent samples are reconstructed by analyzing the deformation of moiré patterns using a phase-shifting procedure. Low temporal coherence leads to eliminating speckle noise and undesirable interferences to obtain high-quality images. The spatial phase stability of the system is investigated and compared to two other common-path interferometers. Additionally, the performance of the method is verified by the experimental results of a standard resolution test target and phase biological samples.
Collapse
|
16
|
Kumar M, Matoba O. 2D full-field displacement and vibration measurements of specularly reflecting surfaces by two-beam common-path digital holography. OPTICS LETTERS 2021; 46:5966-5969. [PMID: 34851935 DOI: 10.1364/ol.438860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
A new, to the best of our knowledge, configuration of common-path off-axis digital holography is proposed for simultaneous evaluation of out-of-plane and in-plane displacements of the vibrating object. The object is illuminated from two different directions, and each illumination interferes with its corresponding reference beam generated near the object, resulting in two independent holograms that are spatially multiplexed in a single camera image. Two multiplexed holograms, at undeformed and deformed states of the object, are recorded and processed to obtain the out-of-plane and in-plane displacements simultaneously. The proposed digital holographic system has the advantage of a simple and compact optical setup, is less sensitive to environmental disturbances, and has high temporal phase stability. The two-dimensional (z,x) full-field amplitude and phase vibration analysis of a perfect specularly reflecting surface are also demonstrated by the proposed holographic system. The experimental results authenticate the feasibility of the proposed system and reveal its unique advantages. The proposed digital holographic system, owing to simple and compact geometry and providing several advantages over other two-channel holographic systems, may find a wide range of applications in investigating real-time dynamic phenomena.
Collapse
|
17
|
Javidi B, Carnicer A, Anand A, Barbastathis G, Chen W, Ferraro P, Goodman JW, Horisaki R, Khare K, Kujawinska M, Leitgeb RA, Marquet P, Nomura T, Ozcan A, Park Y, Pedrini G, Picart P, Rosen J, Saavedra G, Shaked NT, Stern A, Tajahuerce E, Tian L, Wetzstein G, Yamaguchi M. Roadmap on digital holography [Invited]. OPTICS EXPRESS 2021; 29:35078-35118. [PMID: 34808951 DOI: 10.1364/oe.435915] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/04/2021] [Indexed: 05/22/2023]
Abstract
This Roadmap article on digital holography provides an overview of a vast array of research activities in the field of digital holography. The paper consists of a series of 25 sections from the prominent experts in digital holography presenting various aspects of the field on sensing, 3D imaging and displays, virtual and augmented reality, microscopy, cell identification, tomography, label-free live cell imaging, and other applications. Each section represents the vision of its author to describe the significant progress, potential impact, important developments, and challenging issues in the field of digital holography.
Collapse
|
18
|
Ryu D, Kim J, Lim D, Min HS, Yoo IY, Cho D, Park Y. Label-Free White Blood Cell Classification Using Refractive Index Tomography and Deep Learning. BME FRONTIERS 2021; 2021:9893804. [PMID: 37849908 PMCID: PMC10521749 DOI: 10.34133/2021/9893804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/29/2021] [Indexed: 10/19/2023] Open
Abstract
Objective and Impact Statement. We propose a rapid and accurate blood cell identification method exploiting deep learning and label-free refractive index (RI) tomography. Our computational approach that fully utilizes tomographic information of bone marrow (BM) white blood cell (WBC) enables us to not only classify the blood cells with deep learning but also quantitatively study their morphological and biochemical properties for hematology research. Introduction. Conventional methods for examining blood cells, such as blood smear analysis by medical professionals and fluorescence-activated cell sorting, require significant time, costs, and domain knowledge that could affect test results. While label-free imaging techniques that use a specimen's intrinsic contrast (e.g., multiphoton and Raman microscopy) have been used to characterize blood cells, their imaging procedures and instrumentations are relatively time-consuming and complex. Methods. The RI tomograms of the BM WBCs are acquired via Mach-Zehnder interferometer-based tomographic microscope and classified by a 3D convolutional neural network. We test our deep learning classifier for the four types of bone marrow WBC collected from healthy donors (n = 10 ): monocyte, myelocyte, B lymphocyte, and T lymphocyte. The quantitative parameters of WBC are directly obtained from the tomograms. Results. Our results show >99% accuracy for the binary classification of myeloids and lymphoids and >96% accuracy for the four-type classification of B and T lymphocytes, monocyte, and myelocytes. The feature learning capability of our approach is visualized via an unsupervised dimension reduction technique. Conclusion. We envision that the proposed cell classification framework can be easily integrated into existing blood cell investigation workflows, providing cost-effective and rapid diagnosis for hematologic malignancy.
Collapse
Affiliation(s)
- DongHun Ryu
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Jinho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute For Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, Republic of Korea
| | - Daejin Lim
- Department of Health and Safety Convergence Science, Korea University, Seoul 02841, Republic of Korea
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | | | - In Young Yoo
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Duck Cho
- Department of Health Sciences and Technology, Samsung Advanced Institute For Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, Republic of Korea
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul 06531, Republic of Korea
| | - YongKeun Park
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute For Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, Republic of Korea
- Tomocube, Inc., Daejeon 34051Republic of Korea
| |
Collapse
|
19
|
Kumar M, Matoba O, Quan X, Rajput SK, Awatsuji Y, Tamada Y. Single-shot common-path off-axis digital holography: applications in bioimaging and optical metrology [Invited]. APPLIED OPTICS 2021; 60:A195-A204. [PMID: 33690370 DOI: 10.1364/ao.404208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
The demand for single-shot and common-path holographic systems has become increasingly important in recent years, as such systems offer various advantages compared to their counterparts. Single-shot holographic systems, for example, reduce computational complexity as only a single hologram with the object information required to process, making them more suitable for the investigation of dynamic events; and common-path holographic systems are less vibration-sensitive, compact, inexpensive, and high in temporal phase stability. We have developed a single-shot common-path off-axis digital holographic setup based on a beam splitter and pinhole. In this paper, we present a concise review of the proposed digital holographic system for several applications, including the quantitative phase imaging to investigate the morphological and quantitative parameters, as a metrological tool for testing of micro-optics, industrial inspection and measurement, and sound field imaging and visualization.
Collapse
|
20
|
Abstract
Imaging of cells is a challenging problem as they do not appreciably change the intensity of the illuminating light. Interferometry-based methods to do this task suffer from high sensitivity to environmental vibrations. We introduce scanning diffractometry as a simple non-contact and vibration-immune methodology for quantitative phase imaging. Fresnel diffractometry by a phase step has led to several applications such as high-precision measurements of displacement. Additional scanning may lead to 3D imaging straightforwardly. We apply the technique to acquire 3D images of holographic grating, red blood cell, neuron, and sperm cell. Either visibility of the diffraction fringes or the positions of extrema may be used for phase change detection. The theoretical analysis through the Fresnel diffraction from one-dimensional phase step is presented and the experimental results are validated with digital holographic microscopy. The presented technique can be suggested to serve as a robust device for 3D phase imaging and biomedical measurements.
Collapse
|
21
|
Allah Panahi M, Tahmasebi Z, Abbasian V, Amiri M, Moradi AR. Role of pH level on the morphology and growth rate of myelin figures. BIOMEDICAL OPTICS EXPRESS 2020; 11:5565-5574. [PMID: 33149971 PMCID: PMC7587248 DOI: 10.1364/boe.401834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The myelin figure (MF) is one of the basic structures of lipids, and the study of their formation and the effect of various parameters on their growth is useful in understanding several biological processes. In this paper, we address the influence of the pH degree of the surrounding medium on MF dynamics. We introduce a tunable shearing digital holographic microscopy arrangement to obtain quantitative and volumetric information about the complex growth of MFs. Our results show that (1) the time evolution of relative length and volume changes of MFs follows a power-law, (2) the acidity facilitates the growth rate, and (3) the acidic environment causes the formation of thicker MFs.
Collapse
Affiliation(s)
- Marzieh Allah Panahi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- These authors contributed equally to this work
| | - Zahra Tahmasebi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- These authors contributed equally to this work
| | - Vahid Abbasian
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
- These authors contributed equally to this work
| | - Mohammad Amiri
- Department of Physics, Bu-Ali Sina University (BASU), Hamedan 65175-4161, Iran
| | - Ali-Reza Moradi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| |
Collapse
|
22
|
Lensless Three-Dimensional Quantitative Phase Imaging Using Phase Retrieval Algorithm. J Imaging 2020; 6:jimaging6090099. [PMID: 34460756 PMCID: PMC8321078 DOI: 10.3390/jimaging6090099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Quantitative phase imaging (QPI) techniques are widely used for the label-free examining of transparent biological samples. QPI techniques can be broadly classified into interference-based and interferenceless methods. The interferometric methods which record the complex amplitude are usually bulky with many optical components and use coherent illumination. The interferenceless approaches which need only the intensity distribution and works using phase retrieval algorithms have gained attention as they require lesser resources, cost, space and can work with incoherent illumination. With rapid developments in computational optical techniques and deep learning, QPI has reached new levels of applications. In this tutorial, we discuss one of the basic optical configurations of a lensless QPI technique based on the phase-retrieval algorithm. Simulative studies on QPI of thin, thick, and greyscale phase objects with assistive pseudo-codes and computational codes in Octave is provided. Binary phase samples with positive and negative resist profiles were fabricated using lithography, and a single plane and two plane phase objects were constructed. Light diffracted from a point object is modulated by phase samples and the corresponding intensity patterns are recorded. The phase retrieval approach is applied for 2D and 3D phase reconstructions. Commented codes in Octave for image acquisition and automation using a web camera in an open source operating system are provided.
Collapse
|
23
|
Hayes-Rounds C, Bogue-Jimenez B, Garcia-Sucerquia J, Skalli O, Doblas A. Advantages of Fresnel biprism-based digital holographic microscopy in quantitative phase imaging. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-11. [PMID: 32755077 PMCID: PMC7399475 DOI: 10.1117/1.jbo.25.8.086501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/23/2020] [Indexed: 05/30/2023]
Abstract
SIGNIFICANCE The hallmarks of digital holographic microscopy (DHM) compared with other quantitative phase imaging (QPI) methods are high speed, accuracy, spatial resolution, temporal stability, and polarization-sensitivity (PS) capability. The above features make DHM suitable for real-time quantitative PS phase imaging in a broad number of biological applications aimed at understanding cell growth and dynamic changes occurring during physiological processes and/or in response to pharmaceutical agents. AIM The insertion of a Fresnel biprism (FB) in the image space of a light microscope potentially turns any commercial system into a DHM system enabling QPI with the five desired features in QPI simultaneously: high temporal sensitivity, high speed, high accuracy, high spatial resolution, and PS. To the best of our knowledge, this is the first FB-based DHM system providing these five features all together. APPROACH The performance of the proposed system was calibrated with a benchmark phase object. The PS capability has been verified by imaging human U87 glioblastoma cells. RESULTS The proposed FB-based DHM system provides accurate phase images with high spatial resolution. The temporal stability of our system is in the order of a few nanometers, enabling live-cell studies. Finally, the distinctive behavior of the cells at different polarization angles (e.g., PS capability) can be observed with our system. CONCLUSIONS We have presented a method to turn any commercial light microscope with monochromatic illumination into a PS QPI system. The proposed system provides accurate quantitative PS phase images in a new, simple, compact, and cost-effective format, thanks to the low cost (a few hundred dollars) involved in implementing this simple architecture, enabling the use of this QPI technique accessible to most laboratories with standard light microscopes.
Collapse
Affiliation(s)
- Charity Hayes-Rounds
- The University of Memphis, Department of Electrical and Computer Engineering, Memphis, Tennessee 38152, USA
| | - Brian Bogue-Jimenez
- The University of Memphis, Department of Electrical and Computer Engineering, Memphis, Tennessee 38152, USA
| | | | - Omar Skalli
- The University of Memphis, Department of Biological Sciences, Memphis, Tennessee 38152, USA
| | - Ana Doblas
- The University of Memphis, Department of Electrical and Computer Engineering, Memphis, Tennessee 38152, USA
| |
Collapse
|
24
|
Wang K, Kemao Q, Di J, Zhao J. Y4-Net: a deep learning solution to one-shot dual-wavelength digital holographic reconstruction. OPTICS LETTERS 2020; 45:4220-4223. [PMID: 32735263 DOI: 10.1364/ol.395445] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
In this Letter, a deep learning solution (Y4-Net, four output channels network) to one-shot dual-wavelength digital holography is proposed to simultaneously reconstruct the complex amplitude information of both wavelengths from a single digital hologram with high efficiency. In the meantime, by using single-wavelength results as network ground truth to train the Y4-Net, the challenging spectral overlapping problem in common-path situations is solved with high accuracy.
Collapse
|
25
|
Ibrahim DGA. Common-path phase-shift microscope based on measurement of Stokes parameters S 2 and S 3 for 3D phase extraction. APPLIED OPTICS 2020; 59:5779-5784. [PMID: 32609704 DOI: 10.1364/ao.395722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we report a common-path, phase-shift optical microscope based on measurement of Stokes parameters S2 and S3 to extract the three-dimensional (3D) phase map of transparent objects with high precision. The microscope employs three polarizers and two identical quarter-wave plates to extract S2 and S3. The reference phase in the absence of the object is subtracted from the total phase in the presence of the object to extract the 3D phase of the object. The microscope is tested on imaging a USAF resolution test target and a reticle test pattern with excellent results. To the best of our knowledge, this is the first report of a common-path phase-shift optical microscope for 3D phase extraction based on measurement of Stokes parameters S2 and S3.
Collapse
|
26
|
Guo R, Mirsky SK, Barnea I, Dudaie M, Shaked NT. Quantitative phase imaging by wide-field interferometry with variable shearing distance uncoupled from the off-axis angle. OPTICS EXPRESS 2020; 28:5617-5628. [PMID: 32121778 DOI: 10.1364/oe.385437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/12/2020] [Indexed: 05/20/2023]
Abstract
We introduce a new shearing interferometry module for digital holographic microscopy, in which the off-axis angle, which defines the interference fringe frequency, is not coupled to the shearing distance, as is the case in most shearing interferometers. Thus, it enables the selection of shearing distance based on the spatial density of the sample, without losing spatial frequency content due to overlapping of the complex wave fronts in the spatial frequency domain. Our module is based on a 4f imaging unit and a diffraction grating, in which the hologram is generated from two mutually coherent, partially overlapping sample beams, with adjustable shearing distance, as defined by the position of the grating, but with a constant off-axis angle, as defined by the grating period. The module is simple, easy to align, and presents a nearly common-path geometry. By placing this module as an add-on unit at the exit port of an inverted microscope, quantitative phase imaging can easily be performed. The system is characterized by a 2.5 nm temporal stability and a 3.4 nm spatial stability, without using anti-vibration techniques. We provide quantitative phase imaging experiments of silica beads with different shearing distances, red blood cell fluctuations, and cancer cells flowing in a micro-channel, which demonstrate the capability and versatility of our approach in different imaging scenarios.
Collapse
|
27
|
Wang D, Zhang Y, Rong L, Ma D, Zhao J, Wang Y. Continuous-wave terahertz self-referencing digital holography based on Fresnel's mirrors. OPTICS LETTERS 2020; 45:913-916. [PMID: 32058503 DOI: 10.1364/ol.385943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Continuous-wave terahertz digital holography (TDH) is a booming full-field phase-contrast imaging method validated in both in-line and Mach-Zehnder off-axis geometries. In this Letter, a self-referencing TDH approach is proposed based on the Fresnel's mirrors, by which the object wavefront is partitioned and reflected. Two beams interfere with each other to form an off-axis hologram. The proposed recording configuration is immune from a superposed twin image and has higher temporal stability than Mach-Zehnder interferometers. To evaluate the phase-contrast imaging performance, different types of samples are measured.
Collapse
|
28
|
Wang C, Fu Q, Dun X, Heidrich W. Quantitative Phase and Intensity Microscopy Using Snapshot White Light Wavefront Sensing. Sci Rep 2019; 9:13795. [PMID: 31551461 PMCID: PMC6760235 DOI: 10.1038/s41598-019-50264-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/09/2019] [Indexed: 11/09/2022] Open
Abstract
Phase imaging techniques are an invaluable tool in microscopy for quickly examining thin transparent specimens. Existing methods are limited to either simple and inexpensive methods that produce only qualitative phase information (e.g. phase contrast microscopy, DIC), or significantly more elaborate and expensive quantitative methods. Here we demonstrate a low-cost, easy to implement microscopy setup for quantitative imaging of phase and bright field amplitude using collimated white light illumination.
Collapse
Affiliation(s)
- Congli Wang
- Visual Computing Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Qiang Fu
- Visual Computing Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Xiong Dun
- Visual Computing Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Wolfgang Heidrich
- Visual Computing Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
29
|
O'Connor T, Doblas A, Javidi B. Structured illumination in compact and field-portable 3D-printed shearing digital holographic microscopy for resolution enhancement. OPTICS LETTERS 2019; 44:2326-2329. [PMID: 31042221 DOI: 10.1364/ol.44.002326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
A compact and field-portable three-dimensional (3D)-printed structured illumination (SI) digital holographic microscope based on shearing geometry is presented. By illuminating the sample using a SI pattern, the lateral resolution in both reconstructed phase and amplitude images can be improved up to twice the resolution provided by conventional illumination. The use of a 3D-printed system and shearing geometry reduces the complexity of the system, while providing high temporal stability. The experimental results for the USAF resolution target show a resolution improvement of a factor of two which corroborates the theoretical prediction. Resolution enhancement in phase imaging is also demonstrated by imaging a biological sample. To the best of our knowledge, this is the first report of a compact and field-portable SI digital holographic system based on shearing geometry.
Collapse
|
30
|
Picazo-Bueno JA, Trusiak M, Micó V. Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube. OPTICS EXPRESS 2019; 27:5655-5669. [PMID: 30876163 DOI: 10.1364/oe.27.005655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/17/2018] [Indexed: 05/21/2023]
Abstract
Slightly off-axis digital holographic microscopy (SO-DHM) has recently emerged as a novel experimental arrangement for quantitative phase imaging (QPI). It offers improved capabilities in conventional on-axis and off-axis interferometric configurations. In this contribution, we report on a single-shot SO-DHM approach based on an add-on module adapted to the exit port of a regular microscope. The module employs a beamsplitter (BS) cube interferometer and includes, in addition, a Stokes lens (SL) for astigmatism compensation. Each recorded frame contains two fields of view (FOVs) of the sample, where each FOV is a hologram which is phase shifted by π rads with respect to the other. These two simultaneously recorded holograms are numerically processed, in order to retrieve complex amplitude distribution with enhanced quality. The tradeoff is done in the FOV which becomes penalized as a consequence of the simultaneous recording of the two holograms in a single snapshot. Experimental validation is presented for a wide variety of samples using a regular Olympus BX-60 upright microscope. The proposed approach provides an optimized use of the imaging system, in terms of the space-bandwidth product, in comparison with off-axis configuration; allows the analysis of fast-dynamic events, owing to its single-shot capability when compared with on-axis arrangement; and becomes easily implementable in conventional white-light microscopes for upgrading them into holographic microscopes for QPI.
Collapse
|
31
|
Kim G, Jo Y, Cho H, Min HS, Park Y. Learning-based screening of hematologic disorders using quantitative phase imaging of individual red blood cells. Biosens Bioelectron 2019; 123:69-76. [DOI: 10.1016/j.bios.2018.09.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
|
32
|
Mehta DS. Quantitative Phase Optical Microscopic Techniques for Biomedical Imaging and Diagnostic Applications. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2018. [DOI: 10.1007/s40010-018-0518-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Javidi B, Markman A, Rawat S, O'Connor T, Anand A, Andemariam B. Sickle cell disease diagnosis based on spatio-temporal cell dynamics analysis using 3D printed shearing digital holographic microscopy. OPTICS EXPRESS 2018; 26:13614-13627. [PMID: 29801384 DOI: 10.1364/oe.26.013614] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/07/2018] [Indexed: 05/19/2023]
Abstract
We present a spatio-temporal analysis of cell membrane fluctuations to distinguish healthy patients from patients with sickle cell disease. A video hologram containing either healthy red blood cells (h-RBCs) or sickle cell disease red blood cells (SCD-RBCs) was recorded using a low-cost, compact, 3D printed shearing interferometer. Reconstructions were created for each hologram frame (time steps), forming a spatio-temporal data cube. Features were extracted by computing the standard deviations and the mean of the height fluctuations over time and for every location on the cell membrane, resulting in two-dimensional standard deviation and mean maps, followed by taking the standard deviations of these maps. The optical flow algorithm was used to estimate the apparent motion fields between subsequent frames (reconstructions). The standard deviation of the magnitude of the optical flow vectors across all frames was then computed. In addition, seven morphological cell (spatial) features based on optical path length were extracted from the cells to further improve the classification accuracy. A random forest classifier was trained to perform cell identification to distinguish between SCD-RBCs and h-RBCs. To the best of our knowledge, this is the first report of machine learning assisted cell identification and diagnosis of sickle cell disease based on cell membrane fluctuations and morphology using both spatio-temporal and spatial analysis.
Collapse
|
34
|
Picazo-Bueno JÁ, Trusiak M, García J, Patorski K, Micó V. Hilbert-Huang single-shot spatially multiplexed interferometric microscopy. OPTICS LETTERS 2018; 43:1007-1010. [PMID: 29489765 DOI: 10.1364/ol.43.001007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/18/2018] [Indexed: 05/21/2023]
Abstract
Hilbert-Huang single-shot spatially multiplexed interferometric microscopy (H2S2MIM) is presented as the implementation of a robust, fast, and accurate single-shot phase estimation algorithm with an extremely simple, low-cost, and highly stable way to convert a bright field microscope into a holographic one using partially coherent illumination. Altogether, H2S2MIM adds high-speed (video frame rate) quantitative phase imaging capability to a commercially available nonholographic microscope with improved phase reconstruction (coherence noise reduction). The technique has been validated using a 20×/0.46 NA objective in a regular Olympus BX-60 upright microscope for static, as well as dynamic, samples showing perfect agreement with the results retrieved from a temporal phase-shifting algorithm.
Collapse
|
35
|
Picazo-Bueno JÁ, Cojoc D, Iseppon F, Torre V, Micó V. Single-shot, dual-mode, water-immersion microscopy platform for biological applications. APPLIED OPTICS 2018; 57:A242-A249. [PMID: 29328152 DOI: 10.1364/ao.57.00a242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
A single-shot water-immersion digital holographic microscope combined with broadband (white light) illumination mode is presented. This double imaging platform allows conventional incoherent visualization with phase holographic imaging of inspected samples. The holographic architecture is implemented at the image space (that is, after passing the microscope lens), thus reducing the sensitivity of the system to vibrations and/or thermal changes in comparison to regular interferometers. Because of the off-axis holographic recording principle, quantitative phase images of live biosamples can be recorded in a single camera snapshot at full-field geometry without any moving parts. And, the use of water-immersion imaging lenses maximizes the achievable resolution limit. This dual-mode microscope platform is first calibrated using microbeads, then applied to the characterization of fixed cells (neuroblastoma, breast cancer, and hippocampal neuronal cells) and, finally, validated for visualization of dynamic living cells (hippocampal neurons).
Collapse
|
36
|
Deng D, Qu W, He W, Wu Y, Liu X, Peng X. Off-axis tilt compensation in common-path digital holographic microscopy based on hologram rotation. OPTICS LETTERS 2017; 42:5282-5285. [PMID: 29240193 DOI: 10.1364/ol.42.005282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
We present a simple and effective compensation method for the off-axis tilt in common-path digital holographic microscopy (CPDHM) by introducing a rotating operation on the hologram. The proposed method mainly requires a digital reference hologram (DRH), which is a rotated version of the original one; it is assumed to be easy to obtain by rotating the specimen's hologram 180°. In this way, the off-axis tilt could be removed by subtracting the retrieved phase of DRH from the retrieved phase of the original hologram, but without any complex spectrum centering judgment, fitting procedures, or prior knowledge of the system. This highly automatic and efficient performance makes our approach available for real-time quantitative phase imaging (QPI), although it limits the field of view (FOV) of the specimen. Some experimental results of microlens array and phase plate demonstrate the feasibility and effectiveness of the proposed method.
Collapse
|
37
|
Vora P, Trivedi V, Mahajan S, Patel N, Joglekar M, Chhaniwal V, Moradi AR, Javidi B, Anand A. Wide field of view common-path lateral-shearing digital holographic interference microscope. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-11. [PMID: 29235271 DOI: 10.1117/1.jbo.22.12.126001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/16/2017] [Indexed: 05/12/2023]
Abstract
Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes.
Collapse
Affiliation(s)
- Priyanka Vora
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
- Uka Tarsadia University, Department of Physics, Bardoli, Gujarat, India
| | - Vismay Trivedi
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Swapnil Mahajan
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Nimit Patel
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Mugdha Joglekar
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Vani Chhaniwal
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Ali-Reza Moradi
- Institute for Research in Fundamental Sciences, School of Nano Science, Tehran, Iran
- Institute for Advanced Studies in Basic Sciences, Optics Research Center, Zanjan, Iran
| | - Bahram Javidi
- University of Connecticut, Department of Electrical and Computer Engineering, Storrs, Connecticut, United States
| | - Arun Anand
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| |
Collapse
|
38
|
Rostykus M, Moser C. Compact lensless off-axis transmission digital holographic microscope. OPTICS EXPRESS 2017; 25:16652-16659. [PMID: 28789166 DOI: 10.1364/oe.25.016652] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
Current compact lensless holographic microscopes are based on either multiple angle in-line holograms, multiple wavelength illumination or a combination thereof. Complex computational algorithms are necessary to retrieve the phase image which slows down the visualization of the image. Here we propose a simple compact lensless transmission holographic microscope with an off-axis configuration which simplifies considerably the computational processing to visualize the phase images and opens the possibility of real time phase imaging using off the shelf smart phone processors and less than $3 worth of optics and detectors, suitable for broad educational dissemination. This is achieved using a side illumination and analog hologram gratings to shape the reference and signal illumination beams from one light source. We demonstrate experimentally imaging of cells with a field of view (FOV) of ~12mm2, and a resolution of ~3.9μm.
Collapse
|
39
|
Ma C, Li Y, Zhang J, Li P, Xi T, Di J, Zhao J. Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer. OPTICS EXPRESS 2017; 25:13659-13667. [PMID: 28788908 DOI: 10.1364/oe.25.013659] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We propose a compact and easy-to-align lateral shearing common-path digital holographic microscopy, which is based on a slightly trapezoid Sagnac interferometer to create two laterally sheared beams and form off-axis geometry. In this interferometer, the two beams pass through a set of identical optical elements in opposite directions and have nearly the same optical path difference. Without any vibration isolation, the temporal stability of the setup is found to be around 0.011 rad. Compared with highly simple lateral shearing interferometer, the off-axis angle of the setup can be easily adjusted and quantitatively controlled, meanwhile the image quality is not degraded. The experiments for measuring the static and dynamic specimens are performed to demonstrate the capability and applicability.
Collapse
|
40
|
Rawat S, Komatsu S, Markman A, Anand A, Javidi B. Compact and field-portable 3D printed shearing digital holographic microscope for automated cell identification. APPLIED OPTICS 2017; 56:D127-D133. [PMID: 28375380 DOI: 10.1364/ao.56.00d127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We propose a low-cost, compact, and field-portable 3D printed holographic microscope for automated cell identification based on a common path shearing interferometer setup. Once a hologram is captured from the portable setup, a 3D reconstructed height profile of the cell is created. We extract several morphological cell features from the reconstructed 3D height profiles, including mean physical cell thickness, coefficient of variation, optical volume (OV) of the cell, projected area of the cell (PA), ratio of PA to OV, cell thickness kurtosis, cell thickness skewness, and the dry mass of the cell for identification using the random forest (RF) classifier. The 3D printed prototype can serve as a low-cost alternative for the developing world, where access to laboratory facilities for disease diagnosis are limited. Additionally, a cell phone sensor is used to capture the digital holograms. This enables the user to send the acquired holograms over the internet to a computational device located remotely for cellular identification and classification (analysis). The 3D printed system presented in this paper can be used as a low-cost, stable, and field-portable digital holographic microscope as well as an automated cell identification system. To the best of our knowledge, this is the first research paper presenting automatic cell identification using a low-cost 3D printed digital holographic microscopy setup based on common path shearing interferometry.
Collapse
|
41
|
Aakhte M, Abbasian V, Akhlaghi EA, Moradi AR, Anand A, Javidi B. Microsphere-assisted super-resolved Mirau digital holographic microscopy for cell identification. APPLIED OPTICS 2017; 56:D8-D13. [PMID: 28375382 DOI: 10.1364/ao.56.0000d8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we use a glass microsphere incorporated into a digital holographic microscope to increase the effective resolution of the system, aiming at precise cell identification. A Mirau interferometric objective is employed in the experiments, which can be used for a common-path digital holographic microscopy (DHMicroscopy) arrangement. High-magnification Mirau objectives are expensive and suffer from low working distances, yet the commonly used low-magnification Mirau objectives do not have high lateral resolutions. We show that by placing a glass microsphere within the working distance of a low-magnification Mirau objective, its effective numerical aperture can be increased, leading to super-resolved three-dimensional images. The improvement in the lateral resolution depends on the size and vertical position of microsphere, and by varying these parameters, the lateral resolution and magnification may be adjusted. We used the information from the super-resolution DHMicroscopy to identify thalassemia minor red blood cells (tRBCs). Identification is done by comparing the volumetric measurements with those of healthy RBCs. Our results show that microsphere-assisted super-resolved Mirau DHMicroscopy, being common path and off-axis in nature, has the potential to serve as a benchtop device for cell identification and biomedical measurements.
Collapse
|
42
|
Picazo-Bueno JÁ, Zalevsky Z, García J, Micó V. Superresolved spatially multiplexed interferometric microscopy. OPTICS LETTERS 2017; 42:927-930. [PMID: 28248333 DOI: 10.1364/ol.42.000927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Superresolution capability by angular and time multiplexing is implemented onto a regular microscope. The technique, named superresolved spatially multiplexed interferometric microscopy (S2MIM), follows our previously reported SMIM technique [Opt. Express22, 14929 (2014)OPEXFF1094-408710.1364/OE.22.014929, J. Biomed. Opt.21, 106007 (2016)JBOPFO1083-366810.1117/1.JBO.21.10.106007] improved with superresolved imaging. All together, S2MIM updates a commercially available non-holographic microscope into a superresolved holographic one. Validation is presented for an Olympus BX-60 upright microscope with resolution test targets.
Collapse
|
43
|
Di J, Li Y, Xie M, Zhang J, Ma C, Xi T, Li E, Zhao J. Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry. APPLIED OPTICS 2016; 55:7287-7293. [PMID: 27661364 DOI: 10.1364/ao.55.007287] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A dual-wavelength common-path digital holographic microscopy based on a single parallel glass plate is presented to achieve quantitative phase imaging, which combines the dual-wavelength technique with lateral shearing interferometry. Two illumination laser beams with different wavelengths (λ1=532 nm and λ2=632.8 nm) are reflected by the front and back surfaces of the parallel glass plate to create the lateral shear and form the digital hologram, and then the hologram is reconstructed to obtain the phase distribution with a synthetic wavelength Λ=3339.8 nm. The experimental configuration is very compact, with the advantages of vibration resistance and measurement range extension. The experimental results of the laser-ablated pit, groove, and staircase specimens show the feasibility of the proposed configuration.
Collapse
|
44
|
Yang Z, Zhan Q. Single-Shot Smartphone-Based Quantitative Phase Imaging Using a Distorted Grating. PLoS One 2016; 11:e0159596. [PMID: 27441837 PMCID: PMC4956142 DOI: 10.1371/journal.pone.0159596] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/06/2016] [Indexed: 12/04/2022] Open
Abstract
Blood testing has been used as an essential tool to diagnose diseases for decades. Recently, there has been a rapid developing trend in using Quantitative Phase Imaging (QPI) methods for blood cell screening. Compared to traditional blood testing techniques, QPI has the advantage of avoiding dyeing or staining the specimen, which may cause damage to the cells. However, most existing systems are bulky and costly, requiring experienced personnel to operate. This work demonstrates the integration of one QPI method onto a smartphone platform and the application of imaging red blood cells. The adopted QPI method is based on solving the Intensity Transport Equation (ITE) from two de-focused pupil images taken in one shot by the smartphone camera. The device demonstrates a system resolution of about 1 μm, and is ready to be used for 3D morphological study of red blood cells.
Collapse
Affiliation(s)
- Zhenyu Yang
- Department of Electrical & Computer Engineering and Electro-Optics Program, University of Dayton, Dayton, Ohio, United States of America
- * E-mail:
| | - Qiwen Zhan
- Department of Electrical & Computer Engineering and Electro-Optics Program, University of Dayton, Dayton, Ohio, United States of America
| |
Collapse
|
45
|
Roitshtain D, Turko NA, Javidi B, Shaked NT. Flipping interferometry and its application for quantitative phase microscopy in a micro-channel. OPTICS LETTERS 2016; 41:2354-7. [PMID: 27177001 DOI: 10.1364/ol.41.002354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present a portable, off-axis interferometric module for quantitative phase microscopy of live cells, positioned at the exit port of a coherently illuminated inverted microscope. The module creates on the digital camera an interference pattern between the image of the sample and its flipped version. The proposed simplified module is based on a retro-reflector modification in an external Michelson interferometer. The module does not contain any lenses, pinholes, or gratings and its alignment is straightforward. Still, it allows full control of the off-axis angle and does not suffer from ghost images. As experimentally demonstrated, the module is useful for quantitative phase microscopy of live cells rapidly flowing in a micro-channel.
Collapse
|
46
|
Baek Y, Lee K, Yoon J, Kim K, Park Y. White-light quantitative phase imaging unit. OPTICS EXPRESS 2016; 24:9308-15. [PMID: 27137546 DOI: 10.1364/oe.24.009308] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We introduce the white-light quantitative phase imaging unit (WQPIU) as a practical realization of quantitative phase imaging (QPI) on standard microscope platforms. The WQPIU is a compact stand-alone unit which measures sample induced phase delay under white-light illumination. It does not require any modification of the microscope or additional accessories for its use. The principle of the WQPIU based on lateral shearing interferometry and phase shifting interferometry provides a cost-effective and user-friendly use of QPI. The validity and capacity of the presented method are demonstrated by measuring quantitative phase images of polystyrene beads, human red blood cells, HeLa cells and mouse white blood cells. With speckle-free imaging capability due to the use of white-light illumination, the WQPIU is expected to expand the scope of QPI in biological sciences as a powerful but simple imaging tool.
Collapse
|
47
|
Desse JM, Picart P, Olchewsky F. Quantitative phase imaging in flows with high resolution holographic diffraction grating. OPTICS EXPRESS 2015; 23:23726-23737. [PMID: 26368468 DOI: 10.1364/oe.23.023726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper proposes quantitative phase imaging by using a high resolution holographic grating for generating a four-wave shearing interferogram. The high-resolution holographic grating is designed in a "kite" configuration so as to avoid parasitic mixing of diffraction orders. The selection of six diffraction orders in the Fourier spectrum of the interferogram allows reconstructing phase gradients along specific directions. The spectral analysis yields the useful parameters of the reconstruction process. The derivative axes are exactly determined whatever the experimental configurations of the holographic grating. The integration of the derivative yields the phase and the optical thickness. Demonstration of the proposed approach is carried out for the case of the analysis of the supersonic flow of a small vertical jet, 5.56mm in diameter. The experimental results compared with those obtained with digital holography exhibit a very good agreement.
Collapse
|
48
|
Mahajan S, Trivedi V, Vora P, Chhaniwal V, Javidi B, Anand A. Highly stable digital holographic microscope using Sagnac interferometer. OPTICS LETTERS 2015; 40:3743-3746. [PMID: 26274649 DOI: 10.1364/ol.40.003743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Interferometric microscopy has grown into a very potent tool for quantitative phase imaging of biological samples. Among the interfermetric methods, microscopy by digital holography is one of the most effective techniques, especially for studying dynamics of cells. Imaging of cell fluctuations requires digital holographic setups with high temporal stability. Common path setups in which the object and the reference beams encounter the same set of optical elements provide better temporal stability compared to two-beam setups. Here, we present a compact, easy-to-implement, common path digital holographic microscope based on Sagnac interferometer geometry. The microscope is implemented using a diode laser module employing a CCD array or a webcam sensor to record holograms. The system was tested for three-dimensional imaging capability, numerical focusing ability, and temporal stability. Sub-nanometer temporal stability without external vibration isolation components was obtained in both cases. The higher temporal stability makes the microscope compatible to image cell fluctuations, which is demonstrated by imaging the oscillation of the cell membrane of human red blood cells.
Collapse
|
49
|
Hack E, Zolliker P. Terahertz holography for imaging amplitude and phase objects. OPTICS EXPRESS 2014; 22:16079-16086. [PMID: 24977861 DOI: 10.1364/oe.22.016079] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A non-monochromatic THz Quantum Cascade Laser and an uncooled micro-bolometer array detector with VGA resolution are used in a beam-splitter free holographic set-up to measure amplitude and phase objects in transmission. Phase maps of the diffraction pattern are retrieved using the Fourier transform carrier fringe method; while a Fresnel-Kirchhoff back propagation algorithm is used to reconstruct the complex object image. A lateral resolution of 280 µm and a relative phase sensitivity of about 0.5 rad are estimated from reconstructed images of a metallic Siemens star and a polypropylene test structure, respectively. Simulations corroborate the experimental results.
Collapse
|
50
|
Mico V, Ferreira C, Zalevsky Z, García J. Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one. OPTICS EXPRESS 2014; 22:14929-43. [PMID: 24977587 DOI: 10.1364/oe.22.014929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report on an extremely simple, low cost and highly stable way to convert a standard microscope into a holographic one. The proposed architecture is based on a common-path interferometric layout where the input plane is spatially-multiplexed to allow reference beam transmission in a common light-path with the imaging branch. As consequence, the field of view provided by the layout is reduced. The use of coherent illumination (instead of the broadband one included in the microscope) and a properly placed one-dimensional diffraction grating (needed for the holographic recording) complete the experimental layout. The proposed update is experimentally validated in a regular Olympus BX-60 upright microscope showing calibration (USAF resolution test) as well as biological (red blood cells and sperm cells) images for different microscope objectives.
Collapse
|