1
|
Qiu B, Shu C, Huang Z. Development of a multi-needle fiberoptic Raman spectroscopy technique for simultaneous multi-site deep tissue Raman measurements in the brain. OPTICS LETTERS 2023; 48:4396-4399. [PMID: 37582041 DOI: 10.1364/ol.498232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/23/2023] [Indexed: 08/17/2023]
Abstract
We report on the development of a multi-needle fiberoptic Raman spectroscopy (MNF-RS) technique for simultaneous multi-site deep Raman measurements in brain tissue. The multi-needle fiberoptic Raman probe is designed and fabricated using a number of 100 µm core diameter, aluminum-coated fibers under a coaxial laser excitation and Raman collection scheme, enabling simultaneous collection of deep tissue Raman spectra from a number of tissue sites. We have also developed a Raman retrieval algorithm based on the transformation matrix of each individual needle fiber probe projected to different pixels of a charge-coupled device (CCD) for recovering the tissue Raman spectra collected by each needle fiber probe, allowing simultaneous multi-channel detection by a single Raman spectrometer. High-quality tissue Raman spectra of different tissue types (e.g., muscle, fat, gray matter, and white matter in porcine brain) can be acquired in both the fingerprint (900-1800 cm-1) and high-wavenumber (2800-3300 cm-1) regions within sub-second times using the MNF-RS technique. We also demonstrate that by advancing the multi-needle fiberoptic Raman probe into deep porcine brain, tissue Raman spectra can be acquired simultaneously from different brain regions (e.g., cortex, thalamus, midbrain, and cerebellum). The significant biochemical differences across different brain tissues can also be distinguished, suggesting the promising potential of the MNF-RS technique for label-free neuroscience study at the molecular level.
Collapse
|
2
|
Fitzgerald S, Akhtar J, Schartner E, Ebendorff-Heidepriem H, Mahadevan-Jansen A, Li J. Multimodal Raman spectroscopy and optical coherence tomography for biomedical analysis. JOURNAL OF BIOPHOTONICS 2023; 16:e202200231. [PMID: 36308009 PMCID: PMC10082563 DOI: 10.1002/jbio.202200231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Optical techniques hold great potential to detect and monitor disease states as they are a fast, non-invasive toolkit. Raman spectroscopy (RS) in particular is a powerful label-free method capable of quantifying the biomolecular content of tissues. Still, spontaneous Raman scattering lacks information about tissue morphology due to its inability to rapidly assess a large field of view. Optical Coherence Tomography (OCT) is an interferometric optical method capable of fast, depth-resolved imaging of tissue morphology, but lacks detailed molecular contrast. In many cases, pairing label-free techniques into multimodal systems allows for a more diverse field of applications. Integrating RS and OCT into a single instrument allows for both structural imaging and biochemical interrogation of tissues and therefore offers a more comprehensive means for clinical diagnosis. This review summarizes the efforts made to date toward combining spontaneous RS-OCT instrumentation for biomedical analysis, including insights into primary design considerations and data interpretation.
Collapse
Affiliation(s)
- Sean Fitzgerald
- Vanderbilt Biophotonics Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Jobaida Akhtar
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, South Australia, Australia
| | - Erik Schartner
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, South Australia, Australia
| | - Heike Ebendorff-Heidepriem
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, South Australia, Australia
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Jiawen Li
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, South Australia, Australia
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Heng HPS, Shu C, Zheng W, Huang Z. Development of a coaxial DCF-GRIN fiberoptic Raman probe for enhancing in vivo epithelial tissue Raman measurements. OPTICS LETTERS 2022; 47:5989-5992. [PMID: 37219154 DOI: 10.1364/ol.474464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/20/2022] [Indexed: 05/24/2023]
Abstract
We report on the development of a novel, to the best of our knowledge, coaxial double-clad-fiber (DCF) and graded-index (GRIN) fiberoptic Raman probe for enhancing epithelial tissue Raman measurements in vivo. The ultra-thin (140 µm outer diameter) DCF-GRIN fiberoptic Raman probe is designed and fabricated with an efficient coaxial optical configuration, whereby a GRIN fiber is spliced onto the DCF to enhance both the excitation/collection efficiency and depth-resolved selectivity. We demonstrate that the DCF-GRIN Raman probe can be used to acquire high-quality in vivo Raman spectra from various oral tissues (e.g., buccal mucosa, labial mucosa, gingiva, mouth floor, palate, and tongue) covering both the fingerprint (800-1800 cm-1) and high-wavenumber (2800-3600 cm-1) regions within sub-seconds. The subtle biochemical differences between different epithelial tissues in the oral cavity can also be detected with high sensitivity, suggesting the potential of the DCF-GRIN fiberoptic Raman probe for in vivo diagnosis and characterization in epithelial tissue.
Collapse
|
4
|
Wang J, Zhang G. Side‐viewing handheld confocal Raman probe coupled with an off‐axis parabolic mirror for superficial epithelial Raman measurements of luminal organs. TRANSLATIONAL BIOPHOTONICS 2022. [DOI: 10.1002/tbio.202200010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Jianfeng Wang
- Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics Beijing Institute of Technology Beijing China
- Institute of Engineering Medicine, Beijing Institute of Technology Beijing China
| | - Guling Zhang
- College of Science Minzu University of China Beijing China
| |
Collapse
|
5
|
Multimodal Approach of Optical Coherence Tomography and Raman Spectroscopy Can Improve Differentiating Benign and Malignant Skin Tumors in Animal Patients. Cancers (Basel) 2022; 14:cancers14122820. [PMID: 35740486 PMCID: PMC9221378 DOI: 10.3390/cancers14122820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Skin and subcutaneous tumors are among the most frequent neoplasms in dogs and cats. We studied 51 samples of canine and feline skin, lipomas, soft tissue sarcomas, and mast cell tumors using a multimodal approach based on optical coherence tomography and Raman spectroscopy. A supervised machine learning algorithm detected malignant tumors with the sensitivity and specificity of 94% and 98%, respectively. The proposed multimodal algorithm is a novel approach in veterinary oncology that can outperform the existing clinical methods such as the fine-needle aspiration method. Abstract As in humans, cancer is one of the leading causes of companion animal mortality. Up to 30% of all canine and feline neoplasms appear on the skin or directly under it. There are only a few available studies that have investigated pet tumors by biophotonics techniques. In this study, we acquired 1115 optical coherence tomography (OCT) images of canine and feline skin, lipomas, soft tissue sarcomas, and mast cell tumors ex vivo, which were subsequently used for automated machine vision analysis. The OCT images were analyzed using a scanning window with a size of 53 × 53 μm. The distributions of the standard deviation, mean, range, and coefficient of variation values were acquired for each image. These distributions were characterized by their mean, standard deviation, and median values, resulting in 12 parameters in total. Additionally, 1002 Raman spectral measurements were made on the same samples, and features were generated by integrating the intensity of the most prominent peaks. Linear discriminant analysis (LDA) was used for sample classification, and sensitivities/specificities were acquired by leave-one-out cross-validation. Three datasets were analyzed—OCT, Raman, and combined. The combined OCT and Raman data enabled the best sample differentiation with the sensitivities of 0.968, 1, and 0.939 and specificities of 0.956, 1, and 0.977 for skin, lipomas, and malignant tumors, respectively. Based on these results, we concluded that the proposed multimodal approach, combining Raman and OCT data, can accurately distinguish between malignant and benign tissues.
Collapse
|
6
|
Ren X, Lin K, Hsieh CM, Liu L, Ge X, Liu Q. Optical coherence tomography-guided confocal Raman microspectroscopy for rapid measurements in tissues. BIOMEDICAL OPTICS EXPRESS 2022; 13:344-357. [PMID: 35154875 PMCID: PMC8803007 DOI: 10.1364/boe.441058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/24/2021] [Accepted: 12/06/2021] [Indexed: 05/05/2023]
Abstract
We report a joint system with both confocal Raman spectroscopy (CRS) and optical coherence tomography (OCT) modules capable of quickly addressing the region of interest in a tissue for targeted Raman measurements from OCT. By using an electrically tunable lens in the Raman module, the focus of the module can be adjusted to address any specific depth indicated in an OCT image in a few milliseconds. We demonstrate the performance of the joint system in the depth dependent measurements of an ex vivo swine tissue and in vivo human skin. This system can be useful in measuring samples embedded with small targets, for example, to identify tumors in skin in vivo and assessment of tumor margins, in which OCT can be used to perform initial real-time screening with high throughput based on morphological features to identify suspicious targets then CRS is guided to address the targets in real time and fully characterize their biochemical fingerprints for confirmation.
Collapse
Affiliation(s)
- Xiaojing Ren
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
- Equal contributors to paper
| | - Kan Lin
- School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
- Equal contributors to paper
| | - Chao-Mao Hsieh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Linbo Liu
- School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Xin Ge
- School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Quan Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| |
Collapse
|
7
|
Schie IW, Stiebing C, Popp J. Looking for a perfect match: multimodal combinations of Raman spectroscopy for biomedical applications. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210137VR. [PMID: 34387049 PMCID: PMC8358667 DOI: 10.1117/1.jbo.26.8.080601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Raman spectroscopy has shown very promising results in medical diagnostics by providing label-free and highly specific molecular information of pathological tissue ex vivo and in vivo. Nevertheless, the high specificity of Raman spectroscopy comes at a price, i.e., low acquisition rate, no direct access to depth information, and limited sampling areas. However, a similar case regarding advantages and disadvantages can also be made for other highly regarded optical modalities, such as optical coherence tomography, autofluorescence imaging and fluorescence spectroscopy, fluorescence lifetime microscopy, second-harmonic generation, and others. While in these modalities the acquisition speed is significantly higher, they have no or only limited molecular specificity and are only sensitive to a small group of molecules. It can be safely stated that a single modality provides only a limited view on a specific aspect of a biological specimen and cannot assess the entire complexity of a sample. To solve this issue, multimodal optical systems, which combine different optical modalities tailored to a particular need, become more and more common in translational research and will be indispensable diagnostic tools in clinical pathology in the near future. These systems can assess different and partially complementary aspects of a sample and provide a distinct set of independent biomarkers. Here, we want to give an overview on the development of multimodal systems that use RS in combination with other optical modalities to improve the diagnostic performance.
Collapse
Affiliation(s)
- Iwan W. Schie
- Leibniz Institute of Photonic Technology, Jena, Germany
- University of Applied Sciences—Jena, Department for Medical Engineering and Biotechnology, Jena, Germany
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
| |
Collapse
|
8
|
Li K, Yang Z, Liang W, Shang J, Liang Y, Wan S. Low-cost, ultracompact handheld optical coherence tomography probe for in vivo oral maxillofacial tissue imaging. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-13. [PMID: 32314560 PMCID: PMC7167599 DOI: 10.1117/1.jbo.25.4.046003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/01/2020] [Indexed: 05/13/2023]
Abstract
SIGNIFICANCE Optical coherence tomography (OCT) has proven useful for detecting various oral maxillofacial abnormalities. To apply it to clinical applications including biopsy guidance and routine screening, a handheld imaging probe is indispensable. OCT probes reported for oral maxillofacial imaging were either based on a bulky galvanometric mirror pair (not compact or long enough) or a distal-end microelectromechanical systems (MEMS) scanner (raised safety concerns), or adapted from fiber-optic catheters (ill-suited for oral cavity geometry). AIM To develop a handheld probe featuring great compactness and excellent maneuverability for oral maxillofacial tissue imaging. APPROACH A dual-axis MEMS scanner was deployed at the proximal end of the probe and the scanned beam was relayed to the distal end through a 4f configuration. Such design provides both a perfect dual-axis telecentric scan and excellent compactness. RESULTS A handheld probe with a rigid part 70 mm in length and 7 mm in diameter and weighing 25 g in total was demonstrated through both ex vivo and in vivo experiments, including structural visualization of various oral maxillofacial tissues and monitoring the recovery process of an oral mucosa canker sore. CONCLUSIONS The proposed probe exhibits excellent maneuverability and imaging performance showing great potential in clinical applications.
Collapse
Affiliation(s)
- Kaiyan Li
- Southeast University, School of Biological Science and Medical Engineering, Nanjing, Jiangsu, China
| | - Zihan Yang
- Nankai University, Institute of Modern Optics, Tianjin, China
| | - Wenxuan Liang
- Columbia University, Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Jianwei Shang
- Nankai University, Tianjin Stomatological Hospital, Hospital of Stomatology, Department of Oral Pathology, Tianjin, China
| | - Yanmei Liang
- Nankai University, Institute of Modern Optics, Tianjin, China
- Address all correspondence to Yanmei Liang, E-mail: ; Suiren Wan, E-mail:
| | - Suiren Wan
- Southeast University, School of Biological Science and Medical Engineering, Nanjing, Jiangsu, China
- Address all correspondence to Yanmei Liang, E-mail: ; Suiren Wan, E-mail:
| |
Collapse
|
9
|
Walther J, Li Q, Villiger M, Farah CS, Koch E, Karnowski K, Sampson DD. Depth-resolved birefringence imaging of collagen fiber organization in the human oral mucosa in vivo. BIOMEDICAL OPTICS EXPRESS 2019; 10:1942-1956. [PMID: 31086712 PMCID: PMC6484997 DOI: 10.1364/boe.10.001942] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/02/2018] [Accepted: 01/09/2019] [Indexed: 05/18/2023]
Abstract
Stromal collagen organization has been identified as a potential prognostic indicator in a variety of cancers and other diseases accompanied by fibrosis. Changes in the connective tissue are increasingly considered for grading dysplasia and progress of oral squamous cell carcinoma, investigated mainly ex vivo by histopathology. In this study, polarization-sensitive optical coherence tomography (PS-OCT) with local phase retardation imaging is used for the first time to visualize depth-resolved (i.e., local) birefringence of healthy human oral mucosa in vivo. Depth-resolved birefringence is shown to reveal the expected local collagen organization. To demonstrate proof-of-principle, 3D image stacks were acquired at labial and lingual locations of the oral mucosa, chosen as those most commonly affected by cancerous alterations. To enable an intuitive evaluation of the birefringence images suitable for clinical application, color depth-encoded en-face projections were generated. Compared to en-face views of intensity or conventional cumulative phase retardation, we show that this novel approach offers improved visualization of the mucosal connective tissue layer in general, and reveals the collagen fiber architecture in particular. This study provides the basis for future prospective pathological and comparative in vivo studies non-invasively assessing stromal changes in conspicuous and cancerous oral lesions at different stages.
Collapse
Affiliation(s)
- Julia Walther
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Department of Medical Physics and Biomedical Engineering, 01307 Dresden, Germany
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, 01307 Dresden, Germany
| | - Qingyun Li
- Optical + Biomedical Engineering Laboratory, Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Martin Villiger
- Harvard Medical School and Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA, USA
| | - Camile S. Farah
- UWA Dental School, The University of Western Australia, Perth, WA 6009, Australia
- Australian Centre for Oral Oncology Research and Education, Perth, WA 6009, Australia
| | - Edmund Koch
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, 01307 Dresden, Germany
| | - Karol Karnowski
- Optical + Biomedical Engineering Laboratory, Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - David D. Sampson
- Optical + Biomedical Engineering Laboratory, Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia
- University of Surrey, Guilford, Surrey GU2 7XH, United Kingdom
| |
Collapse
|
10
|
Tetschke F, Kirsten L, Golde J, Walther J, Galli R, Koch E, Hannig C. Application of optical and spectroscopic technologies for the characterization of carious lesions in vitro. ACTA ACUST UNITED AC 2018; 63:595-602. [DOI: 10.1515/bmt-2017-0133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 07/18/2018] [Indexed: 01/30/2023]
Abstract
Abstract
The detection of the beginning demineralization process of dental hard tissue remains a challenging task in dentistry. As an alternative to bitewing radiographs, optical and spectroscopic technologies showed promising results for caries diagnosis. The aim of the present work is to give an overview of optical and spectroscopic properties of healthy and carious human teeth in vitro by means of Raman spectroscopy (RS), optical coherence tomography (OCT) and hyperspectral imaging (HSI). OCT was able to represent microstructural changes below the enamel surface and revealed increased scattering for white spot lesions and a white scattering trail for deeper lesions. HSI showed similar absorbance characteristics for healthy and demineralized enamel over the entire spectrum and a characteristic absorbance peak at 550 nm for discolored lesions. Already at early carious stages (white spot), we found a distinct loss of hydroxylapatite-related intensity at 959 cm−1 in demineralized regions with RS. Healthy and demineralized tooth surfaces can be distinguished at different signal levels by means of RS, OCT and HSI. The presented modalities provide additional information to the current clinical diagnosis of caries such as microstructural changes, quantification of the demineralization and imaging of caries-related chemical changes.
Collapse
Affiliation(s)
- Florian Tetschke
- Technische Universität Dresden , Faculty of Medicine Carl Gustav Carus , Clinic of Operative and Pediatric Dentistry , Dresden , Germany
- Technische Universität Dresden , Faculty of Medicine Carl Gustav Carus, Department of Anesthesiology and Intensive Care Medicine , Clinical Sensoring and Monitoring , Dresden , Germany
| | - Lars Kirsten
- Technische Universität Dresden , Faculty of Medicine Carl Gustav Carus, Department of Anesthesiology and Intensive Care Medicine , Clinical Sensoring and Monitoring , Dresden , Germany
| | - Jonas Golde
- Technische Universität Dresden , Faculty of Medicine Carl Gustav Carus, Department of Anesthesiology and Intensive Care Medicine , Clinical Sensoring and Monitoring , Dresden , Germany
| | - Julia Walther
- Technische Universität Dresden , Faculty of Medicine Carl Gustav Carus, Department of Anesthesiology and Intensive Care Medicine , Clinical Sensoring and Monitoring , Dresden , Germany
- Technische Universität Dresden , Faculty of Medicine Carl Gustav Carus, Departement of Medical Physics and Biomedical Engineering , Dresden , Germany
| | - Roberta Galli
- Technische Universität Dresden , Faculty of Medicine Carl Gustav Carus, Department of Anesthesiology and Intensive Care Medicine , Clinical Sensoring and Monitoring , Dresden , Germany
| | - Edmund Koch
- Technische Universität Dresden , Faculty of Medicine Carl Gustav Carus, Department of Anesthesiology and Intensive Care Medicine , Clinical Sensoring and Monitoring , Dresden , Germany
| | - Christian Hannig
- Technische Universität Dresden , Faculty of Medicine Carl Gustav Carus , Clinic of Operative and Pediatric Dentistry , Dresden , Germany
| |
Collapse
|
11
|
Cordero E, Latka I, Matthäus C, Schie I, Popp J. In-vivo Raman spectroscopy: from basics to applications. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-23. [PMID: 29956506 DOI: 10.1117/1.jbo.23.7.071210] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/23/2018] [Indexed: 05/20/2023]
Abstract
For more than two decades, Raman spectroscopy has found widespread use in biological and medical applications. The instrumentation and the statistical evaluation procedures have matured, enabling the lengthy transition from ex-vivo demonstration to in-vivo examinations. This transition goes hand-in-hand with many technological developments and tightly bound requirements for a successful implementation in a clinical environment, which are often difficult to assess for novice scientists in the field. This review outlines the required instrumentation and instrumentation parameters, designs, and developments of fiber optic probes for the in-vivo applications in a clinical setting. It aims at providing an overview of contemporary technology and clinical trials and attempts to identify future developments necessary to bring the emerging technology to the clinical end users. A comprehensive overview of in-vivo applications of fiber optic Raman probes to characterize different tissue and disease types is also given.
Collapse
Affiliation(s)
- Eliana Cordero
- Leibniz-Institut für Photonische Technologien e.V., Germany
| | - Ines Latka
- Leibniz-Institut für Photonische Technologien e.V., Germany
| | - Christian Matthäus
- Leibniz-Institut für Photonische Technologien e.V., Germany
- Institut für Physikalische Chemie, Friedrich-Schiller-Univ. Jena, Germany
- Abbe Ctr. of Photonics, Germany
| | - Iwan Schie
- Leibniz-Institut für Photonische Technologien e.V., Germany
| | - Jürgen Popp
- Leibniz-Institut für Photonische Technologien e.V., Germany
- Institute für Physikalische Chemie, Friedrich-Schiller-Univ. Jena, Germany
| |
Collapse
|
12
|
Wang J, Zheng W, Lin K, Huang Z. Characterizing biochemical and morphological variations of clinically relevant anatomical locations of oral tissue in vivo with hybrid Raman spectroscopy and optical coherence tomography technique. JOURNAL OF BIOPHOTONICS 2018; 11. [PMID: 28985038 DOI: 10.1002/jbio.201700113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/04/2017] [Indexed: 05/08/2023]
Abstract
This study aims to characterize biochemical and morphological variations of the clinically relevant anatomical locations of in vivo oral tissue (ie, alveolar process, lateral tongue and floor of the mouth) by using hybrid Raman spectroscopy (RS) and optical coherence tomography (OCT) technique. A total of 1049 in vivo fingerprint (FP: 800-1800 cm-1 ) and high wavenumber (HW: 2800-3600 cm-1 ) Raman spectra were acquired from different oral tissue (alveolar process = 331, lateral tongue = 339 and floor of mouth = 379) of 26 normal subjects in the oral cavity under the OCT imaging guidance. The total Raman dataset were split into 2 parts: 80% for training and 20% for testing. Tissue optical attenuation coefficients of alveolar process, lateral tongue and the floor of the mouth were derived from OCT images, revealing the inter-anatomical morphological differences; while RS uncovers subtle FP/HW Raman spectral differences among different oral tissues that can be attributed to the differences in inter- and intra-cellular proteins, lipids, DNA and water structures and conformations, enlightening biochemical variability of different oral tissues at the molecular level. Partial least squares-discriminant analysis implemented on the training dataset show that the integrated tissue optical attenuation coefficients and FP/HW Raman spectra provide diagnostic sensitivities of 99.6%, 82.3%, 50.2%, and specificities of 97.0%, 75.1%, 92.1%, respectively, which are superior to using either RS (sensitivities of 90.2%, 77.5%, 48.8%, and specificities of 95.8%, 72.1%, 88.8%) or optical attenuation coefficients derived from OCT (sensitivities of 75.0%, 78.2%, 47.2%, and specificities of 96.2%, 67.7%, 85.0%) for the differentiation among alveolar process, lateral tongue and the floor of the mouth. Furthermore, the diagnostic algorithms applied to the independent testing dataset based on hybrid RS-OCT technique gives predictive diagnostic sensitivities of 100%, 76.5%, 51.3%, and specificities of 95.1%, 77.6%, 89.6%, respectively, for the classifications among alveolar process, lateral tongue and the floor of the mouth, which performs much better than either RS or optical attenuation coefficient derived from OCT imaging. This work suggests that inter-anatomical morphological and biochemical variability are significant which should be considered as an important parameter in the interpretation and rendering of hybrid RS-OCT technique for oral tissue diagnosis and characterization.
Collapse
Affiliation(s)
- Jianfeng Wang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Wei Zheng
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Kan Lin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| |
Collapse
|
13
|
Chen M, Mas J, Forbes LH, Andrews MR, Dholakia K. Depth-resolved multimodal imaging: Wavelength modulated spatially offset Raman spectroscopy with optical coherence tomography. JOURNAL OF BIOPHOTONICS 2018; 11:e201700129. [PMID: 28703472 DOI: 10.1002/jbio.201700129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 05/22/2023]
Abstract
A major challenge in biophotonics is multimodal imaging to obtain both morphological and molecular information at depth. We demonstrate a hybrid approach integrating optical coherence tomography (OCT) with wavelength modulated spatially offset Raman spectroscopy (WM-SORS). With depth colocalization obtained from the OCT, we can penetrate 1.2-mm deep into strong scattering media (lard) to acquire up to a 14-fold enhancement of a Raman signal from a hidden target (polystyrene) with a spatial offset. Our approach is capable of detecting both Raman and OCT signals for pharmaceutical particles embedded in turbid media and revealing the white matter at depth within a 0.6-mm thick brain tissue layer. This depth resolved label-free multimodal approach is a powerful route to analyze complex biomedical samples.
Collapse
Affiliation(s)
- Mingzhou Chen
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - Josep Mas
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | | | | | - Kishan Dholakia
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| |
Collapse
|
14
|
Wang J, Xu Y, Boppart SA. Review of optical coherence tomography in oncology. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-23. [PMID: 29274145 PMCID: PMC5741100 DOI: 10.1117/1.jbo.22.12.121711] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/04/2017] [Indexed: 05/06/2023]
Abstract
The application of optical coherence tomography (OCT) in the field of oncology has been prospering over the past decade. OCT imaging has been used to image a broad spectrum of malignancies, including those arising in the breast, brain, bladder, the gastrointestinal, respiratory, and reproductive tracts, the skin, and oral cavity, among others. OCT imaging has initially been applied for guiding biopsies, for intraoperatively evaluating tumor margins and lymph nodes, and for the early detection of small lesions that would often not be visible on gross examination, tasks that align well with the clinical emphasis on early detection and intervention. Recently, OCT imaging has been explored for imaging tumor cells and their dynamics, and for the monitoring of tumor responses to treatments. This paper reviews the evolution of OCT technologies for the clinical application of OCT in surgical and noninvasive interventional oncology procedures and concludes with a discussion of the future directions for OCT technologies, with particular emphasis on their applications in oncology.
Collapse
Affiliation(s)
- Jianfeng Wang
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Yang Xu
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Stephen A. Boppart
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Carle–Illinois College of Medicine, Urbana, Illinois, United States
- Address all correspondence to: Stephen A. Boppart, E-mail:
| |
Collapse
|
15
|
Monroy GL, Won J, Spillman DR, Dsouza R, Boppart SA. Clinical translation of handheld optical coherence tomography: practical considerations and recent advancements. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-30. [PMID: 29260539 PMCID: PMC5735247 DOI: 10.1117/1.jbo.22.12.121715] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 05/21/2023]
Abstract
Since the inception of optical coherence tomography (OCT), advancements in imaging system design and handheld probes have allowed for numerous advancements in disease diagnostics and characterization of the structural and optical properties of tissue. OCT system developers continue to reduce form factor and cost, while improving imaging performance (speed, resolution, etc.) and flexibility for applicability in a broad range of fields, and nearly every clinical specialty. An extensive array of components to construct customized systems has also become available, with a range of commercial entities that produce high-quality products, from single components to full systems, for clinical and research use. Many advancements in the development of these miniaturized and portable systems can be linked back to a specific challenge in academic research, or a clinical need in medicine or surgery. Handheld OCT systems are discussed and explored for various applications. Handheld systems are discussed in terms of their relative level of portability and form factor, with mention of the supporting technologies and surrounding ecosystem that bolstered their development. Additional insight from our efforts to implement systems in several clinical environments is provided. The trend toward well-designed, efficient, and compact handheld systems paves the way for more widespread adoption of OCT into point-of-care or point-of-procedure applications in both clinical and commercial settings.
Collapse
Affiliation(s)
- Guillermo L. Monroy
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Jungeun Won
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Roshan Dsouza
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- Carle-Illinois College of Medicine, Urbana, Illinois, United States
- Address all correspondence to: Stephen A. Boppart, E-mail:
| |
Collapse
|
16
|
Klemes J, Kotzianova A, Pokorny M, Mojzes P, Novak J, Sukova L, Demuth J, Vesely J, Sasek L, Velebny V. Non-invasive diagnostic system and its opto-mechanical probe for combining confocal Raman spectroscopy and optical coherence tomography. JOURNAL OF BIOPHOTONICS 2017; 10:1442-1449. [PMID: 28464557 DOI: 10.1002/jbio.201600284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/12/2017] [Accepted: 03/12/2017] [Indexed: 05/22/2023]
Abstract
Non-invasive optical diagnostic methods allow important information about studied systems to be obtained in a non-destructive way. Complete diagnosis requires information about the chemical composition as well as the morphological structure of a sample. We report on the development of an opto-mechanical probe that combines Raman spectroscopy (RS) and optical coherence tomography (OCT), two methods that provide all the crucial information needed for a non-invasive diagnosis. The aim of this paper is to introduce the technical design, construction and optimization of a dual opto-mechanical probe combining two in-house developed devices for confocal RS and OCT. The unique benefit of the probe is a gradual acquisition of OCT and RS data, which allows to use the acquired OCT images to pinpoint locations of interest for RS measurements. The parameters and the correct functioning of the probe were verified by RS scanning of various samples (silicon wafer and ex vivo tissue) based on their OCT images - lateral as well as depth scanning was performed. Both the OCT and RS systems were developed, optimized and tested with the ultimate aim of verifying the functionality of the probe. Picture: Schematic illustration and visualization of the developed RS-OCT probe.
Collapse
Affiliation(s)
- Jan Klemes
- Contipro a.s., R&D Department, CZ-56102, Dolni Dobrouc, Czech Republic
| | - Adela Kotzianova
- Contipro a.s., R&D Department, CZ-56102, Dolni Dobrouc, Czech Republic
- Masaryk University, Faculty of Science, Department of Chemistry, CZ-62500, Brno, Czech Republic
| | - Marek Pokorny
- Contipro a.s., R&D Department, CZ-56102, Dolni Dobrouc, Czech Republic
| | - Peter Mojzes
- Charles University, Faculty of Mathematics and Physics, Institute of Physics, CZ-12116, Prague, Czech Republic
| | | | - Lada Sukova
- Contipro a.s., R&D Department, CZ-56102, Dolni Dobrouc, Czech Republic
| | | | | | | | - Vladimir Velebny
- Contipro a.s., R&D Department, CZ-56102, Dolni Dobrouc, Czech Republic
| |
Collapse
|
17
|
Bratchenko IA, Artemyev DN, Myakinin OO, Khristoforova YA, Moryatov AA, Kozlov SV, Zakharov VP. Combined Raman and autofluorescence ex vivo diagnostics of skin cancer in near-infrared and visible regions. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:27005. [PMID: 28205679 DOI: 10.1117/1.jbo.22.2.027005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
The differentiation of skin melanomas and basal cell carcinomas (BCCs) was demonstrated based on combined analysis of Raman and autofluorescence spectra stimulated by visible and NIR lasers. It was ex vivo tested on 39 melanomas and 40 BCCs. Six spectroscopic criteria utilizing information about alteration of melanin, porphyrins, flavins, lipids, and collagen content in tumor with a comparison to healthy skin were proposed. The measured correlation between the proposed criteria makes it possible to define weakly correlated criteria groups for discriminant analysis and principal components analysis application. It was shown that the accuracy of cancerous tissues classification reaches 97.3% for a combined 6-criteria multimodal algorithm, while the accuracy determined separately for each modality does not exceed 79%. The combined 6-D method is a rapid and reliable tool for malignant skin detection and classification.
Collapse
Affiliation(s)
- Ivan A Bratchenko
- Samara National Research University, Department of Laser and Biotechnical Systems, Samara, Russia
| | - Dmitry N Artemyev
- Samara National Research University, Department of Laser and Biotechnical Systems, Samara, Russia
| | - Oleg O Myakinin
- Samara National Research University, Department of Laser and Biotechnical Systems, Samara, Russia
| | - Yulia A Khristoforova
- Samara National Research University, Department of Laser and Biotechnical Systems, Samara, Russia
| | | | - Sergey V Kozlov
- Samara State Medical University, Department of Oncology, Samara, Russia
| | - Valery P Zakharov
- Samara National Research University, Department of Laser and Biotechnical Systems, Samara, Russia
| |
Collapse
|