1
|
Kalot R, Sentell Z, Kitzler TM, Torban E. Primary cilia and actin regulatory pathways in renal ciliopathies. FRONTIERS IN NEPHROLOGY 2024; 3:1331847. [PMID: 38292052 PMCID: PMC10824913 DOI: 10.3389/fneph.2023.1331847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Ciliopathies are a group of rare genetic disorders caused by defects to the structure or function of the primary cilium. They often affect multiple organs, leading to brain malformations, congenital heart defects, and anomalies of the retina or skeletal system. Kidney abnormalities are among the most frequent ciliopathic phenotypes manifesting as smaller, dysplastic, and cystic kidneys that are often accompanied by renal fibrosis. Many renal ciliopathies cause chronic kidney disease and often progress to end-stage renal disease, necessitating replacing therapies. There are more than 35 known ciliopathies; each is a rare hereditary condition, yet collectively they account for a significant proportion of chronic kidney disease worldwide. The primary cilium is a tiny microtubule-based organelle at the apex of almost all vertebrate cells. It serves as a "cellular antenna" surveying environment outside the cell and transducing this information inside the cell to trigger multiple signaling responses crucial for tissue morphogenesis and homeostasis. Hundreds of proteins and unique cellular mechanisms are involved in cilia formation. Recent evidence suggests that actin remodeling and regulation at the base of the primary cilium strongly impacts ciliogenesis. In this review, we provide an overview of the structure and function of the primary cilium, focusing on the role of actin cytoskeleton and its regulators in ciliogenesis. We then describe the key clinical, genetic, and molecular aspects of renal ciliopathies. We highlight what is known about actin regulation in the pathogenesis of these diseases with the aim to consider these recent molecular findings as potential therapeutic targets for renal ciliopathies.
Collapse
Affiliation(s)
- Rita Kalot
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Zachary Sentell
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Thomas M. Kitzler
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Health Center, Montreal, QC, Canada
| | - Elena Torban
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
2
|
Kakuki T, Kohno T, Nishida S, Konno T, Kikuchi S, Ohwada K, Nakano M, Tezuka M, Takano K, Kojima T. FOXO3/TGF-β signal-dependent ciliogenesis and cell functions during differentiation of temperature-sensitive mouse cochlear precursor hair cells. Histochem Cell Biol 2022; 157:415-426. [PMID: 35024955 DOI: 10.1007/s00418-021-02068-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/29/2022]
Abstract
The transcription factor FOXO3 is necessary to preserve cochlear hair cells. Growth factors, including TGF-β, closely contribute to cochlear hair cell regeneration. In the present study, to investigate the roles of FOXO3 in the ciliogenesis and cell functions of cochlear hair cells, UB/OC-2 temperature-sensitive mouse cochlear precursor hair cells were treated with TGF-β receptor type 1 inhibitor EW-7197 or EGF receptor inhibitor AG-1478 after transfection with or without siRNA-FOXO3a. GeneChip analysis revealed that treatment with EW-7197 increased Foxo3 genes and decreased genes of Smads. During cell differentiation, treatment with EW-7197 or AG-1478 induced an increase in length of cilia-like structures that were positive for acetylated tubulin and inhibited cell migration. Treatment with EW-7197 also increased cell metabolism measured as mitochondrial basal respiration (oxygen consumption rate). The effects of EW-7197 were stronger than those of AG-1478. Knockdown of FOXO3 prevented the growth of cilia-like structures induced by EW-7197 or AG-1478 and induced cell migration under treatment with EW-7197. No change of the epithelial cell polarity molecule PAR3 was observed with any treatment. Treatment with the antimicrobial agent amikacin prevented the growth of cilia-like structures induced by EW-7197 and induced apoptosis. Pretreatment with the glucocorticoid dexamethasone inhibited the apoptosis induced by amikacin. This in vitro model of mouse cochlear hair cells suggests that FOXO3/TGF-β signaling plays a crucial role in ciliogenesis and cell functions during differentiation of cochlear hair cells. This model is useful for analysis of the mechanisms of hearing loss and to find therapeutic agents to prevent it.
Collapse
Affiliation(s)
- Takuya Kakuki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan.
| | - Soshi Nishida
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.,Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Kizuku Ohwada
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.,Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Masaya Nakano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.,Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Mitsuki Tezuka
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kenichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
3
|
Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021; 15:736888. [PMID: 34658775 PMCID: PMC8514955 DOI: 10.3389/fnins.2021.736888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|