1
|
Li Z, Mary S, Johnson TV, Yi J. Compact lens-based dual-channel adaptive optics scanning laser ophthalmoscopy for in-vivo three-dimensional retinal imaging in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.645335. [PMID: 40235975 PMCID: PMC11996361 DOI: 10.1101/2025.03.31.645335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Adaptive optics (AO) has been instrumental in ophthalmic imaging, by correcting wavefront aberrations in ocular optics and achieving diffraction-limited resolution. Current state-of-the-art AO retinal imaging systems use mirror-based optics to avoid surface reflection and chromatic aberrations, requiring a large system footprint with long focal length spherical mirrors. Here we report a compact refractive lens-based AO scanning laser ophthalmoscopy (SLO) system with simultaneous dual-channel fluorescence imaging capacity in mouse retina. The optical layout fits on a 2'x2' optical breadboard and the whole system is constructed on a mobile 3'x4' optical table. We show that the 3D image resolutions are significantly improved with AO correction, particularly in the z-axis (2x improvement compared to without AO, approaching diffraction-limited resolution). The optical design enables survey of a relatively large retinal area, up to 20º field of view, as well as high magnification AO imaging. Simultaneous imaging with 488nm and 561nm laser lines was evaluated using dual-channel AOSLO in CX3CR1-GFP transgenic mice expressing EGFP in microglia, undergoing rhodamine angiography. We performed dynamic high-resolution 3D imaging of microglial morphology every 5 mins for one hour and longitudinally over 3 weeks, demonstrating microglial activation and translocation over short and long time periods in an optic nerve crush model. This lens-based compact AOSLO offers a versatile and compact design for retinal fluorescence imaging in mice.
Collapse
|
2
|
Song S, Hormel TT, Jia Y. Visible-light optical coherence tomography and its applications. NEUROPHOTONICS 2025; 12:020601. [PMID: 40206421 PMCID: PMC11981582 DOI: 10.1117/1.nph.12.2.020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025]
Abstract
Visible-light optical coherence tomography (vis-OCT) is an emerging OCT technology that uses visible rather than near-infrared illumination and is useful for pre-clinical and clinical imaging. It provides one-micron level axial resolution and distinct scattering and absorption contrast that enables oximetry but requires additional considerations in system implementation and practical settings. We review the development of vis-OCT and demonstrated applications. We also provide insights into prospects and possible technological improvements that may address current challenges.
Collapse
Affiliation(s)
- Siyu Song
- Oregon Health and Science University, Casey Eye Institute, Portland, Oregon, United States
- Oregon Health and Science University, Department of Biomedical Engineering, Portland, Oregon, United States
| | - Tristan T. Hormel
- Oregon Health and Science University, Casey Eye Institute, Portland, Oregon, United States
| | - Yali Jia
- Oregon Health and Science University, Casey Eye Institute, Portland, Oregon, United States
- Oregon Health and Science University, Department of Biomedical Engineering, Portland, Oregon, United States
| |
Collapse
|
3
|
Kho AM, Srinivasan VJ. Proactive spectrometer matching for excess noise suppression in balanced visible light optical coherence tomography (OCT). OPTICS EXPRESS 2021; 29. [PMCID: PMC8970694 DOI: 10.1364/oe.439919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Supercontinuum sources for visible light spectral domain OCT (SDOCT) are noisy and often expensive. Balanced detection can reduce excess noise, but is rarely used in SDOCT. Here, we show that balanced detection can achieve effective excess noise cancellation across all depths if two linear array spectrometers are spectrally well-matched. We propose excess noise correlation matrices as tools to achieve such precise spectral matching. Using optomechanical adjustments, while monitoring noise correlations, we proactively match wavelength sampling of two different spectrometers to just a few picometers in wavelength, or 0.001% of the overall spectral range. We show that proactively-matched spectrometers can achieve an excess noise suppression of more than two orders-of-magnitude in balanced visible light OCT, outperforming simple retrospective software calibration of mismatched spectrometers. High noise suppression enables visible light OCT of the mouse retina at 70 kHz with 125 microwatts incident power, with an inexpensive, 30 MHz repetition rate supercontinuum source. Averaged images resolve the retinal pigment epithelium in a highly pigmented mouse strain.
Collapse
Affiliation(s)
- Aaron M. Kho
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, USA
| | - Vivek J. Srinivasan
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, USA
- Department of Ophthalmology and Vision Science, University of California Davis, Davis School of Medicine, Sacramento, California 96817, USA
- Department of Ophthalmology, NYU Langone Health, New York, New York 10017, USA
- Department of Radiology, NYU Langone Health, New York, New York 10016, USA
- Tech4Health Institute, NYU Langone Health, New York, New York 10010, USA
| |
Collapse
|
4
|
Durech E, Newberry W, Franke J, Sarunic MV. Wavefront sensor-less adaptive optics using deep reinforcement learning. BIOMEDICAL OPTICS EXPRESS 2021; 12:5423-5438. [PMID: 34692192 PMCID: PMC8515990 DOI: 10.1364/boe.427970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 05/02/2023]
Abstract
Image degradation due to wavefront aberrations can be corrected with adaptive optics (AO). In a typical AO configuration, the aberrations are measured directly using a Shack-Hartmann wavefront sensor and corrected with a deformable mirror in order to attain diffraction limited performance for the main imaging system. Wavefront sensor-less adaptive optics (SAO) uses the image information directly to determine the aberrations and provide guidance for shaping the deformable mirror, often iteratively. In this report, we present a Deep Reinforcement Learning (DRL) approach for SAO correction using a custom-built fluorescence confocal scanning laser microscope. The experimental results demonstrate the improved performance of the DRL approach relative to a Zernike Mode Hill Climbing algorithm for SAO.
Collapse
Affiliation(s)
- Eduard Durech
- School of Engineering Science, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - William Newberry
- School of Engineering Science, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Jonas Franke
- Institute of Biomedical Optics, University of Lübeck, 23562 Luebeck, Germany
| | - Marinko V Sarunic
- Institute of Biomedical Optics, University of Lübeck, 23562 Luebeck, Germany
| |
Collapse
|
5
|
Matkivsky V, Moiseev A, Shilyagin P, Rodionov A, Spahr H, Pfäffle C, Hüttmann G, Hillmann D, Gelikonov G. Determination and correction of aberrations in full field optical coherence tomography using phase gradient autofocus by maximizing the likelihood function. JOURNAL OF BIOPHOTONICS 2020; 13:e202000112. [PMID: 32639647 DOI: 10.1002/jbio.202000112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
A method for numerical estimation and correction of aberrations of the eye in fundus imaging with optical coherence tomography (OCT) is presented. Aberrations are determined statistically by using the estimate based on likelihood function maximization. The method can be considered as an extension of the phase gradient autofocusing algorithm in synthetic aperture radar imaging to 2D optical aberration correction. The efficacy of the proposed method has been demonstrated in OCT fundus imaging with 6λ aberrations. After correction, single photoreceptors were resolved. It is also shown that wave front distortions with high spatial frequencies can be determined and corrected.
Collapse
Affiliation(s)
| | | | | | | | - Hendrik Spahr
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Clara Pfäffle
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Dierck Hillmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Thorlabs GmbH, Lübeck, Germany
| | | |
Collapse
|
6
|
Song W, Shao W, Yi W, Liu R, Desai M, Ness S, Yi J. Visible light optical coherence tomography angiography (vis-OCTA) facilitates local microvascular oximetry in the human retina. BIOMEDICAL OPTICS EXPRESS 2020; 11:4037-4051. [PMID: 33014584 PMCID: PMC7510897 DOI: 10.1364/boe.395843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 05/06/2023]
Abstract
We report herein the first visible light optical coherence tomography angiography (vis-OCTA) for human retinal imaging. Compared to the existing vis-OCT systems, we devised a spectrometer with a narrower bandwidth to increase the spectral power density for OCTA imaging, while retaining the major spectral contrast in the blood. We achieved a 100 kHz A-line rate, the fastest acquisition speed reported so far for human retinal vis-OCT. We rigorously optimized the imaging protocol such that a single acquisition took < 6 seconds with a field of view (FOV) of 3×7.8 mm2. The angiography enables accurate localization of microvasculature down to the capillary level and thus enables oximetry at vessels < 100 µm in diameter. We demonstrated microvascular hemoglobin oxygen saturation (sO2) at the feeding and draining vessels at the perifoveal region. The longitudinal repeatability was assessed by < 5% coefficient of variation (CV). The unique capabilities of our vis-OCTA system may allow studies on the role of microvascular oxygen in various retinal pathologies.
Collapse
Affiliation(s)
- Weiye Song
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston 02118, USA
| | - Wenjun Shao
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston 02118, USA
| | - Wei Yi
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston 02118, USA
| | - Rongrong Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Manishi Desai
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston 02118, USA
| | - Steven Ness
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston 02118, USA
| | - Ji Yi
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston 02118, USA
- Department of Biomedical Engineering, Boston University, Boston 02118, USA
- Department of Electronic and Computer Engineering, Boston University, Boston 02118, USA
| |
Collapse
|
7
|
Harper DJ, Konegger T, Augustin M, Schützenberger K, Eugui P, Lichtenegger A, Merkle CW, Hitzenberger CK, Glösmann M, Baumann B. Hyperspectral optical coherence tomography for in vivo visualization of melanin in the retinal pigment epithelium. JOURNAL OF BIOPHOTONICS 2019; 12:e201900153. [PMID: 31334610 PMCID: PMC7065636 DOI: 10.1002/jbio.201900153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/19/2019] [Accepted: 07/18/2019] [Indexed: 05/09/2023]
Abstract
Previous studies for melanin visualization in the retinal pigment epithelium (RPE) have exploited either its absorption properties (using photoacoustic tomography or photothermal optical coherence tomography [OCT]) or its depolarization properties (using polarization sensitive OCT). However, these methods are only suitable when the melanin concentration is sufficiently high. In this work, we present the concept of hyperspectral OCT for melanin visualization in the RPE when the concentration is low. Based on white light OCT, a hyperspectral stack of 27 wavelengths (440-700 nm) was created in post-processing for each depth-resolved image. Owing to the size and shape of the melanin granules in the RPE, the variations in backscattering coefficient as a function of wavelength could be identified-a result which is to be expected from Mie theory. This effect was successfully identified both in eumelanin-containing phantoms and in vivo in the low-concentration Brown Norway rat RPE.
Collapse
Affiliation(s)
- Danielle J. Harper
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Thomas Konegger
- Institute of Chemical Technologies and Analytics, TU WienViennaAustria
| | - Marco Augustin
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Kornelia Schützenberger
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Pablo Eugui
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Antonia Lichtenegger
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Conrad W. Merkle
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | | | - Martin Glösmann
- Core Facility for Research and TechnologyUniversity of Veterinary MedicineViennaAustria
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| |
Collapse
|
8
|
Liu R, Cheng S, Tian L, Yi J. Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification. LIGHT, SCIENCE & APPLICATIONS 2019; 8:102. [PMID: 31754429 PMCID: PMC6864044 DOI: 10.1038/s41377-019-0216-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 05/06/2023]
Abstract
Measurement of blood oxygen saturation (sO2) by optical imaging oximetry provides invaluable insight into local tissue functions and metabolism. Despite different embodiments and modalities, all label-free optical-imaging oximetry techniques utilize the same principle of sO2-dependent spectral contrast from haemoglobin. Traditional approaches for quantifying sO2 often rely on analytical models that are fitted by the spectral measurements. These approaches in practice suffer from uncertainties due to biological variability, tissue geometry, light scattering, systemic spectral bias, and variations in the experimental conditions. Here, we propose a new data-driven approach, termed deep spectral learning (DSL), to achieve oximetry that is highly robust to experimental variations and, more importantly, able to provide uncertainty quantification for each sO2 prediction. To demonstrate the robustness and generalizability of DSL, we analyse data from two visible light optical coherence tomography (vis-OCT) setups across two separate in vivo experiments on rat retinas. Predictions made by DSL are highly adaptive to experimental variabilities as well as the depth-dependent backscattering spectra. Two neural-network-based models are tested and compared with the traditional least-squares fitting (LSF) method. The DSL-predicted sO2 shows significantly lower mean-square errors than those of the LSF. For the first time, we have demonstrated en face maps of retinal oximetry along with a pixel-wise confidence assessment. Our DSL overcomes several limitations of traditional approaches and provides a more flexible, robust, and reliable deep learning approach for in vivo non-invasive label-free optical oximetry.
Collapse
Affiliation(s)
- Rongrong Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Shiyi Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215 USA
| | - Lei Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215 USA
| | - Ji Yi
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215 USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA 02118 USA
| |
Collapse
|
9
|
Lichtenegger A, Gesperger J, Kiesel B, Muck M, Eugui P, Harper DJ, Salas M, Augustin M, Merkle CW, Hitzenberger CK, Widhalm G, Woehrer A, Baumann B. Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31240898 PMCID: PMC6977170 DOI: 10.1117/1.jbo.24.6.066010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/07/2019] [Indexed: 05/28/2023]
Abstract
We present a multimodal visible light optical coherence microscopy (OCM) and fluorescence imaging (FI) setup. Specification and phantom measurements were performed to characterize the system. Two applications in neuroimaging were investigated. First, curcumin-stained brain slices of a mouse model of Alzheimer's disease were examined. Amyloid-beta plaques were identified based on the fluorescence of curcumin, and coregistered morphological images of the brain tissue were provided by the OCM channel. Second, human brain tumor biopsies retrieved intraoperatively were imaged prior to conventional neuropathologic work-up. OCM revealed the three-dimensional structure of the brain parenchyma, and FI added the tumor tissue-specific contrast. Attenuation coefficients computed from the OCM data and the florescence intensity values were analyzed and showed a statistically significant difference for 5-aminolevulinic acid (5-ALA)-positive and -negative brain tissues. OCM findings correlated well with malignant hot spots within brain tumor biopsies upon histopathology. The combination of OCM and FI seems to be a promising optical imaging modality providing complementary contrast for applications in the field of neuroimaging.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Johanna Gesperger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- General Hospital and Medical University of Vienna, Institute of Neurology, Vienna, Austria
| | - Barbara Kiesel
- General Hospital and Medical University of Vienna, Univ. Klinik Neurochirurgie, Vienna, Austria
| | - Martina Muck
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- General Hospital and Medical University of Vienna, Institute of Neurology, Vienna, Austria
| | - Pablo Eugui
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Danielle J. Harper
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Matthias Salas
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Marco Augustin
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Conrad W. Merkle
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Christoph K. Hitzenberger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Georg Widhalm
- General Hospital and Medical University of Vienna, Univ. Klinik Neurochirurgie, Vienna, Austria
| | - Adelheid Woehrer
- General Hospital and Medical University of Vienna, Institute of Neurology, Vienna, Austria
| | - Bernhard Baumann
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| |
Collapse
|