1
|
Kim WI, Pak SW, Lee SJ, Moon C, Shin IS, Lee IC, Kim JC. Effects of melamine and cyanuric acid on placental and fetal development in rats. Food Chem Toxicol 2023:113862. [PMID: 37247804 DOI: 10.1016/j.fct.2023.113862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Melamine or cyanuric acid alone has low toxicity, but combined exposure to melamine and cyanuric acid was reported to cause unexpected toxicological effects. This study investigated the potential effects and toxic mechanism of combined exposure to melamine and cyanuric acid on placental and fetal development in rats. Exposure to melamine and cyanuric acid caused maternal toxicity manifested by increased abnormal symptoms and decreased body weight gain. Developmental toxic effects included a decrease in placental and fetal weights with increased fetal deaths and post-implantation loss. Melamine and cyanuric acid induced oxidative stress in the developing placenta and fetus. The placentas from rats treated with melamine and cyanuric acid showed shortening of the placental layers with histological changes, decreased cell proliferation, increased apoptotic changes, and decreased insulin-like growth factor (IGF)/IGF-binding proteins (IGFBPs) and placental lactogen (PL) expression levels. Fetuses from melamine- and cyanuric acid-treated dams showed increased apoptotic changes and suppressed cellular proliferation in their livers and vertebrae. Consequently, combined exposure to melamine and cyanuric acid resulted in high levels of oxidative stress and impaired placental development associated with impairment of the IGF/IGFBP and PL systems, resulting in increased apoptotic changes and reduced fetal cell proliferation.
Collapse
Affiliation(s)
- Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
2
|
Marletta S, Pantanowitz L, Santonicco N, Caputo A, Bragantini E, Brunelli M, Girolami I, Eccher A. Application of Digital Imaging and Artificial Intelligence to Pathology of the Placenta. Pediatr Dev Pathol 2023; 26:5-12. [PMID: 36448447 DOI: 10.1177/10935266221137953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Digital imaging, including the use of artificial intelligence, has been increasingly applied to investigate the placenta and its related pathology. However, there has been no comprehensive review of this body of work to date. The aim of this study was to therefore review the literature regarding digital pathology of the placenta. A systematic literature search was conducted in several electronic databases. Studies involving the application of digital imaging and artificial intelligence techniques to human placental samples were retrieved and analyzed. Relevant articles were categorized by digital image technique and their relevance to studying normal and diseased placenta. Of 2008 retrieved articles, 279 were included. Digital imaging research related to the placenta was often coupled with immunohistochemistry, confocal microscopy, 3D reconstruction, and/or deep learning algorithms. By significantly increasing pathologists' ability to recognize potentially prognostic relevant features and by lessening inter-observer variability, published data overall indicate that the application of digital pathology to placental and perinatal diseases, along with clinical and radiology correlation, has great potential to improve fetal and maternal health care including the selection of targeted therapy in high-risk pregnancy.
Collapse
Affiliation(s)
- Stefano Marletta
- Department of Pathology and Diagnostics, Section of Pathology, University Hospital of Verona, Verona, Italy
| | | | - Nicola Santonicco
- Department of Pathology and Diagnostics, Section of Pathology, University Hospital of Verona, Verona, Italy
| | - Alessandro Caputo
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Emma Bragantini
- Department of Pathology, Santa Chiara Hospital, Trento, Italy
| | - Matteo Brunelli
- Department of Pathology and Diagnostics, Section of Pathology, University Hospital of Verona, Verona, Italy
| | - Ilaria Girolami
- Department of Pathology & Clinical Labs, University of Michigan, Ann Arbor, MI, USA
| | - Albino Eccher
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
3
|
Gupta MB, Biggar KK, Li C, Nathanielsz PW, Jansson T. Increased Colocalization and Interaction Between Decidual Protein Kinase A and Insulin-like Growth Factor-Binding Protein-1 in Intrauterine Growth Restriction. J Histochem Cytochem 2022; 70:515-530. [PMID: 35801847 DOI: 10.1369/00221554221112702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased phosphorylation of decidual insulin-like growth factor-binding protein-1 (IGFBP-1) can contribute to intrauterine growth restriction (IUGR) by decreasing the bioavailability of insulin-like growth factor-1 (IGF-1). However, the molecular mechanisms regulating IGFBP-1 phosphorylation at the maternal-fetal interface are poorly understood. Protein kinase A (PKA) is required for normal decidualization. Consensus sequences for PKA are present in IGFBP-1. We hypothesized that the expression/interaction of PKA with decidual IGFBP-1 is increased in IUGR. Parallel reaction monitoring-mass spectrometry (PRM-MS) identified multiple PKA peptides (n=>30) co-immunoprecipitating with IGFBP-1 in decidualized primary human endometrial stromal cells (HESC). PRM-MS also detected active PKApThr197 and greater site-specific IGFBP-1 phosphorylation(pSer119), (pSer98+pSer101) (pSer169+pSer174) in response to hypoxia. Hypoxia promoted colocalization [dual immunofluorescence (IF)] of PKA with IGFBP-1 in decidualized HESC. Colocalization (IF) and interaction (proximity ligation assay) of PKA and IGFBP-1 were increased in decidua collected from placenta of human IUGR pregnancies (n=8) compared with decidua from pregnancies with normal fetal growth. Similar changes were detected in decidual PKA/IGFBP-1 using placenta from baboons subjected to maternal nutrient reduction (MNR) vs controls (n=3 each). In baboons, these effects were evident in MNR at gestational day 120 prior to IUGR onset. Increased PKA-mediated phosphorylation of decidual IGFBP-1 may contribute to decreased IGF-1 bioavailability in the maternal-fetal interface in IUGR.
Collapse
Affiliation(s)
- Madhulika B Gupta
- Department of Biochemistry and Department of Pediatrics, University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, London, ON, Canada
| | - Kyle K Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Cun Li
- University of Wyoming, Laramie, Wyoming
| | | | - Thomas Jansson
- Southwest National Primate Research Center, San Antonio, Texas.,Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
4
|
Kakadia JH, Jain BB, Biggar K, Sutherland A, Nygard K, Li C, Nathanielsz PW, Jansson T, Gupta MB. Hyperphosphorylation of fetal liver IGFBP-1 precedes slowing of fetal growth in nutrient-restricted baboons and may be a mechanism underlying IUGR. Am J Physiol Endocrinol Metab 2020; 319:E614-E628. [PMID: 32744097 PMCID: PMC7642856 DOI: 10.1152/ajpendo.00220.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In cultured fetal liver cells, insulin-like growth factor (IGF) binding protein (IGFBP)-1 hyperphosphorylation in response to hypoxia and amino acid deprivation is mediated by inhibition of mechanistic target of rapamycin (mTOR) and activation of amino acid response (AAR) signaling and casein kinase (CK)2. We hypothesized that fetal liver mTOR inhibition, activation of AAR and CK2, and IGFBP-1 hyperphosphorylation occur before development of intrauterine growth restriction (IUGR). Pregnant baboons were fed a control (C) or a maternal nutrient restriction (MNR; 70% calories of control) diet starting at gestational day (GD) 30 (term GD 185). Umbilical blood and fetal liver tissue were obtained at GD 120 (C, n = 7; MNR, n = 10) and 165 (C, n = 7; MNR, n = 8). Fetal weights were unchanged at GD 120 but decreased at GD 165 in the MNR group (-13%, P = 0.03). IGFBP-1 phosphorylation, as determined by parallel reaction monitoring mass spectrometry (PRM-MS), immunohistochemistry, and/or Western blot, was enhanced in MNR fetal liver and umbilical plasma at GD 120 and 165. IGF-I receptor autophosphorylationTyr1135 (-64%, P = 0.05) was reduced in MNR fetal liver at GD 120. Furthermore, fetal liver CK2 (α/α'/β) expression, CK2β colocalization, proximity with IGFBP-1, and CK2 autophosphorylationTyr182 were greater at GD 120 and 165 in MNR vs. C. Additionally, mTOR complex (mTORC)1 (p-P70S6KThr389, -52%, P = 0.05) and mTORC2 (p-AktSer473, -56%, P < 0.001) activity were decreased and AAR was activated (p-GCN2Thr898, +117%, P = 0.02; p-eIF2αSer51, +294%, P = 0.002; p-ERKThr202, +111%, P = 0.03) in MNR liver at GD 120. Our data suggest that fetal liver IGFBP-1 hyperphosphorylation, mediated by mTOR inhibition and both AAR and CK2 activation, is a key link between restricted nutrient and oxygen availability and the development of IUGR.
Collapse
Affiliation(s)
- Jenica H Kakadia
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Bhawani B Jain
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Kyle Biggar
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Austen Sutherland
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Karen Nygard
- Biotron Integrated Microscopy Facility, University of Western Ontario, London, Ontario, Canada
| | - Cun Li
- University of Wyoming, Laramie, Wyoming
- Southwest National Primate Research Center, San Antonio, Texas
| | - Peter W Nathanielsz
- University of Wyoming, Laramie, Wyoming
- Southwest National Primate Research Center, San Antonio, Texas
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Madhulika B Gupta
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
- Department of Pediatrics, University of Western Ontario, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
| |
Collapse
|
5
|
Abu Shehab M, Biggar K, Kakadia JH, Dhruv M, Jain B, Nandi P, Nygard K, Jansson T, Gupta MB. Inhibition of decidual IGF-1 signaling in response to hypoxia and leucine deprivation is mediated by mTOR and AAR pathways and increased IGFBP-1 phosphorylation. Mol Cell Endocrinol 2020; 512:110865. [PMID: 32502935 DOI: 10.1016/j.mce.2020.110865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 01/04/2023]
Abstract
Decidual mechanistic target of rapamycin (mTOR) is inhibited, amino acid response (AAR) and protein kinase CK2 are activated, and IGF (insulin-like growth factor) binding protein (IGFBP)-1 is hyperphosphorylated in human intrauterine growth restriction (IUGR). Using decidualized human immortalized endometrial stromal cells (HIESC), we hypothesized that hypoxia and leucine deprivation causing inhibition of decidual IGF-1 signaling is mediated by mTOR, AAR, CK2 and IGFBP-1 phosphorylation. Mass spectrometry demonstrated that hypoxia (1% O2) or rapamycin increased IGFBP-1 phosphorylation singly at Ser101/119/169 (confirmed using immunoblotting) and dually at pSer169 + 174. Hypoxia resulted in mTOR inhibition, AAR and CK2 activation, and decreased IGF-1 bioactivity, with no additional changes with rapamycin + hypoxia. Rapamycin and/or hypoxia promoted colocalization of IGFBP-1 and CK2 (dual-immunofluorescence and proximity ligation assay). Leucine deprivation showed similar outcomes. Changes in IGFBP-1 phosphorylation regulated by mTOR/AAR signaling and CK2 may represent a novel mechanism linking oxygen and nutrient availability to IGF-1 signaling in the decidua.
Collapse
Affiliation(s)
- Majida Abu Shehab
- Department of Pediatrics, University of Western Ontario, London, ON, Canada
| | - Kyle Biggar
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
| | - Jenica H Kakadia
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Manthan Dhruv
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Bhawani Jain
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Pinki Nandi
- Department of Pediatrics, University of Western Ontario, London, ON, Canada
| | - Karen Nygard
- Biotron Integrated Microscopy Facility, University of Western Ontario, London, ON, Canada
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madhulika B Gupta
- Department of Pediatrics, University of Western Ontario, London, ON, Canada; Department of Biochemistry, University of Western Ontario, London, ON, Canada; Children's Health Research Institute, London, ON, Canada.
| |
Collapse
|
6
|
A Review of Candidate Genes and Pathways in Preeclampsia-An Integrated Bioinformatical Analysis. BIOLOGY 2020; 9:biology9040062. [PMID: 32230784 PMCID: PMC7235730 DOI: 10.3390/biology9040062] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/21/2023]
Abstract
: Preeclampsia is a pregnancy-specific disorder characterized by the presence of hypertension with the onset of either proteinuria, maternal organ or uteroplacental dysfunction. Preeclampsia is one of the leading causes of maternal and fetal mortality and morbidity worldwide. However, the etiopathologies of preeclampsia are not fully understood. Many studies have indicated that genes are differentially expressed between normal and in the disease state. Hence, this study systematically searched the literature on human gene expression that was differentially expressed in preeclampsia. An electronic search was performed through 2019 through PubMed, Scopus, Ovid-Medline, and Gene Expression Omnibus where the following MeSH (Medical Subject Heading) terms were used and they had been specified as the primary focus of the articles: Gene, placenta, preeclampsia, and pregnancy in the title or abstract. We also found additional MeSH terms through Cochrane Library: Transcript, sequencing, and profiling. From 687 studies retrieved from the search, only original publications that had performed high throughput sequencing of human placental tissues that reported on differentially expressed genes in pregnancies with preeclampsia were included. Two reviewers independently scrutinized the titles and abstracts before examining the eligibility of studies that met the inclusion criteria. For each study, study design, sample size, sampling type, and method for gene analysis and gene were identified. The genes listed were further analyzed with the DAVID, STRING and Cytoscape MCODE. Three original research articles involving preeclampsia comprising the datasets in gene expression were included. By combining three studies together, 250 differentially expressed genes were produced at a significance setting of p < 0.05. We identified candidate genes: LEP, NRIP1, SASH1, and ZADHHC8P1. Through GO analysis, we found extracellular matrix organization as the highly significant enriched ontology in a group of upregulated genes and immune process in downregulated genes. Studies on a genetic level have the potential to provide new insights into the regulation and to widen the basis for identification of changes in the mechanism of preeclampsia. Integrated bioinformatics could identify differentially expressed genes which could be candidate genes and potential pathways in preeclampsia that may improve our understanding of the cause and underlying molecular mechanisms that could be used as potential biomarkers for risk stratification and treatment.
Collapse
|
7
|
Banjac L, Kotur-Stevuljević J, Gojković T, Bokan-Mirković V, Banjac G, Banjac G. RELATIONSHIP BETWEEN INSULIN-LIKE GROWTH FACTOR TYPE 1 AND INTRAUTERINE GROWTH. Acta Clin Croat 2020; 59:91-96. [PMID: 32724279 PMCID: PMC7382880 DOI: 10.20471/acc.2020.59.01.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a regulator of intrauterine growth, and circulating concentrations are reduced in intrauterine growth-restricted fetuses. The aim of our study was to investigate the relationship between IGF-1 levels in newborns and intrauterine growth, expressed as birth weight (BW). The research was designed as a cross-sectional study. The study included 71 premature newborns, gestational age (GA) ≤33 weeks. Quantitative determination of IGF-1 was performed in the 33rd post-menstrual week (pmw) to make the measurements more comparable. We used an enzyme-bound immunosorbent test for quantitative determination of IGF-1. Our results showed the mean IGF-1 level in premature newborns in 33rd pmw to be 23.1±4.56 (range 15.44-39.75) µg/L. There was no difference in IGF-1 values between male (23.1±4.98 µg/L) and female (23.1±4.87 µg/L) newborns. There was no significant difference in the average IGF-1 levels between male and female newborns with BW <50th and BW >50th percentile for GA either (p>0.50). Only BW <33rd percentile newborns had a statistically significantly lower IGF-1 level compared to newborns with greater BW. Based on our results, it is concluded that serum IGF-1 level reflects intrauterine growth only in BW <33rd percentile newborns. This fact could be used for further therapeutic purposes.
Collapse
Affiliation(s)
| | - Jelena Kotur-Stevuljević
- 1Department of Neonatology, Clinical Center of Montenegro, Podgorica, Montenegro; 2Institute of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia; 3Center for Physical Medicine and Rehabilitation, Clinical Center of Montenegro, Podgorica, Montenegro; 4Institute of Children's Diseases, Clinical Center of Montenegro, Podgorica, Montenegro; 5The Obstetrics and Gynaecology Clinic Narodni Front, Belgrade, Serbia
| | - Tamara Gojković
- 1Department of Neonatology, Clinical Center of Montenegro, Podgorica, Montenegro; 2Institute of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia; 3Center for Physical Medicine and Rehabilitation, Clinical Center of Montenegro, Podgorica, Montenegro; 4Institute of Children's Diseases, Clinical Center of Montenegro, Podgorica, Montenegro; 5The Obstetrics and Gynaecology Clinic Narodni Front, Belgrade, Serbia
| | - Vesna Bokan-Mirković
- 1Department of Neonatology, Clinical Center of Montenegro, Podgorica, Montenegro; 2Institute of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia; 3Center for Physical Medicine and Rehabilitation, Clinical Center of Montenegro, Podgorica, Montenegro; 4Institute of Children's Diseases, Clinical Center of Montenegro, Podgorica, Montenegro; 5The Obstetrics and Gynaecology Clinic Narodni Front, Belgrade, Serbia
| | - Goran Banjac
- 1Department of Neonatology, Clinical Center of Montenegro, Podgorica, Montenegro; 2Institute of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia; 3Center for Physical Medicine and Rehabilitation, Clinical Center of Montenegro, Podgorica, Montenegro; 4Institute of Children's Diseases, Clinical Center of Montenegro, Podgorica, Montenegro; 5The Obstetrics and Gynaecology Clinic Narodni Front, Belgrade, Serbia
| | - Gorica Banjac
- 1Department of Neonatology, Clinical Center of Montenegro, Podgorica, Montenegro; 2Institute of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia; 3Center for Physical Medicine and Rehabilitation, Clinical Center of Montenegro, Podgorica, Montenegro; 4Institute of Children's Diseases, Clinical Center of Montenegro, Podgorica, Montenegro; 5The Obstetrics and Gynaecology Clinic Narodni Front, Belgrade, Serbia
| |
Collapse
|