1
|
Taneja C, George JG, Corsetti S, Wijesinghe P, Bruce GD, Zwart MF, Bhattacharya S, Dholakia K. Sidelobe suppressed Bessel beams for one-photon light-sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:6183-6197. [PMID: 39553856 PMCID: PMC11563347 DOI: 10.1364/boe.538253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 11/19/2024]
Abstract
The Bessel beam (BB) has found widespread adoption in various forms of light-sheet microscopy. However, for one-photon fluorescence, the transverse profile of the beam poses challenges due to the detrimental effect of the sidelobes. Here, we mitigate this issue by using a computer-generated phase element for generating a sidelobe suppressed Bessel beam (SSBB). We then progress to perform a comparison of biological imaging using SSBB to standard BB in a light-sheet geometry. The SSBB peak intensity is more than an order of magnitude higher than the first sidelobe. In contrast to a standard BB light-sheet, an SSBB does not need deconvolution. The SSBB propagates to depths exceeding 400 μm in phantom samples maintaining a transverse size of 5 μm. Finally, we demonstrate the advantage of using an SSBB light-sheet for biological applications by imaging fixed early-stage zebrafish larvae. In comparison to the standard BB, we observe a two-fold increase in contrast-to-noise ratio (CNR) when imaging the labelled cellular eye structures and the notochords. Our results provide an effective approach to generating and using SSBB light-sheets to enhance contrast for one-photon light-sheet microscopy.
Collapse
Affiliation(s)
- Chetna Taneja
- SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
| | | | - Stella Corsetti
- SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
| | - Philip Wijesinghe
- SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
| | - Graham D. Bruce
- SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
| | - Maarten F. Zwart
- School of Psychology and Neuroscience, Centre for Biophotonics, University of St Andrews, St Andrews, Fife KY16 9JP, UK
| | | | - Kishan Dholakia
- SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
- Centre of Light for Life and School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
2
|
Fernández A, Classen A, Josyula N, Florence JT, Sokolov AV, Scully MO, Straight P, Verhoef AJ. Simultaneous Two- and Three-Photon Deep Imaging of Autofluorescence in Bacterial Communities. SENSORS (BASEL, SWITZERLAND) 2024; 24:667. [PMID: 38276359 PMCID: PMC10819415 DOI: 10.3390/s24020667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The intrinsic fluorescence of bacterial samples has a proven potential for label-free bacterial characterization, monitoring bacterial metabolic functions, and as a mechanism for tracking the transport of relevant components through vesicles. The reduced scattering and axial confinement of the excitation offered by multiphoton imaging can be used to overcome some of the limitations of single-photon excitation (e.g., scattering and out-of-plane photobleaching) to the imaging of bacterial communities. In this work, we demonstrate in vivo multi-photon microscopy imaging of Streptomyces bacterial communities, based on the excitation of blue endogenous fluorophores, using an ultrafast Yb-fiber laser amplifier. Its parameters, such as the pulse energy, duration, wavelength, and repetition rate, enable in vivo multicolor imaging with a single source through the simultaneous two- and three-photon excitation of different fluorophores. Three-photon excitation at 1040 nm allows fluorophores with blue and green emission spectra to be addressed (and their corresponding ultraviolet and blue single-photon excitation wavelengths, respectively), and two-photon excitation at the same wavelength allows fluorophores with yellow, orange, or red emission spectra to be addressed (and their corresponding green, yellow, and orange single-photon excitation wavelengths). We demonstrate that three-photon excitation allows imaging over a depth range of more than 6 effective attenuation lengths to take place, corresponding to an 800 micrometer depth of imaging, in samples with a high density of fluorescent structures.
Collapse
Affiliation(s)
- Alma Fernández
- Department of Soil and Crop Sciences, Texas A&M University, TAMU 2474, College Station, TX 77843, USA;
- Institute for Quantum Science & Engineering, Texas A&M University, TAMU 4242, College Station, TX 77843, USA; (A.V.S.); (M.O.S.)
| | - Anton Classen
- Department of Soil and Crop Sciences, Texas A&M University, TAMU 2474, College Station, TX 77843, USA;
| | - Nityakalyani Josyula
- Department of Biochemistry and Biophysics, Texas A&M University, TAMU 2128, College Station, TX 77843, USA; (N.J.); (P.S.)
| | - James T. Florence
- Department of Physics & Astronomy, Texas A&M University, TAMU 4242, College Station, TX 77843, USA;
| | - Alexei V. Sokolov
- Institute for Quantum Science & Engineering, Texas A&M University, TAMU 4242, College Station, TX 77843, USA; (A.V.S.); (M.O.S.)
- Department of Physics & Astronomy, Texas A&M University, TAMU 4242, College Station, TX 77843, USA;
| | - Marlan O. Scully
- Institute for Quantum Science & Engineering, Texas A&M University, TAMU 4242, College Station, TX 77843, USA; (A.V.S.); (M.O.S.)
| | - Paul Straight
- Department of Biochemistry and Biophysics, Texas A&M University, TAMU 2128, College Station, TX 77843, USA; (N.J.); (P.S.)
| | - Aart J. Verhoef
- Department of Soil and Crop Sciences, Texas A&M University, TAMU 2474, College Station, TX 77843, USA;
- Institute for Quantum Science & Engineering, Texas A&M University, TAMU 4242, College Station, TX 77843, USA; (A.V.S.); (M.O.S.)
| |
Collapse
|
3
|
Ding C, Shao R, He Q, Li LS, Yang J. Wavefront shaping improves the transparency of the scattering media: a review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11507. [PMID: 38089445 PMCID: PMC10711682 DOI: 10.1117/1.jbo.29.s1.s11507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Significance Wavefront shaping (WFS) can compensate for distortions by optimizing the wavefront of the input light or reversing the transmission matrix of the media. It is a promising field of research. A thorough understanding of principles and developments of WFS is important for optical research. Aim To provide insight into WFS for researchers who deal with scattering in biomedicine, imaging, and optical communication, our study summarizes the basic principles and methods of WFS and reviews recent progress. Approach The basic principles, methods of WFS, and the latest applications of WFS in focusing, imaging, and multimode fiber (MMF) endoscopy are described. The practical challenges and prospects of future development are also discussed. Results Data-driven learning-based methods are opening up new possibilities for WFS. High-resolution imaging through MMFs can support small-diameter endoscopy in the future. Conclusion The rapid development of WFS over the past decade has shown that the best solution is not to avoid scattering but to find ways to correct it or even use it. WFS with faster speed, more optical modes, and more modulation degrees of freedom will continue to drive exciting developments in various fields.
Collapse
Affiliation(s)
- Chunxu Ding
- Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, Shanghai, China
| | - Rongjun Shao
- Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, Shanghai, China
| | - Qiaozhi He
- Shanghai Jiao Tong University, Institute of Marine Equipment, Shanghai, China
| | - Lei S. Li
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| | - Jiamiao Yang
- Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, Shanghai, China
- Shanghai Jiao Tong University, Institute of Marine Equipment, Shanghai, China
| |
Collapse
|
4
|
Xiao Y, Deng P, Zhao Y, Yang S, Li B. Three-photon excited fluorescence imaging in neuroscience: From principles to applications. Front Neurosci 2023; 17:1085682. [PMID: 36891460 PMCID: PMC9986337 DOI: 10.3389/fnins.2023.1085682] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
The development of three-photon microscopy (3PM) has greatly expanded the capability of imaging deep within biological tissues, enabling neuroscientists to visualize the structure and activity of neuronal populations with greater depth than two-photon imaging. In this review, we outline the history and physical principles of 3PM technology. We cover the current techniques for improving the performance of 3PM. Furthermore, we summarize the imaging applications of 3PM for various brain regions and species. Finally, we discuss the future of 3PM applications for neuroscience.
Collapse
Affiliation(s)
| | | | | | | | - Bo Li
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Ministry of Education (MOE), Frontiers Center for Brain Science, Institute for Translational Brain Research, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Practical considerations for quantitative light sheet fluorescence microscopy. Nat Methods 2022; 19:1538-1549. [PMID: 36266466 DOI: 10.1038/s41592-022-01632-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/31/2022] [Indexed: 12/25/2022]
Abstract
Fluorescence microscopy has evolved from a purely observational tool to a platform for quantitative, hypothesis-driven research. As such, the demand for faster and less phototoxic imaging modalities has spurred a rapid growth in light sheet fluorescence microscopy (LSFM). By restricting the excitation to a thin plane, LSFM reduces the overall light dose to a specimen while simultaneously improving image contrast. However, the defining characteristics of light sheet microscopes subsequently warrant unique considerations in their use for quantitative experiments. In this Perspective, we outline many of the pitfalls in LSFM that can compromise analysis and confound interpretation. Moreover, we offer guidance in addressing these caveats when possible. In doing so, we hope to provide a useful resource for life scientists seeking to adopt LSFM to quantitatively address complex biological hypotheses.
Collapse
|
6
|
Isotropic imaging across spatial scales with axially swept light-sheet microscopy. Nat Protoc 2022; 17:2025-2053. [PMID: 35831614 PMCID: PMC10111370 DOI: 10.1038/s41596-022-00706-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/30/2022] [Indexed: 11/09/2022]
Abstract
Light-sheet fluorescence microscopy is a rapidly growing technique that has gained tremendous popularity in the life sciences owing to its high-spatiotemporal resolution and gentle, non-phototoxic illumination. In this protocol, we provide detailed directions for the assembly and operation of a versatile light-sheet fluorescence microscopy variant, referred to as axially swept light-sheet microscopy (ASLM), that delivers an unparalleled combination of field of view, optical resolution and optical sectioning. To democratize ASLM, we provide an overview of its working principle and applications to biological imaging, as well as pragmatic tips for the assembly, alignment and control of its optical systems. Furthermore, we provide detailed part lists and schematics for several variants of ASLM that together can resolve molecular detail in chemically expanded samples, subcellular organization in living cells or the anatomical composition of chemically cleared intact organisms. We also provide software for instrument control and discuss how users can tune imaging parameters to accommodate diverse sample types. Thus, this protocol will serve not only as a guide for both introductory and advanced users adopting ASLM, but as a useful resource for any individual interested in deploying custom imaging technology. We expect that building an ASLM will take ~1-2 months, depending on the experience of the instrument builder and the version of the instrument.
Collapse
|
7
|
Yu Z, Li H, Zhong T, Park JH, Cheng S, Woo CM, Zhao Q, Yao J, Zhou Y, Huang X, Pang W, Yoon H, Shen Y, Liu H, Zheng Y, Park Y, Wang LV, Lai P. Wavefront shaping: A versatile tool to conquer multiple scattering in multidisciplinary fields. Innovation (N Y) 2022; 3:100292. [PMID: 36032195 PMCID: PMC9405113 DOI: 10.1016/j.xinn.2022.100292] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/23/2022] [Indexed: 10/26/2022] Open
Abstract
Optical techniques offer a wide variety of applications as light-matter interactions provide extremely sensitive mechanisms to probe or treat target media. Most of these implementations rely on the usage of ballistic or quasi-ballistic photons to achieve high spatial resolution. However, the inherent scattering nature of light in biological tissues or tissue-like scattering media constitutes a critical obstacle that has restricted the penetration depth of non-scattered photons and hence limited the implementation of most optical techniques for wider applications. In addition, the components of an optical system are usually designed and manufactured for a fixed function or performance. Recent advances in wavefront shaping have demonstrated that scattering- or component-induced phase distortions can be compensated by optimizing the wavefront of the input light pattern through iteration or by conjugating the transmission matrix of the scattering medium. This offers unprecedented opportunities in many applications to achieve controllable optical delivery or detection at depths or dynamically configurable functionalities by using scattering media to substitute conventional optical components. In this article, the recent progress of wavefront shaping in multidisciplinary fields is reviewed, from optical focusing and imaging with scattering media, functionalized devices, modulation of mode coupling, and nonlinearity in multimode fiber to multimode fiber-based applications. Apart from insights into the underlying principles and recent advances in wavefront shaping implementations, practical limitations and roadmap for future development are discussed in depth. Looking back and looking forward, it is believed that wavefront shaping holds a bright future that will open new avenues for noninvasive or minimally invasive optical interactions and arbitrary control inside deep tissues. The high degree of freedom with multiple scattering will also provide unprecedented opportunities to develop novel optical devices based on a single scattering medium (generic or customized) that can outperform traditional optical components.
Collapse
|
8
|
Hilzenrat G, Gill ET, McArthur SL. Imaging approaches for monitoring three-dimensional cell and tissue culture systems. JOURNAL OF BIOPHOTONICS 2022; 15:e202100380. [PMID: 35357086 DOI: 10.1002/jbio.202100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The past decade has seen an increasing demand for more complex, reproducible and physiologically relevant tissue cultures that can mimic the structural and biological features of living tissues. Monitoring the viability, development and responses of such tissues in real-time are challenging due to the complexities of cell culture physical characteristics and the environments in which these cultures need to be maintained in. Significant developments in optics, such as optical manipulation, improved detection and data analysis, have made optical imaging a preferred choice for many three-dimensional (3D) cell culture monitoring applications. The aim of this review is to discuss the challenges associated with imaging and monitoring 3D tissues and cell culture, and highlight topical label-free imaging tools that enable bioengineers and biophysicists to non-invasively characterise engineered living tissues.
Collapse
Affiliation(s)
- Geva Hilzenrat
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Emma T Gill
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Sally L McArthur
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
9
|
Buchanan BC, Yoon JY. Microscopic Imaging Methods for Organ-on-a-Chip Platforms. MICROMACHINES 2022; 13:328. [PMID: 35208453 PMCID: PMC8879989 DOI: 10.3390/mi13020328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
Microscopic imaging is essential and the most popular method for in situ monitoring and evaluating the outcome of various organ-on-a-chip (OOC) platforms, including the number and morphology of mammalian cells, gene expression, protein secretions, etc. This review presents an overview of how various imaging methods can be used to image organ-on-a-chip platforms, including transillumination imaging (including brightfield, phase-contrast, and holographic optofluidic imaging), fluorescence imaging (including confocal fluorescence and light-sheet fluorescence imaging), and smartphone-based imaging (including microscope attachment-based, quantitative phase, and lens-free imaging). While various microscopic imaging methods have been demonstrated for conventional microfluidic devices, a relatively small number of microscopic imaging methods have been demonstrated for OOC platforms. Some methods have rarely been used to image OOCs. Specific requirements for imaging OOCs will be discussed in comparison to the conventional microfluidic devices and future directions will be introduced in this review.
Collapse
Affiliation(s)
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
10
|
Ricci P, Gavryusev V, Müllenbroich C, Turrini L, de Vito G, Silvestri L, Sancataldo G, Pavone FS. Removing striping artifacts in light-sheet fluorescence microscopy: a review. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 168:52-65. [PMID: 34274370 DOI: 10.1016/j.pbiomolbio.2021.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
In recent years, light-sheet fluorescence microscopy (LSFM) has found a broad application for imaging of diverse biological samples, ranging from sub-cellular structures to whole animals, both in-vivo and ex-vivo, owing to its many advantages relative to point-scanning methods. By providing the selective illumination of sample single planes, LSFM achieves an intrinsic optical sectioning and direct 2D image acquisition, with low out-of-focus fluorescence background, sample photo-damage and photo-bleaching. On the other hand, such an illumination scheme is prone to light absorption or scattering effects, which lead to uneven illumination and striping artifacts in the images, oriented along the light sheet propagation direction. Several methods have been developed to address this issue, ranging from fully optical solutions to entirely digital post-processing approaches. In this work, we present them, outlining their advantages, performance and limitations.
Collapse
Affiliation(s)
- Pietro Ricci
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy; University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy
| | - Vladislav Gavryusev
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy; University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy
| | | | - Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy; University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy; University of Florence, Department of Neuroscience, Psychology, Drug Research and Child Health, Florence, 50139, Italy
| | - Ludovico Silvestri
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy; University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy; National Institute of Optics, National Research Council, Sesto Fiorentino, 50019, Italy
| | - Giuseppe Sancataldo
- University of Palermo, Department of Physics and Chemistry, Palermo, 90128, Italy.
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy; University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy; National Institute of Optics, National Research Council, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
11
|
Wang F, Ma Z, Zhong Y, Salazar F, Xu C, Ren F, Qu L, Wu AM, Dai H. In vivo NIR-II structured-illumination light-sheet microscopy. Proc Natl Acad Sci U S A 2021; 118:e2023888118. [PMID: 33526701 PMCID: PMC8017937 DOI: 10.1073/pnas.2023888118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Noninvasive optical imaging with deep tissue penetration depth and high spatiotemporal resolution is important to longitudinally studying the biology at the single-cell level in live mammals, but has been challenging due to light scattering. Here, we developed near-infrared II (NIR-II) (1,000 to 1,700 nm) structured-illumination light-sheet microscopy (NIR-II SIM) with ultralong excitation and emission wavelengths up to ∼1,540 and ∼1,700 nm, respectively, suppressing light scattering to afford large volumetric three-dimensional (3D) imaging of tissues with deep-axial penetration depths. Integrating structured illumination into NIR-II light-sheet microscopy further diminished background and improved spatial resolution by approximately twofold. In vivo oblique NIR-II SIM was performed noninvasively for 3D volumetric multiplexed molecular imaging of the CT26 tumor microenvironment in mice, longitudinally mapping out CD4, CD8, and OX40 at the single-cell level in response to immunotherapy by cytosine-phosphate-guanine (CpG), a Toll-like receptor 9 (TLR-9) agonist combined with OX40 antibody treatment. NIR-II SIM affords an additional tool for noninvasive volumetric molecular imaging of immune cells in live mammals.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Zhuoran Ma
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Yeteng Zhong
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Felix Salazar
- Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, CA 91010
| | - Chun Xu
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Fuqiang Ren
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Liangqiong Qu
- School of Medicine, Stanford University, Stanford, CA 94303
| | - Anna M Wu
- Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, CA 91010
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, CA 94305;
- Bio-X, Stanford University, Stanford, CA 94305
| |
Collapse
|
12
|
Daria VR, Castañares ML, Bachor HA. Spatio-temporal parameters for optical probing of neuronal activity. Biophys Rev 2021; 13:13-33. [PMID: 33747244 PMCID: PMC7930150 DOI: 10.1007/s12551-021-00780-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/01/2021] [Indexed: 12/28/2022] Open
Abstract
The challenge to understand the complex neuronal circuit functions in the mammalian brain has brought about a revolution in light-based neurotechnologies and optogenetic tools. However, while recent seminal works have shown excellent insights on the processing of basic functions such as sensory perception, memory, and navigation, understanding more complex brain functions is still unattainable with current technologies. We are just scratching the surface, both literally and figuratively. Yet, the path towards fully understanding the brain is not totally uncertain. Recent rapid technological advancements have allowed us to analyze the processing of signals within dendritic arborizations of single neurons and within neuronal circuits. Understanding the circuit dynamics in the brain requires a good appreciation of the spatial and temporal properties of neuronal activity. Here, we assess the spatio-temporal parameters of neuronal responses and match them with suitable light-based neurotechnologies as well as photochemical and optogenetic tools. We focus on the spatial range that includes dendrites and certain brain regions (e.g., cortex and hippocampus) that constitute neuronal circuits. We also review some temporal characteristics of some proteins and ion channels responsible for certain neuronal functions. With the aid of the photochemical and optogenetic markers, we can use light to visualize the circuit dynamics of a functioning brain. The challenge to understand how the brain works continue to excite scientists as research questions begin to link macroscopic and microscopic units of brain circuits.
Collapse
Affiliation(s)
- Vincent R. Daria
- Research School of Physics, The Australian National University, Canberra, Australia
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | | - Hans-A. Bachor
- Research School of Physics, The Australian National University, Canberra, Australia
| |
Collapse
|
13
|
Maioli V, Boniface A, Mahou P, Ortas JF, Abdeladim L, Beaurepaire E, Supatto W. Fast in vivo multiphoton light-sheet microscopy with optimal pulse frequency. BIOMEDICAL OPTICS EXPRESS 2020; 11:6012-6026. [PMID: 33150002 PMCID: PMC7587280 DOI: 10.1364/boe.400113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 05/05/2023]
Abstract
Improving the imaging speed of multiphoton microscopy is an active research field. Among recent strategies, light-sheet illumination holds distinctive advantages for achieving fast imaging in vivo. However, photoperturbation in multiphoton light-sheet microscopy remains poorly investigated. We show here that the heart beat rate of zebrafish embryos is a sensitive probe of linear and nonlinear photoperturbations. By analyzing its behavior with respect to laser power, pulse frequency and wavelength, we derive guidelines to find the best balance between signal and photoperturbation. We then demonstrate one order-of-magnitude signal enhancement over previous implementations by optimizing the laser pulse frequency. These results open new opportunities for fast live tissue imaging.
Collapse
Affiliation(s)
- Vincent Maioli
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Antoine Boniface
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Júlia Ferrer Ortas
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Lamiae Abdeladim
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Willy Supatto
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
14
|
Hosny NA, Seyforth JA, Spickermann G, Mitchell TJ, Almada P, Chesters R, Mitchell SJ, Chennell G, Vernon AC, Cho K, Srivastava DP, Forster R, Vettenburg T. Planar Airy beam light-sheet for two-photon microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:3927-3935. [PMID: 33014576 PMCID: PMC7510906 DOI: 10.1364/boe.395547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 05/22/2023]
Abstract
We demonstrate the first planar Airy light-sheet microscope. Fluorescence light-sheet microscopy has become the method of choice to study large biological samples with cellular or sub-cellular resolution. The propagation-invariant Airy beam enables a ten-fold increase in field-of-view with single-photon excitation; however, the characteristic asymmetry of the light-sheet limits its potential for multi-photon excitation. Here we show how a planar light-sheet can be formed from the curved propagation-invariant Airy beam. The resulting symmetric light sheet excites two-photon fluorescence uniformly across an extended field-of-view without the need for deconvolution. We demonstrate the method for rapid two-photon imaging of large volumes of neuronal tissue.
Collapse
Affiliation(s)
- Neveen A. Hosny
- M Squared Life, The Surrey Technology Centre, Guildford, Surrey, GU2 7YG, UK
| | - James A. Seyforth
- M Squared Life, The Surrey Technology Centre, Guildford, Surrey, GU2 7YG, UK
| | - Gunnar Spickermann
- M Squared Life, The Surrey Technology Centre, Guildford, Surrey, GU2 7YG, UK
| | - Thomas J. Mitchell
- M Squared Life, The Surrey Technology Centre, Guildford, Surrey, GU2 7YG, UK
| | - Pedro Almada
- M Squared Life, The Surrey Technology Centre, Guildford, Surrey, GU2 7YG, UK
| | - Robert Chesters
- Basic and Clinical Neuroscience Department, King’s College London, London, SE5 9NU, UK
| | - Scott J. Mitchell
- Basic and Clinical Neuroscience Department, King’s College London, London, SE5 9NU, UK
- UK Dementia Research Institute, King’s College London, London, UK
| | - George Chennell
- Basic and Clinical Neuroscience Department, King’s College London, London, SE5 9NU, UK
| | - Anthony C. Vernon
- Basic and Clinical Neuroscience Department, King’s College London, London, SE5 9NU, UK
- MRC centre For Neurodevelopmental Disorders, King’s College London, London, UK
| | - Kwangwook Cho
- Basic and Clinical Neuroscience Department, King’s College London, London, SE5 9NU, UK
- UK Dementia Research Institute, King’s College London, London, UK
| | - Deepak P. Srivastava
- Basic and Clinical Neuroscience Department, King’s College London, London, SE5 9NU, UK
- MRC centre For Neurodevelopmental Disorders, King’s College London, London, UK
| | - Robert Forster
- M Squared Life, The Surrey Technology Centre, Guildford, Surrey, GU2 7YG, UK
| | - Tom Vettenburg
- School of Physics and Astronomy, University of Exeter, EX4 4QL, Exeter, UK
- School of Science and Engineering, University of Dundee, DD1 4HN, Dundee, UK
| |
Collapse
|
15
|
Shemesh Z, Chaimovich G, Gino L, Ozana N, Nylk J, Dholakia K, Zalevsky Z. Reducing data acquisition for light-sheet microscopy by extrapolation between imaged planes. JOURNAL OF BIOPHOTONICS 2020; 13:e202000035. [PMID: 32239792 DOI: 10.1002/jbio.202000035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Light-sheet fluorescence microscopy (LSFM) is a powerful technique that can provide high-resolution images of biological samples. Therefore, this technique offers significant improvement for three-dimensional (3D) imaging of living cells. However, producing high-resolution 3D images of a single cell or biological tissues, normally requires high acquisition rate of focal planes, which means a large amount of sample sections. Consequently, it consumes a vast amount of processing time and memory, especially when studying real-time processes inside living cells. We describe an approach to minimize data acquisition by interpolation between planes using a phase retrieval algorithm. We demonstrate this approach on LSFM data sets and show reconstruction of intermediate sections of the sparse samples. Since this method diminishes the required amount of acquisition focal planes, it also reduces acquisition time of samples as well. Our suggested method has proven to reconstruct unacquired intermediate planes from diluted data sets up to 10× fold. The reconstructed planes were found correlated to the original preacquired samples (control group) with correlation coefficient of up to 90%. Given the findings, this procedure appears to be a powerful method for inquiring and analyzing biological samples.
Collapse
Affiliation(s)
- Ziv Shemesh
- Faculty of Engineering and the Nanotechnology Center, Bar Ilan University, Ramat-Gan, Israel
| | - Gal Chaimovich
- Faculty of Engineering and the Nanotechnology Center, Bar Ilan University, Ramat-Gan, Israel
| | - Liron Gino
- Faculty of Engineering and the Nanotechnology Center, Bar Ilan University, Ramat-Gan, Israel
| | - Nisan Ozana
- Faculty of Engineering and the Nanotechnology Center, Bar Ilan University, Ramat-Gan, Israel
| | - Jonathan Nylk
- SUPA, School of Physics & Astronomy, Physical Science Building, St Andrews University, St Andrews, UK
| | - Kishan Dholakia
- SUPA, School of Physics & Astronomy, Physical Science Building, St Andrews University, St Andrews, UK
- Department of Physics, College of Science, Yonsei University, Seoul, South Korea
| | - Zeev Zalevsky
- Faculty of Engineering and the Nanotechnology Center, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
16
|
Lanin AA, Chebotarev AS, Pochechuev MS, Kelmanson IV, Kotova DA, Bilan DS, Ermakova YG, Fedotov AB, Ivanov AA, Belousov VV, Zheltikov AM. Two- and three-photon absorption cross-section characterization for high-brightness, cell-specific multiphoton fluorescence brain imaging. JOURNAL OF BIOPHOTONICS 2020; 13:e201900243. [PMID: 31568649 DOI: 10.1002/jbio.201900243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate an accurate quantitative characterization of absolute two- and three-photon absorption (2PA and 3PA) action cross sections of a genetically encodable fluorescent marker Sypher3s. Both 2PA and 3PA action cross sections of this marker are found to be remarkably high, enabling high-brightness, cell-specific two- and three-photon fluorescence brain imaging. Brain imaging experiments on sliced samples of rat's cortical areas are presented to demonstrate these imaging modalities. The 2PA action cross section of Sypher3s is shown to be highly sensitive to the level of pH, enabling pH measurements via a ratiometric readout of the two-photon fluorescence with two laser excitation wavelengths, thus paving the way toward fast optical pH sensing in deep-tissue experiments.
Collapse
Affiliation(s)
- Aleksandr A Lanin
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Skolkovo, Moscow Region, Russia
| | - Artem S Chebotarev
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Matvei S Pochechuev
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
- Kurchatov Institute National Research Center, Moscow, Russia
| | - Ilya V Kelmanson
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Daria A Kotova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry S Bilan
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Yulia G Ermakova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Andrei B Fedotov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Skolkovo, Moscow Region, Russia
| | - Anatoly A Ivanov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
- Photochemistry Centre, Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
| | - Vsevolod V Belousov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Aleksei M Zheltikov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Skolkovo, Moscow Region, Russia
- Kurchatov Institute National Research Center, Moscow, Russia
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas
| |
Collapse
|
17
|
Lanin AA, Pochechuev MS, Chebotarev AS, Kelmanson IV, Bilan DS, Kotova DA, Tarabykin VS, Ivanov AA, Fedotov AB, Belousov VV, Zheltikov AM. Cell-specific three-photon-fluorescence brain imaging: neurons, astrocytes, and gliovascular interfaces. OPTICS LETTERS 2020; 45:836-839. [PMID: 32058483 DOI: 10.1364/ol.45.000836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We present brain imaging experiments on rat cortical areas, demonstrating that, when combined with a suitable high-brightness, cell-specific genetically encoded fluorescent marker, three-photon-excited fluorescence (3PEF), enables subcellular-resolution, cell-specific 3D brain imaging that is fully compatible and readily integrable with other nonlinear-optical imaging modalities, including two-photon-fluorescence and harmonic-generation microscopy. With laser excitation provided by sub-100-fs, 1.25-µm laser pulses, cell-specific 3PEF from astrocytes and their processes detected in parallel with a three-photon-resonance-enhanced third harmonic from blood vessels is shown to enable a high-contrast 3D imaging of gliovascular interfaces.
Collapse
|
18
|
Wang T, Wu C, Ouzounov DG, Gu W, Xia F, Kim M, Yang X, Warden MR, Xu C. Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain. eLife 2020; 9:53205. [PMID: 31999253 PMCID: PMC7028383 DOI: 10.7554/elife.53205] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
1300 nm three-photon calcium imaging has emerged as a useful technique to allow calcium imaging in deep brain regions. Application to large-scale neural activity imaging entails a careful balance between recording fidelity and perturbation to the sample. We calculated and experimentally verified the excitation pulse energy to achieve the minimum photon count required for the detection of calcium transients in GCaMP6s-expressing neurons for 920 nm two-photon and 1320 nm three-photon excitation. By considering the combined effects of in-focus signal attenuation and out-of-focus background generation, we quantified the cross-over depth beyond which three-photon microscopy outpeforms two-photon microscopy in recording fidelity. Brain tissue heating by continuous three-photon imaging was simulated with Monte Carlo method and experimentally validated with immunohistochemistry. Increased immunoreactivity was observed with 150 mW excitation power at 1 and 1.2 mm imaging depths. Our analysis presents a translatable model for the optimization of three-photon calcium imaging based on experimentally tractable parameters.
Collapse
Affiliation(s)
- Tianyu Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, United States
| | - Chunyan Wu
- School of Applied and Engineering Physics, Cornell University, Ithaca, United States.,College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Dimitre G Ouzounov
- School of Applied and Engineering Physics, Cornell University, Ithaca, United States
| | - Wenchao Gu
- Department of Neurobiology and Behavior, Cornell University, Ithaca, United States
| | - Fei Xia
- Meining School of Biomedical Engineering, Cornell University, Ithaca, United States
| | - Minsu Kim
- College of Human Ecology, Cornell University, Ithaca, United States
| | - Xusan Yang
- School of Applied and Engineering Physics, Cornell University, Ithaca, United States
| | - Melissa R Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, United States
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, United States
| |
Collapse
|
19
|
Deng S, Wang P, Zhang Y, Zhou H, Yang J, Liu M. Subtraction method via phase mask enables contrast enhancement in scanned Bessel light-sheet microscopy. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:84-88. [PMID: 32118884 DOI: 10.1364/josaa.37.000084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
We report on the generation of a hollow Bessel beam with a hole along the direction of propagation by using an easy-to-implement phase mask and investigate its effectiveness to reduce the out-of-focus background in light-sheet fluorescence microscopy (LSFM) with scanned Bessel beams by subtraction imaging. Overlaying ${\pi }$π-phase retardation between the two equal parts of the Bessel beam across the entrance pupil of the objective lens, a hollow Bessel beam with zero intensity at the focal plane can be achieved. By optimizing the numerical aperture of the annular mask applied in the hollow Bessel beam, matched distributions of the ring system between the hollow Bessel beam and the conventional Bessel beam are achieved. By subtraction between the two LSFM images, the out-of-focus blur caused by the ring system of the Bessel beam can be significantly reduced. Comparison with conventional Bessel LSFM images exhibits a better sectioning capability and higher contrast.
Collapse
|
20
|
Wijesinghe P, Escobet-Montalbán A, Chen M, Munro PRT, Dholakia K. Optimal compressive multiphoton imaging at depth using single-pixel detection. OPTICS LETTERS 2019; 44:4981-4984. [PMID: 31613244 DOI: 10.1364/ol.44.004981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Compressive sensing can overcome the Nyquist criterion and record images with a fraction of the usual number of measurements required. However, conventional measurement bases are susceptible to diffraction and scattering, prevalent in high-resolution microscopy. In this Letter, we explore the random Morlet basis as an optimal set for compressive multiphoton imaging, based on its ability to minimize the space-frequency uncertainty. We implement this approach for wide-field multiphoton microscopy with single-pixel detection, which allows imaging through turbid media without correction. The Morlet basis promises a route for rapid acquisition with lower photodamage.
Collapse
|
21
|
Liu P, Mu X, Zhang XD, Ming D. The Near-Infrared-II Fluorophores and Advanced Microscopy Technologies Development and Application in Bioimaging. Bioconjug Chem 2019; 31:260-275. [DOI: 10.1021/acs.bioconjchem.9b00610] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pengfei Liu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Mu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| |
Collapse
|
22
|
Wang F, Wan H, Ma Z, Zhong Y, Sun Q, Tian Y, Qu L, Du H, Zhang M, Li L, Ma H, Luo J, Liang Y, Li WJ, Hong G, Liu L, Dai H. Light-sheet microscopy in the near-infrared II window. Nat Methods 2019; 16:545-552. [PMID: 31086342 PMCID: PMC6579541 DOI: 10.1038/s41592-019-0398-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/24/2019] [Accepted: 03/24/2019] [Indexed: 01/09/2023]
Abstract
Non-invasive deep-tissue three-dimensional optical imaging of live mammals with high spatiotemporal resolution is challenging owing to light scattering. We developed near-infrared II (1,000-1,700 nm) light-sheet microscopy with excitation and emission of up to approximately 1,320 nm and 1,700 nm, respectively, for optical sectioning at a penetration depth of approximately 750 μm through live tissues without invasive surgery and at a depth of approximately 2 mm in glycerol-cleared brain tissues. Near-infrared II light-sheet microscopy in normal and oblique configurations enabled in vivo imaging of live mice through intact tissue, revealing abnormal blood flow and T-cell motion in tumor microcirculation and mapping out programmed-death ligand 1 and programmed cell death protein 1 in tumors with cellular resolution. Three-dimensional imaging through the intact mouse head resolved vascular channels between the skull and brain cortex, and allowed monitoring of recruitment of macrophages and microglia to the traumatic brain injury site.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Hao Wan
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Zhuoran Ma
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Yeteng Zhong
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Qinchao Sun
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Ye Tian
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Liangqiong Qu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Haotian Du
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Mingxi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Lulin Li
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Huilong Ma
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, China
| | - Jian Luo
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yongye Liang
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, China
| | - Wen Jung Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Hongjie Dai
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA.
| |
Collapse
|