1
|
Zhou W, Pang X, Zhang H, Yu Q, Liu F, Wang W, Zhao Y, Lu Y, Yang Z. Frontier and Hot Topics of Pulsed Fiber Lasers via CiteSpace Scientometric Analysis: Passively Mode-Locked Fiber Lasers with Real Saturable Absorbers Based on Two-Dimensional Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6761. [PMID: 36234100 PMCID: PMC9572618 DOI: 10.3390/ma15196761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Pulsed fiber lasers, with high peak power and narrow pulse widths, have been proven to be an important tool for a variety of fields of application. In this work, frontier and hot topics in pulsed fiber lasers were analyzed with 11,064 articles. Benefitting from the scientometric analysis capabilities of CiteSpace, the analysis found that passively mode-locked fiber lasers with saturable absorbers (SAs) based on two-dimensional (2D) materials have become a hot research topic in the field of pulsed fiber lasers due to the advantages of self-starting operation, high stability, and good compatibility. The excellent nonlinear optical properties exhibited by 2D materials at nanometer-scale thicknesses have become a particularly popular research topic; the research has paved the way for exploring its wider applications. We summarize the performance of several typical 2D materials in ultrafast fiber lasers, such as graphene, topological insulators (TIs), transition metal dichalcogenides (TMDs), and black phosphorus (BP). Meanwhile, we review and analyze the direction of the development of 2D SAs for ultrafast fiber lasers.
Collapse
Affiliation(s)
- Wen Zhou
- College of Systems Engineering, National University of Defense Technology, Changsha 410073, China
| | - Xiuyang Pang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Hanke Zhang
- College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China
| | - Qiang Yu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Fangqi Liu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, The State Key Laboratory for Refractories and Metallurgy, College of Science, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wenyue Wang
- Jiangxi Key Laboratory of Photoelectronics and Telecommunication, College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China
| | - Yikun Zhao
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Yan Lu
- School of Transportation Engineering, Jiangsu Shipping College, Nantong 226010, China
| | - Zixin Yang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
2
|
Zhang YN, Song ZY, Qiao D, Li XH, Guang Z, Li SP, Zhou LB, Chen XH. 2D van der Waals materials for ultrafast pulsed fiber lasers: review and prospect. NANOTECHNOLOGY 2021; 33:082003. [PMID: 34731847 DOI: 10.1088/1361-6528/ac3611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
2D van der Waals materials are crystals composed of atomic layers, which have atomic thickness scale layers and rich distinct properties, including ultrafast optical response, surface effects, light-mater interaction, small size effects, quantum effects and macro quantum tunnel effects. With the exploration of saturable absorption characteristic of 2D van der Waals materials, a series of potential applications of 2D van der Waals materials as high threshold, broadband and fast response saturable absorbers (SAs) in ultrafast photonics have been proposed and confirmed. Herein, the photoelectric characteristics, nonlinear characteristic measurement technique of 2D van der Waals materials and the preparation technology of SAs are systematically described. Furthermore, the ultrafast pulsed fiber lasers based on classical 2D van der Waals materials including graphene, transition metal chalcogenides, topological insulators and black phosphorus have been fully summarized and analyzed. On this basis, opportunities and directions in this field, as well as the research results of ultrafast pulsed fiber lasers based on the latest 2D van der Waals materials (such as PbO, FePSe3, graphdiyne, bismuthene, Ag2S and MXene etc), are reviewed and summarized.
Collapse
Affiliation(s)
- Ya-Ni Zhang
- Shaanxi University of Science & Technology, Department of Physics, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Zhuo-Ying Song
- Shaanxi University of Science & Technology, Department of Physics, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Dun Qiao
- University of South Wales, Wireless and Optoelectronics Research and Innovation Centre, Faculty of Computing, Engineering and Science, Pontypridd CF37 1DL, United Kingdom
| | - Xiao-Hui Li
- Shaanxi Normal University, College of Physics and Information Technology, Xi'an, Shaanxi, 710119, People's Republic of China
| | - Zhe Guang
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332, United States of America
- School of Computer Science, Georgia Institute of Technology, 266 Ferst Drive, Atlanta, GA 30332, United States of America
| | - Shao-Peng Li
- Shaanxi University of Science & Technology, Department of Physics, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Li-Bin Zhou
- Shaanxi University of Science & Technology, Department of Physics, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Xiao-Han Chen
- Shandong University, School of Information Science and Engineering, Shandong Provincial Key Laboratory of Laser Technology and Application, Jinan, Shandong, 250100, People's Republic of China
| |
Collapse
|
3
|
Anisotropic Optical Response of WTe 2 Single Crystals Studied by Ellipsometric Analysis. NANOMATERIALS 2021; 11:nano11092262. [PMID: 34578578 PMCID: PMC8468096 DOI: 10.3390/nano11092262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022]
Abstract
In this paper we report the crystal growth conditions and optical anisotropy properties of Tungsten ditelluride (WTe2) single crystals. The chemical vapor transport (CVT) method was used for the synthesis of large WTe2 crystals with high crystallinity and surface quality. These were structurally and morphologically characterized by means of X-ray diffraction, optical profilometry and Raman spectroscopy. Through spectroscopic ellipsometry analysis, based on the Tauc–Lorentz model, we identified a high refractive index value (~4) and distinct tri-axial anisotropic behavior of the optical constants, which opens prospects for surface plasmon activity, revealed by the dielectric function. The anisotropic physical nature of WTe2 shows practical potential for low-loss light modulation at the 2D nanoscale level.
Collapse
|
4
|
Luo W, Ren Y, Feng J, Li X, Lv S, Qu M, Jing L, Chen X. Three-dimensional Ag 2S cubes for switchable multi-wavelength ultrashort pulse application. NANOTECHNOLOGY 2021; 32:355202. [PMID: 33571983 DOI: 10.1088/1361-6528/abe579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D) materials are widely used in optoelectronics, thermodynamics and ultrafast fiber lasers because of their excellent nonlinear optical properties. Silver sulfide (Ag2S) is a kind of 3D material with a unique cubic structure and large absorption coefficient. In this paper, a double-balance detection system is used to measure the saturation absorption intensity of Ag2S as 226.6 MW cm-2and the modulation depth as 13.9%. In the ring fiber laser, Ag2S is used as a saturable absorber (SA) to obtain a stable dual-wavelength mode locking. The center wavelengths of the mode locking are 1536.9 and 1544.5 nm, and the corresponding 3 dB bandwidths are 1.3 and 1.5. nm. By adjusting the polarization controller, a tuning process from two wavelengths to multiple wavelengths is realized, and the tunable width is 13.1 nm. This phenomenon is due to the combined effect of birefringence and nonlinear effects in the cavity. To our knowledge, this is the first report of a multiplexed fiber laser with Ag2S as a SA. The emergence of this result provides a valuable reference information for the multifunctional compact fiber laser, and the formed system can be applied in the fields of fiber sensing, telecommunications and optical communication.
Collapse
Affiliation(s)
- Wenfeng Luo
- Xi'an University of Posts and Telecommunications, Electronic Engineering Institute, Xi'an 710121, People's Republic of China
| | - Yujie Ren
- Xi'an University of Posts and Telecommunications, Electronic Engineering Institute, Xi'an 710121, People's Republic of China
- School of Physics & Information Technology, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Jiangjiang Feng
- School of Physics & Information Technology, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Xiaohui Li
- School of Physics & Information Technology, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Shuyuan Lv
- Xi'an University of Posts and Telecommunications, Electronic Engineering Institute, Xi'an 710121, People's Republic of China
| | - Mengjia Qu
- Xi'an University of Posts and Telecommunications, Electronic Engineering Institute, Xi'an 710121, People's Republic of China
| | - Lirong Jing
- Xi'an University of Posts and Telecommunications, Electronic Engineering Institute, Xi'an 710121, People's Republic of China
| | - Xiaohan Chen
- School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
5
|
Shaodong H, Chengjin L, Haifeng L, Jinzhang W, Chunyu G, Jianqun C, Min Z, Peiguang Y. Ultrafast thulium-doped fiber laser mode-locked by antimonides. OPTICS EXPRESS 2021; 29:13722-13732. [PMID: 33985102 DOI: 10.1364/oe.421993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
We report, for the first time, the nonlinear absorption at the 2 µm waveband of three Sb-related materials including two Sb compounds, GaSb and InSb, and one Sb alloy, Ge8Sb92. These saturable absorbers (SAs) were coated on tapered single mode fibers by the magnetron-sputtering deposition method. By incorporating these SAs into Tm-doped fiber lasers, ultrafast mode-locked solitons could be readily obtained. Stable pulse trains with 922 fs/753 fs/1005 fs pulse durations, 31.35 mW/37.70 mW/16.60 mW output powers, 93 dB/80 dB/92 dB signal-to-noise ratios were achieved with GaSb/InSb/Ge8Sb92, respectively. Our findings demonstrate that these materials can be widely used for photonic devices in the 2 µm waveband where ultrafast optical switching and modulating are desired.
Collapse
|
6
|
Liu M, Liu W, Liu X, Wang Y, Wei Z. Application of transition metal dichalcogenides in mid‐infrared fiber laser. NANO SELECT 2020. [DOI: 10.1002/nano.202000047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mengli Liu
- State Key Laboratory of Information Photonics and Optical Communications, School of Science Beijing University of Posts and Telecommunications Beijing 100876 China
| | - Wenjun Liu
- State Key Laboratory of Information Photonics and Optical Communications, School of Science Beijing University of Posts and Telecommunications Beijing 100876 China
| | - Ximei Liu
- State Key Laboratory of Information Photonics and Optical Communications, School of Science Beijing University of Posts and Telecommunications Beijing 100876 China
| | - Yaorong Wang
- State Key Laboratory of Information Photonics and Optical Communications, School of Science Beijing University of Posts and Telecommunications Beijing 100876 China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100083 China
| |
Collapse
|
7
|
Wang J, Wei J, Liu W, Yan P, Guo C, Ye C, Xia L, Ruan S. 2.8 µm passively Q-switched Er:ZBLAN fiber laser with an Sb saturable absorber mirror. APPLIED OPTICS 2020; 59:9165-9168. [PMID: 33104627 DOI: 10.1364/ao.402227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
A Q-switched Er:ZBLAN fiber laser operating at 2.8 µm was realized by employing Sb as the saturable material. The Sb material was deposited on a gold mirror by the magnetron-sputtering deposition method to develop a saturable absorber mirror (SAM). By employing the Sb-SAM in an Er:ZBLAN fiber laser, stable Q-switching operation was achieved at central wavelength of 2799.7 nm with the repetition rates ranging from 33.3 to 58.8 kHz and the pulse duration ranging from 5.7 to 1.7 µs. The Sb-SAM still works stably under the maximum pump power of 5.6 W, with an output power of 59 mW corresponding to the pulse energy of 1.03 µJ. To our knowledge, this was the first demonstration of Sb-based saturable material in Er:ZBLAN fiber laser for mid-infrared Q-switched pulse generation operating in the 2.8 µm regime, indicating its potential applications in the mid-infrared waveband.
Collapse
|
8
|
Lee J, Jhon YI, Lee K, Jhon YM, Lee JH. Nonlinear optical properties of arsenic telluride and its use in ultrafast fiber lasers. Sci Rep 2020; 10:15305. [PMID: 32943737 PMCID: PMC7498598 DOI: 10.1038/s41598-020-72265-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/17/2020] [Indexed: 11/09/2022] Open
Abstract
We report the first investigation results of the nonlinear optical properties of As2Te3. More specifically, the nonlinear optical absorption properties of the prepared α-As2Te3 were investigated at wavelengths of 1.56 and 1.9 μm using the open-aperture (OA) Z-scan technique. Using the OA Z-scan technique, the nonlinear absorption coefficients (β) of α-As2Te3 were estimated in a range from (- 54.8 ± 3.4) × 104 cm/GW to (- 4.9 ± 0.4) × 104 cm/GW depending on the irradiance of the input beam at 1.56 μm, whereas the values did from (- 19.8 ± 0.8) × 104 cm/GW to (- 3.2 ± 0.1) × 104 cm/GW at 1.9 μm. In particular, the β value at 1.56 μm is an order of magnitude larger than the previously reported values of other group-15 sesquichalcogenides such as Bi2Se3, Bi2Te3, and Bi2TeSe2. Furthermore, this is the first time report on β value of a group-15 sesquichalcogenide at a 1.9-μm wavelength. The density functional theory (DFT) calculations of the electronic band structures of α-As2Te3 were also conducted to obtain a better understanding of their energy band structure. The DFT calculations indicated that α-As2Te3 possess sufficient optical absorption in a wide wavelength region, including 1.5 μm, 1.9 μm, and beyond (up to 3.7 μm). Using both the measured nonlinear absorption coefficients and the theoretically obtained refractive indices from the DFT calculations, the imaginary parts of the third-order optical susceptibilities (Im χ(3)) of As2Te3 were estimated and they were found to vary from (- 39 ± 2.4) × 10-19 m2/V2 to (- 3.5 ± 0.3) × 10-19 m2/V2 at 1.56 μm and (- 16.5 ± 0.7) × 10-19 m2/V2 to (- 2.7 ± 0.1) × 10-19 m2/V2 at 1.9 μm, respectively, depending on the irradiance of the input beam. Finally, the feasibility of using α-As2Te3 for SAs was investigated, and the prepared SAs were thus tested by incorporating them into an erbium (Er)-doped fiber cavity and a thulium-holmium (Tm-Ho) co-doped fiber cavity for both 1.5 and 1.9 μm operation.
Collapse
Affiliation(s)
- Jinho Lee
- School of Electrical and Computer Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Young In Jhon
- School of Electrical and Computer Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Kyungtaek Lee
- School of Electrical and Computer Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Young Min Jhon
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Ju Han Lee
- School of Electrical and Computer Engineering, University of Seoul, Seoul, 02504, South Korea.
| |
Collapse
|
9
|
Ahmad H, Albaqawi HS, Yusoff N, Yi CW. 56 nm Wide-Band Tunable Q-Switched Erbium Doped Fiber Laser with Tungsten Ditelluride (WTe 2) Saturable Absorber. Sci Rep 2020; 10:9860. [PMID: 32555280 PMCID: PMC7300018 DOI: 10.1038/s41598-020-66664-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/08/2020] [Indexed: 11/09/2022] Open
Abstract
A wide-band and tunable Q-switched erbium-doped fiber (EDF) laser operating at 1560.5 nm with a tungsten ditelluride (WTe2) saturable absorber (SA) is demonstrated. The semi-metallic nature of WTe2 as well as its small band gap and excellent nonlinear optical properties make it an excellent SA material. The laser cavity uses an 89.5 cm long EDF, pumped by a 980 nm laser diode as the linear gain while the WTe2 based SA generates the pulsed output. The WTe2 based SA has a modulation depth, non-saturable loss and saturation intensity of about 21.4%, 78.6%, and 0.35 kW/cm2 respectively. Stable pulses with a maximum repetition rate of 55.56 kHz, narrowest pulse width of 1.77 µs and highest pulse energy of 18.09 nJ are obtained at the maximum pump power of 244.5 mW. A 56 nm tuning range is obtained in the laser cavity, and the output is observed having a signal to noise ratio (SNR) of 48.5 dB. The demonstrated laser has potential for use in a large number of photonics applications.
Collapse
Affiliation(s)
- Harith Ahmad
- Photonics Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Physics Department, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Visiting Professor at the Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia.
| | | | - Norazriena Yusoff
- Photonics Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chong Wu Yi
- Photonics Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Zhang M, Chen H, Wang J, Wang Z, Zhang J, Li J, He T, Yin J, Yan P, Ruan S. Few-layer metal monochalcogenide saturable absorbers for high-energy Q-switched pulse generation. NANOTECHNOLOGY 2020; 31:205204. [PMID: 32015224 DOI: 10.1088/1361-6528/ab7251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional layered materials have been widely utilized as nonlinear absorption materials to transfer continue-wave into pulse trains in fiber laser systems. Here, we prepare robust GaSe/GeSe composites with high power bearing capacity as saturable absorbers (SAs) and then investigate their nonlinear optical properties via broadband Z-scan measurement at 800 nm and 1550 nm, respectively. The modulation depths of GaSe/GeSe based SAs are measured to be 11.97% and 7.69% at 1550 nm. After incorporating the GaSe/GeSe SAs into an Erbium-doped fiber laser cavity, passively Q-switched pulse trains could be obtained with repetition rates changing from 83.58 to 136.78 kHz (70.41 to 161.65 kHz). The maximum output power and pulse energy are 52.1 mW/370.67 nJ (GaSe) and 21.6 mW/133.74 nJ (GeSe) under the maximum pump power of 600 mW. The results indicate that GaSe and GeSe possess outstanding thermal stability and could be employed as remarkable saturable absorption materials for high-energy pulses generation.
Collapse
Affiliation(s)
- Mengyu Zhang
- Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zheng Z, Wang J, Yin J, Ouyang D, Ren X, Yan P, Wang J, Pei J, Lue Q, Ruan S. High-power mode-locked thulium-doped fiber laser with tungsten ditelluride as saturable absorber. APPLIED OPTICS 2020; 59:196-200. [PMID: 32225288 DOI: 10.1364/ao.59.000196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
A passively mode-locked thulium-doped fiber laser using a tungsten ditelluride saturable absorber (${{\rm WTe}_2}\mbox{-}{\rm SA}$WTe2-SA) is demonstrated. High-power mode-locked pulses with an average output power of 108.1 mW were achieved by incorporating the ${{\rm WTe}_2}\mbox{-}{\rm SA}$WTe2-SA into a thulium-doped fiber oscillator. To the best of our knowledge, this is the highest average power obtained from a ${{\rm WTe}_2}\mbox{-}{\rm SA}$WTe2-SA-based fiber laser. We further amplified the output power to 5.60 W with an all-fiber thulium-doped double-cladding fiber amplifier. Our result indicates that ${{\rm WTe}_2}\mbox{-}{\rm SA}$WTe2-SA could be an excellent candidate for a high-power fiber laser system.
Collapse
|
12
|
Du T, Li Y, Wang H, Chen Z, Mashinsky VM, Luo Z. 2166 nm all-fiber short-pulsed Raman laser based on germania-core fiber. OPTICS EXPRESS 2019; 27:34552-34558. [PMID: 31878643 DOI: 10.1364/oe.27.034552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
We report a compact 2166 nm germania-fiber short-pulsed Raman laser based on the cavity matching scheme. The all-fiber Raman cavity is formed by a pair of 2166 nm fiber Bragg gratings. High-power noise-like pulses from a 1981 nm fiber laser are used to pump a 22 m germania-core fiber for providing Raman gain at ∼2166 nm, and readily realizes the Raman-cavity synchronization with high mismatching tolerance. Stable Raman pulses at 2166 nm are therefore generated with the tunable pulse width of 0.9-4.4 ns and the large pulse energy up to 12.15 nJ. This is, to the best of our knowledge, the first demonstration of all-fiber short-pulsed Raman laser in the mid-infrared region.
Collapse
|
13
|
Gao J, Ning T, Liu Y, Shang X, Han X, Guo Q, Guo L, Lu Z, Wang Z, Zhang H, Jiang S. Generation of high-energy rectangular pulses in a nonlinear polarization rotation mode-locked ring fiber laser. APPLIED OPTICS 2019; 58:7897-7903. [PMID: 31674478 DOI: 10.1364/ao.58.007897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
In this paper, a novel high-energy mode-locked fiber laser based on the nonlinear polarization rotation (NPR) technique is presented to generate 331 nJ rectangular pulses. When pump power was 2659 mW, the maximum output power would be 102.3 mW; the maximum peak power was 41.74 W under the pump power of 1766 mW. In this study, the use of two homemade laser diodes and other common fiber devices was a vital step to achieve the low-cost and high-efficiency NPR mode-locked fiber laser. Based on these results, a novel approach could be developed to realize a high-energy rectangular pulse and promote the practical applications of the NPR mode-locked fiber laser in the field of ultrafast photonics.
Collapse
|
14
|
Li S, Yin Y, Ouyang Q, Ran G, Chen Y, Lewis E, Farrell G, Tokurakawa M, Harun SW, Wang P. Nanosecond passively Q-switched fibre laser using a NiS 2 based saturable absorber. OPTICS EXPRESS 2019; 27:19843-19851. [PMID: 31503740 DOI: 10.1364/oe.27.019843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
Q-switched pulse laser generation is successfully demonstrated in both Erbium-doped fibre laser (EDFL) and Thulium-doped fibre laser (TDFL) cavities by employing Nickel disulfide (NiS2) as a saturable absorber (SA). Q-switched pulse laser operation at 1.55 μm and 2.0 μm is obtained at low pump power levels of 37 mW and 48 mW, respectively. For the EDFL, stable passively Q-switched laser output at a wavelength of 1561.86 nm is achieved, with a minimum pulse duration of 237 ns and a repetition rate of 243.9 kHz. For the TDFL, the centre wavelength of the laser output is 1915.5 nm, with a minimum pulse duration of 505 ns and a repetition rate of 214.68 kHz. NiS2 is used as SA for Q-switched laser generation over a broadband wavelength for the first time.
Collapse
|
15
|
Liu WJ, Liu ML, Lin S, Liu JC, Lei M, Wu H, Dai CQ, Wei ZY. Synthesis of high quality silver nanowires and their applications in ultrafast photonics. OPTICS EXPRESS 2019; 27:16440-16448. [PMID: 31252869 DOI: 10.1364/oe.27.016440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Silver nanowires are widely used in catalysts, surface enhanced Raman scattering, microelectronic equipment, thin film solar cells, microelectrodes and biosensors for their excellent conductivity, heat transfer, low surface resistance, high transparency and good biocompatibility. However, the optical nonlinearity of silver nanowires has not been further explored yet. In this paper, three silver nanowire samples with different concentrations are produced via a typical hydrothermal method. Their applications to fiber lasers are implemented to prove the optical nonlinearity of silver nanowires for the first time. Based on three kinds of silver nanowires, the mode-locked operation of fiber lasers is successfully realized. Moreover, the fiber laser based on the silver nanowire with a concentration of 2 mg/L demonstrates the shortest pulse duration of 149.3 fs. The experiment not only proves the optical nonlinearity of silver nanowires, but also has some enlightenment on the selection of the optimum concentration of silver nanowires in the consideration of ultrashort pulse output.
Collapse
|
16
|
He J, Tao L, Zhang H, Zhou B, Li J. Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. NANOSCALE 2019; 11:2577-2593. [PMID: 30693933 DOI: 10.1039/c8nr09368g] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Ultrafast fiber lasers have significant applications in ultra-precision manufacturing, medical diagnostics, medical treatment, precision measurement and astronomical detection, owing to their ultra-short pulse width and ultra-high peak-power. Since graphene was first explored as an optical saturable absorber for passively mode-locked lasers in 2009, many other 2D materials beyond graphene, including phosphorene, antimonene, bismuthene, transition metal dichalcogenides (TMDs), topological insulators (TIs), metal-organic frameworks (MOFs) and MXenes, have been successively explored, resulting in rapid development of novel 2D materials-based saturable absorbers. Herein, we review the latest progress of the emerging 2D materials beyond graphene for passively mode-locked fiber laser application. These 2D materials are classified into mono-elemental, dual-elemental and multi-elemental 2D materials. The atomic structure, band structure, nonlinear optical properties, and preparation methods of 2D materials are summarized. Diverse integration strategies for applying 2D materials into fiber laser systems are introduced, and the mode-locking performance of the 2D materials-based fiber lasers working at 1-3 μm are discussed. Finally, the perspectives and challenges facing 2D materials-based mode-locked fiber lasers are highlighted.
Collapse
Affiliation(s)
- Junshan He
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.
| | | | | | | | | |
Collapse
|
17
|
Chen L, Li X, Zhang H, Xia W. Passively Q-switched 1.989 μm all-solid-state laser based on a WTe 2 saturable absorber. APPLIED OPTICS 2018; 57:10239-10242. [PMID: 30645235 DOI: 10.1364/ao.57.010239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
In this paper, the novel two-dimensional (2D) tungsten ditelluride (WTe2) was successfully fabricated by the liquid phase exfoliation method and used as a saturable absorber (SA) for a diode-end-pumped passive Q-switching Tm:YAP laser operating at the 2.0 μm wavelength band. The saturable fluence and the modulation depth of the prepared WTe2 SA were determined to be 5.1 μJ/cm2 and 7.2%, respectively. The maximum average output power of 0.64 W was obtained with the shortest pulse width of 368 ns at a pulse repetition rate of 78 kHz. The corresponding highest single pulse energy and largest pulse peak power were calculated to be 4.8 μJ and 12.7 W, respectively. To the best of our knowledge, this is the first time that WTe2 has been used as the SA for 2.0 μm solid-state bulk lasers. The results indicate that WTe2 should be an excellent SA for generating 2.0 μm pulsed lasers.
Collapse
|
18
|
Yan B, Zhang B, Nie H, Li G, Sun X, Wang Y, Liu J, Shi B, Liu S, He J. Broadband 1T-titanium selenide-based saturable absorbers for solid-state bulk lasers. NANOSCALE 2018; 10:20171-20177. [PMID: 30229783 DOI: 10.1039/c8nr03859g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
1T-titanium selenide (1T-TiSe2), a representative of 1T phase transition metal dichalcogenides (TMDs), exhibits semimetallic behaviour with a nearly zero bandgap structure, which makes it a promising photoelectric material. A high-quality multilayer 1T-TiSe2 saturable absorber (SA) is successfully fabricated by a combination of liquid phase exfoliation and the spin coating method. The broadband nonlinear saturable absorption properties of the prepared 1T-TiSe2 SA are investigated by using the open aperture (OA) Z-scan method. Passively Q-switched (PQS) all-solid-state lasers with different bulk crystals at the wavelengths of 1.0, 1.3, 2.0 and 2.8 μm are realised based on the 1T-TiSe2 SA. To the best of our knowledge, this is the first presentation of the application of a 1T-TiSe2 material to all-solid-state bulk lasers. The results indicate that 1T-TiSe2 could be an alternative broadband SA for solid-state pulsed lasers and exhibits promising potential applications in mode-locked ultrafast lasers.
Collapse
Affiliation(s)
- Bingzheng Yan
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Ji'nan 250100, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu W, Liu M, OuYang Y, Hou H, Lei M, Wei Z. CVD-grown MoSe 2 with high modulation depth for ultrafast mode-locked erbium-doped fiber laser. NANOTECHNOLOGY 2018; 29:394002. [PMID: 29968568 DOI: 10.1088/1361-6528/aad0b3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two-dimensional materials have been widely used as optical modulator materials in mode-locked fiber lasers. In terms of the performance of the fiber laser, one with an ultrashort pulse and high stability has great commercial value. Herein, the MoSe2 grown by the chemical vapor deposition (CVD) method with high modulation depth, quality lattice structure and uniformity is successfully applied in a mode-locked erbium-doped fiber laser. The pulse duration and signal-to-noise ratio of the laser are 207 fs and 85 dB, respectively. The multifarious performance comparisons indicate that the CVD-based MoSe2 saturable absorber with the tapered fiber structure has unique advantages not only in the generation of ultrashort pulses, but also in the optimization of laser stability.
Collapse
Affiliation(s)
- Wenjun Liu
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, P. O. Box 122, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Hou L, Guo H, Wang Y, Sun J, Lin Q, Bai Y, Bai J. Sub-200 femtosecond dispersion-managed soliton ytterbium-doped fiber laser based on carbon nanotubes saturable absorber. OPTICS EXPRESS 2018; 26:9063-9070. [PMID: 29715864 DOI: 10.1364/oe.26.009063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Ultrafast fiber laser light sources attract enormous interest due to the booming applications they are enabling, including long-distance communication, optical metrology, detecting technology of infra-biophotons, and novel material processing. In this paper, we demonstrate 175 fs dispersion-managed soliton (DMS) mode-locked ytterbium-doped fiber (YDF) laser based on single-walled carbon nanotubes (SWCNTs) saturable absorber (SA). The output DMSs have been achieved with repetition rate of 21.2 MHz, center wavelength of 1025.5 nm, and a spectral width of 32.7 nm. The operation directly pulse duration of 300 fs for generated pulse is the reported shortest pulse width for broadband SA based YDF lasers. By using an external grating-based compressor, the pulse duration could be compressed down to 175 fs. To the best of our knowledge, it is the shortest pulse duration obtained directly from YDF laser based on broadband SAs. In this paper, SWCNTs-SA has been utilized as the key optical component (mode locker) and the grating pair providing negative dispersion acts as the dispersion controller.
Collapse
|