1
|
Liu M, Gray RM, Roy A, Ledezma L, Marandi A. Optical-parametric-amplification-enhanced background-free spectroscopy. OPTICS LETTERS 2024; 49:2914-2917. [PMID: 38824291 DOI: 10.1364/ol.520848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/18/2024] [Indexed: 06/03/2024]
Abstract
Traditional absorption spectroscopy has a fundamental difficulty in resolving small absorbance from a strong background due to the instability of laser sources. Existing background-free methods in broadband vibrational spectroscopy help to alleviate this problem but face challenges in realizing either low extinction ratios or time-resolved field measurements. Here, we introduce optical-parametric-amplification-enhanced background-free spectroscopy, in which the excitation background is first suppressed by an interferometer, and then the free-induction decay that carries molecular signatures is selectively amplified. We show that this method can improve the limit of detection in linear interferometry by order(s) of magnitude without requiring lower extinction ratios or a time-resolved measurement, which can benefit sensing applications in detecting trace species.
Collapse
|
2
|
Yu S, Qin M, Zhang Z. Phase-mismatched optical parametric oscillators based on aperiodic quasi-phase-matched crystals. OPTICS LETTERS 2023; 48:5483-5486. [PMID: 37910683 DOI: 10.1364/ol.501921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/30/2023] [Indexed: 11/03/2023]
Abstract
We present that femtosecond optical parametric oscillators (OPOs) based on aperiodic quasi-phase-matched (AQPM) crystals can be configured to operate in the "phase-mismatched" region. The phase-mismatch-induced frequency chirp is mainly introduced by the subcrystal that first interacts with pump pulses. By optimizing the intracavity group velocity dispersion and by selecting the direction of crystals, OPOs based on AQPM crystals could support the generation of wavelength-tunable, transform-limited pulses in an all-normal-dispersion cavity. In a preliminary experiment, transform-limited optical pulses with a tuning range over 1520-1660 nm were obtained by simply altering the cavity length. This scheme represents a unique and concise scheme of producing widely tunable, chirp-free femtosecond optical pulses.
Collapse
|
3
|
Kassab H, Gröbmeyer S, Schweinberger W, Hofer C, Steinleitner P, Högner M, Amotchkina T, Gerz D, Knorr M, Huber R, Karpowicz N, Pupeza I. In-line synthesis of multi-octave phase-stable infrared light. OPTICS EXPRESS 2023; 31:24862-24874. [PMID: 37475303 DOI: 10.1364/oe.493887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/11/2023] [Indexed: 07/22/2023]
Abstract
Parametric downconversion driven by modern, high-power sources of 10-fs-scale near-infrared pulses, in particular intrapulse difference-frequency generation (IPDFG), affords combinations of properties desirable for molecular vibrational spectroscopy in the mid-infrared range: broad spectral coverage, high brilliance, and spatial and temporal coherence. Yet, unifying these in a robust and compact radiation source has remained a key challenge. Here, we address this need by employing IPDFG in a multi-crystal in-line geometry, driven by the 100-W-level, 10.6-fs pulses of a 10.6-MHz-repetition-rate, nonlinearly post-compressed Yb:YAG thin-disk oscillator. Polarization tailoring of the driving pulses using a bichromatic waveplate is followed by a sequence of two crystals, LiIO3 and LiGaS2, resulting in the simultaneous coverage of the 800-cm-1-to-3000-cm-1 spectral range (at -30-dB intensity) with 130 mW of average power. We demonstrate that optical-phase coherence is maintained in this in-line geometry, in theory and experiment, the latter employing ultra-broadband electro-optic sampling. These results pave the way toward coherent spectroscopy schemes like field-resolved and frequency-comb spectroscopy, as well as nonlinear, ultrafast spectroscopy and optical-waveform synthesis across the entire infrared molecular fingerprint region.
Collapse
|
4
|
Liu M, Gray RM, Costa L, Markus CR, Roy A, Marandi A. Mid-infrared cross-comb spectroscopy. Nat Commun 2023; 14:1044. [PMID: 36828826 PMCID: PMC9957991 DOI: 10.1038/s41467-023-36811-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Dual-comb spectroscopy has been proven beneficial in molecular characterization but remains challenging in the mid-infrared region due to difficulties in sources and efficient photodetection. Here we introduce cross-comb spectroscopy, in which a mid-infrared comb is upconverted via sum-frequency generation with a near-infrared comb of a shifted repetition rate and then interfered with a spectral extension of the near-infrared comb. We measure CO2 absorption around 4.25 µm with a 1-µm photodetector, exhibiting a 233-cm-1 instantaneous bandwidth, 28000 comb lines, a single-shot signal-to-noise ratio of 167 and a figure of merit of 2.4 × 106 Hz1/2. We show that cross-comb spectroscopy can have superior signal-to-noise ratio, sensitivity, dynamic range, and detection efficiency compared to other dual-comb-based methods and mitigate the limits of the excitation background and detector saturation. This approach offers an adaptable and powerful spectroscopic method outside the well-developed near-IR region and opens new avenues to high-performance frequency-comb-based sensing with wavelength flexibility.
Collapse
Affiliation(s)
- Mingchen Liu
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robert M Gray
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Luis Costa
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Charles R Markus
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Arkadev Roy
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Alireza Marandi
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
5
|
Kowzan G, Allison TK. Controlling Rotationally Resolved Two-Dimensional Infrared Spectra with Polarization. J Phys Chem Lett 2022; 13:11650-11654. [PMID: 36485074 PMCID: PMC9791651 DOI: 10.1021/acs.jpclett.2c03331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Recent advancements in infrared frequency combs will enable facile recording of coherent two-dimensional infrared spectra of gas-phase molecules with rotational resolution (RR2DIR). Using time-dependent density-matrix perturbation theory and angular momentum algebra techniques, we derive new polarization conditions unique to freely rotating molecules and absent in the condensed phase. These polarization conditions can be used to suppress parts of 2DIR rovibrational response, clarifying complicated RR2DIR spectra. With the polarization control methods described here, RR2DIR spectroscopy can be a powerful tool for studying complex gas mixtures of polyatomic molecules.
Collapse
Affiliation(s)
- Grzegorz Kowzan
- Department
of Chemistry, Stony Brook University, Stony Brook, New York11790-3400, United
States
- Institute
of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100Toruń, Poland
| | - Thomas K. Allison
- Department
of Chemistry, Stony Brook University, Stony Brook, New York11790-3400, United
States
- Department
of Physics and Astronomy, Stony Brook University, Stony Brook, New York11790-3400, United
States
| |
Collapse
|
6
|
Hoghooghi N, Xing S, Chang P, Lesko D, Lind A, Rieker G, Diddams S. Broadband 1-GHz mid-infrared frequency comb. LIGHT, SCIENCE & APPLICATIONS 2022; 11:264. [PMID: 36071054 PMCID: PMC9452668 DOI: 10.1038/s41377-022-00947-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Mid-infrared (MIR) spectrometers are invaluable tools for molecular fingerprinting and hyper-spectral imaging. Among the available spectroscopic approaches, GHz MIR dual-comb absorption spectrometers have the potential to simultaneously combine the high-speed, high spectral resolution, and broad optical bandwidth needed to accurately study complex, transient events in chemistry, combustion, and microscopy. However, such a spectrometer has not yet been demonstrated due to the lack of GHz MIR frequency combs with broad and full spectral coverage. Here, we introduce the first broadband MIR frequency comb laser platform at 1 GHz repetition rate that achieves spectral coverage from 3 to 13 µm. This frequency comb is based on a commercially available 1.56 µm mode-locked laser, robust all-fiber Er amplifiers and intra-pulse difference frequency generation (IP-DFG) of few-cycle pulses in χ(2) nonlinear crystals. When used in a dual comb spectroscopy (DCS) configuration, this source will simultaneously enable measurements with μs time resolution, 1 GHz (0.03 cm-1) spectral point spacing and a full bandwidth of >5 THz (>166 cm-1) anywhere within the MIR atmospheric windows. This represents a unique spectroscopic resource for characterizing fast and non-repetitive events that are currently inaccessible with other sources.
Collapse
Affiliation(s)
- Nazanin Hoghooghi
- Precision Laser Diagnostics Laboratory, University of Colorado, Boulder, CO, 80309, USA.
| | - Sida Xing
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Peter Chang
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Daniel Lesko
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
- Department of Chemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Alexander Lind
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Greg Rieker
- Precision Laser Diagnostics Laboratory, University of Colorado, Boulder, CO, 80309, USA
| | - Scott Diddams
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA.
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA.
- Electrical Computer and Energy Engineering, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
7
|
Miyata K, Yumoto M, Kawata Y, Imai S, Wada S. Parametric downconversion via vibronic transition. OPTICS LETTERS 2022; 47:3383-3386. [PMID: 35838685 DOI: 10.1364/ol.460560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
This Letter presents the first, to the best of our knowledge, demonstration of noncritically birefringent-phase-matched parametric downconversion, which is associated with stimulated emission via vibronic transition in a laser gain medium. The so-called self-difference frequency generation is realized along the a-axis of a Cr:CdSe single crystal pumped by a Tm:YAG laser pulse at 2.013 µm, directly producing an infrared spectrum centered at 9 µm with the maximized effective nonlinearity. The light source, which benefits from the broad vibronic spectroscopic properties together with the wide transparency range of the host material, is expected to generate noncritically phase-matched, mid-infrared spectra beyond 20 µm along with birefringence engineering in the solid solution Cr:CdSxSe1-x.
Collapse
|
8
|
Nakamura T, Ramaiah Badarla V, Hashimoto K, Schunemann PG, Ideguchi T. Simple approach to broadband mid-infrared pulse generation with a mode-locked Yb-doped fiber laser. OPTICS LETTERS 2022; 47:1790-1793. [PMID: 35363736 DOI: 10.1364/ol.450921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Broadband mid-infrared (MIR) molecular spectroscopy demands a bright and broadband light source in the molecular fingerprint region. To this end, intra-pulse difference frequency generation (IDFG) has shown excellent properties among various techniques. Although IDFG systems pumped with 1.5- or 2-µm ultrashort pulsed lasers have been extensively developed, few systems have been demonstrated with 1-µm lasers, which use bulky 100-W-class high-power Yb thin-disk lasers. In this work, we demonstrate a simple and robust approach of 1-µm-pumped broadband IDFG with a conventional mode-locked Yb-doped fiber laser. We first generate 3.3-W, 12.1-fs ultrashort pulses at 50 MHz by a simple combination of spectral broadening with a short single-mode fiber and pulse compression with chirped mirrors. Then, we use them for pumping a thin orientation-patterned gallium phosphide crystal, generating 1.2-mW broadband MIR pulses with the -20-dB bandwidth of 480 cm-1 in the fingerprint region (760-1240 cm-1, 8.1-13.1 µm). The 1-µm-based IDFG system allows for additional generations of ultrashort pulses in the ultraviolet and visible regions, enabling, for example, 50-MHz-level high-repetition-rate vibrational sum-frequency generation spectroscopy or pump-probe spectroscopy.
Collapse
|
9
|
Bu X, Okazaki D, Ashihara S. Inherent intensity noise suppression in a mode-locked polycrystalline Cr:ZnS oscillator. OPTICS EXPRESS 2022; 30:8517-8525. [PMID: 35299303 DOI: 10.1364/oe.453382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
We developed a diode-pumped, mode-locked polycrystalline Cr:ZnS oscillator using single-walled carbon nanotubes as a saturable absorber. The oscillator exhibits self-start mode-locking operation, generating sub-100 fs pulses with an average power of 300 mW. We found a unique feature in which the intensity noise originating from relaxation oscillation is suppressed by inherent second harmonic generation in polycrystalline Cr:ZnS. The observed noise suppression is reproduced by a theoretical model that includes an instantaneous nonlinear loss.
Collapse
|
10
|
Liu P, Li W, Qi F, Guo L, Li W, Fu Q, Niu C, Xia M, Yao J. Widely tunable long-wave infrared difference frequency generation with a BaGa 4Se 7 crystal. APPLIED OPTICS 2021; 60:10984-10987. [PMID: 35200861 DOI: 10.1364/ao.446136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
We report an experimental study of long-wave infrared difference frequency generation based on BaGa4Se7 crystal. The sources of two input wavelengths were the fundamental output of a Nd:YAG laser and its second-harmonic pumped ∼1.2µmKTiOPO4 optical parametric oscillator. A wide tuning range of 7.9-17.5 µm (>1.14 octave) was achieved, which reached the upper limit of the BaGa4Se7 transparency region. The spectra and pulse widths, input-output relationship, beam profile, wavelength tolerance, and angular acceptance of the phase-matching were characterized in detail. This presented coherent source can potentially be applied in multiple gas analyses and spectral imaging.
Collapse
|
11
|
Infrared-spectroscopic, dynamic near-field microscopy of living cells and nanoparticles in water. Sci Rep 2021; 11:21860. [PMID: 34750511 PMCID: PMC8576021 DOI: 10.1038/s41598-021-01425-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Infrared fingerprint spectra can reveal the chemical nature of materials down to 20-nm detail, far below the diffraction limit, when probed by scattering-type scanning near-field optical microscopy (s-SNOM). But this was impossible with living cells or aqueous processes as in corrosion, due to water-related absorption and tip contamination. Here, we demonstrate infrared s-SNOM of water-suspended objects by probing them through a 10-nm thick SiN membrane. This separator stretches freely over up to 250 µm, providing an upper, stable surface to the scanning tip, while its lower surface is in contact with the liquid and localises adhering objects. We present its proof-of-principle applicability in biology by observing simply drop-casted, living E. coli in nutrient medium, as well as living A549 cancer cells, as they divide, move and develop rich sub-cellular morphology and adhesion patterns, at 150 nm resolution. Their infrared spectra reveal the local abundances of water, proteins, and lipids within a depth of ca. 100 nm below the SiN membrane, as we verify by analysing well-defined, suspended polymer spheres and through model calculations. SiN-membrane based s-SNOM thus establishes a novel tool of live cell nano-imaging that returns structure, dynamics and chemical composition. This method should benefit the nanoscale analysis of any aqueous system, from physics to medicine.
Collapse
|
12
|
Abbas MA, Jahromi KE, Nematollahi M, Krebbers R, Liu N, Woyessa G, Bang O, Huot L, Harren FJM, Khodabakhsh A. Fourier transform spectrometer based on high-repetition-rate mid-infrared supercontinuum sources for trace gas detection. OPTICS EXPRESS 2021; 29:22315-22330. [PMID: 34265999 DOI: 10.1364/oe.425995] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
We present a fast-scanning Fourier transform spectrometer (FTS) in combination with high-repetition-rate mid-infrared supercontinuum sources, covering a wavelength range of 2-10.5 µm. We demonstrate the performance of the spectrometer for trace gas detection and compare various detection methods: baseband detection with a single photodetector, baseband balanced detection, and synchronous demodulation at the repetition rate of the supercontinuum source. The FTS uses off-the-shelf optical components and provides a minimum spectral resolution of 750 MHz. It achieves a noise equivalent absorption sensitivity of ∼10-6 cm-1 Hz-1/2 per spectral element, by using a 31.2 m multipass absorption cell.
Collapse
|