1
|
Zhao H, Wang Z, Wang H. The role of NCOA4-mediated ferritinophagy in the ferroptosis of hepatocytes: A mechanistic viewpoint. Pathol Res Pract 2025; 270:155996. [PMID: 40344841 DOI: 10.1016/j.prp.2025.155996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
This paper focuses on the mechanism underlying nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and subsequent hepatocyte ferroptosis. Iron is a pivotal trace element, but excessive iron deposition can lead to liver injury. Ferroptosis is a recognized, iron-dependent mode of programmed cell death that plays an important role in various liver diseases. NCOA4 is a key molecule mediating the selective autophagic degradation of ferritin. It affects ferroptosis by regulating intracellular free iron levels. NCOA4 expression is regulated by various factors, including cellular iron levels and oxidative stress. It was demonstrated that inhibition of NCOA4 can reduce iron-mediated cell death and mitigate liver damage, suggesting that NCOA4 may be a potential target for the prevention and treatment of liver diseases. Further in-depth studies of the molecular mechanism of NCOA4-mediated ferritinophagy and its relationship with iron-induced cell death can provide novel ideas for the diagnosis and treatment of liver diseases. The deficiency or abnormal expression of NCOA4 is closely associated with ferroptosis in a variety of liver diseases, including non-alcoholic fatty liver disease, alcoholic liver disease, drug-induced liver injury, and liver fibrosis. Future studies should focus on elucidating the dynamic changes in the NCOA4 regulatory network during specific pathological processes. This strategy can lay the foundation for drug development.
Collapse
Affiliation(s)
- Huixian Zhao
- Department of Hepatopancreatobiliary Surgery, the Affiliated Hospital of Qinghai University, China; Qinghai Research Key Laboratory for Echinococcosis, China; Qinghai Province Women and Children's hospital, China
| | - Zhixin Wang
- Department of Hepatopancreatobiliary Surgery, the Affiliated Hospital of Qinghai University, China; Qinghai Research Key Laboratory for Echinococcosis, China.
| | - Haijiu Wang
- Department of Hepatopancreatobiliary Surgery, the Affiliated Hospital of Qinghai University, China; Qinghai Research Key Laboratory for Echinococcosis, China.
| |
Collapse
|
2
|
Jiang Y, Wu W, Huang J, Liu N, Wang J, Wan X, Qin Z, Wang Y. KA-mediated excitotoxicity induces neuronal ferroptosis through activation of ferritinophagy. CNS Neurosci Ther 2024; 30:e70054. [PMID: 39306799 PMCID: PMC11416743 DOI: 10.1111/cns.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/13/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
OBJECTIVES This study aims to elucidate the role of Fe2+ overload in kainic acid (KA)-induced excitotoxicity, investigate the involvement of ferritinophagy selective cargo receptor NCOA4 in the pathogenesis of excitotoxicity. METHODS Western blotting was used to detect the expression of FTH1, NCOA4, Lamp2, TfR, FPN, and DMT1 after KA stereotaxic injection into the unilateral striatum of mice. Colocalization of Fe2+ with lysosomes in KA-treated primary cortical neurons was observed by using confocal microscopy. Desferrioxamine (DFO) was added to chelate free iron, a CCK8 kit was used to measure cell viability, and the Fe2+ levels were detected by FerroOrange. BODIPY C11 was used to determine intracellular lipid reactive oxygen species (ROS) levels, and the mRNA levels of PTGS2, a biomarker of ferroptosis, were measured by fluorescent quantitative PCR. 3-Methyladenine (3-MA) was employed to inhibit KA-induced activation of autophagy, and changes in ferritinophagy-related protein expression and the indicated biomarkers of ferroptosis were detected. Endogenous NCOA4 was knocked down by lentivirus transfection, and cell viability and intracellular Fe2+ levels were observed after KA treatment. RESULTS Western blot results showed that the expression of NCOA4, DMT1, and Lamp2 was significantly upregulated, while FTH1 was downregulated, but there were no significant changes in TfR and FPN. The fluorescence results indicated that KA enhanced the colocalization of free Fe2+ with lysosomes in neurons. DFO intervention could effectively rescue cell damage, reduce intracellular lipid peroxidation, and decrease the increased transcript levels of PTGS2 caused by KA. Pretreatment with 3-MA effectively reversed KA-induced ferritinophagy and ferroptosis. Endogenous interference with NCOA4 significantly improved cell viability and reduced intracellular free Fe2+ levels in KA-treated cells. CONCLUSION KA-induced excitotoxicity activates ferritinophagy, and targeting ferritinophagy effectively inhibits downstream ferroptosis. Interference with NCOA4 effectively attenuates KA-induced neuronal damage. This study provides a potential therapeutic target for excitotoxicity related disease conditions.
Collapse
Affiliation(s)
- Yi‐Yue Jiang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric DiseasesSoochow UniversitySuzhouChina
| | - Wei‐Long Wu
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric DiseasesSoochow UniversitySuzhouChina
| | - Jia‐Ni Huang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric DiseasesSoochow UniversitySuzhouChina
| | - Na Liu
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric DiseasesSoochow UniversitySuzhouChina
| | - Jing Wang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric DiseasesSoochow UniversitySuzhouChina
| | - Xiao‐Rui Wan
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric DiseasesSoochow UniversitySuzhouChina
| | - Zheng‐Hong Qin
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric DiseasesSoochow UniversitySuzhouChina
| | - Yan Wang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric DiseasesSoochow UniversitySuzhouChina
| |
Collapse
|
3
|
Le Y, Liu Q, Yang Y, Wu J. The emerging role of nuclear receptor coactivator 4 in health and disease: a novel bridge between iron metabolism and immunity. Cell Death Discov 2024; 10:312. [PMID: 38961066 PMCID: PMC11222541 DOI: 10.1038/s41420-024-02075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
Nuclear receptor coactivator 4 (NCOA4) has recently been recognized as a selective cargo receptor of ferritinophagy participating in ferroptosis. However, NCOA4 is also a coactivator that modulates the transcriptional activity of many vital nuclear receptors. Recent novel studies have documented the role of NCOA4 in healthy and pathogenic conditions via its modulation of iron- and non-iron-dependent metabolic pathways. NCOA4 exhibits non-ferritinophagic and iron-independent features such as promoting tumorigenesis and erythropoiesis, immunomodulation, regulating autophagy, and participating in DNA replication and mitosis. Full-length human-NCOA4 is composed of 614 amino acids, of which the N-terminal (1-237) contains nuclear-receptor-binding domains, while the C-terminal (238-614) principally contains a ferritin-binding domain. The exploration of the protein structure of NCOA4 suggests that NCOA4 possesses additional significant and complex functions based on its structural domains. Intriguingly, another three isoforms of NCOA4 that are produced by alternative splicing have been identified, which may also display disparate activities in physiological and pathological processes. Thus, NCOA4 has become an important bridge that encompasses interactions between immunity and metabolism. In this review, we outline the latest advances in the important regulating mechanisms underlying NCOA4 actions in health and disease conditions, providing insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yue Le
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Qinjie Liu
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Jie Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
- Research Center of Surgery, BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210021, China.
| |
Collapse
|
4
|
Li J, Feng Y, Li Y, He P, Zhou Q, Tian Y, Yao R, Yao Y. Ferritinophagy: A novel insight into the double-edged sword in ferritinophagy-ferroptosis axis and human diseases. Cell Prolif 2024; 57:e13621. [PMID: 38389491 PMCID: PMC11216947 DOI: 10.1111/cpr.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/19/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Nuclear receptor coactive 4 (NCOA4), which functions as a selective cargo receptor, is a critical regulator of the particularly autophagic degradation of ferritin, a process known as ferritinophagy. Mechanistically, NCOA4-mediated ferritinophagy performs an increasingly vital role in the maintenance of intracellular iron homeostasis by promoting ferritin transport and iron release as needed. Ferritinophagy is not only involved in iron-dependent responses but also in the pathogenesis and progression of various human diseases, including metabolism-related, neurodegenerative, cardiovascular and infectious diseases. Therefore, ferritinophagy is of great importance in maintaining cell viability and function and represents a potential therapeutic target. Recent studies indicated that ferritinophagy regulates the signalling pathway associated with ferroptosis, a newly discovered type of cell death characterised by iron-dependent lipid peroxidation. Although accumulating evidence clearly demonstrates the importance of the interplay between dysfunction in iron metabolism and ferroptosis, a deeper understanding of the double-edged sword effect of ferritinophagy in ferroptosis has remained elusive. Details of the mechanisms underlying the ferritinophagy-ferroptosis axis in regulating relevant human diseases remain to be elucidated. In this review, we discuss the latest research findings regarding the mechanisms that regulate the biological function of NCOA4-mediated ferritinophagy and its contribution to the pathophysiology of ferroptosis. The important role of the ferritinophagy-ferroptosis axis in human diseases will be discussed in detail, highlighting the great potential of targeting ferritinophagy in the treatment of diseases.
Collapse
Affiliation(s)
- Jing‐Yan Li
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yan‐Hua Feng
- Department of OrthopedicsHebei Provincial Chidren's HospitalShijiazhuangChina
| | - Yu‐Xuan Li
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| | - Peng‐Yi He
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| | - Qi‐Yuan Zhou
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ying‐Ping Tian
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ren‐Qi Yao
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| | - Yong‐Ming Yao
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| |
Collapse
|
5
|
Plays M, Müller S, Rodriguez R. Chemistry and biology of ferritin. Metallomics 2021; 13:6244244. [PMID: 33881539 PMCID: PMC8083198 DOI: 10.1093/mtomcs/mfab021] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Iron is an essential element required by cells and has been described as a key player in ferroptosis. Ferritin operates as a fundamental iron storage protein in cells forming multimeric assemblies with crystalline iron cores. We discuss the latest findings on ferritin structure and activity and its link to cell metabolism and ferroptosis. The chemistry of iron, including its oxidation states, is important for its biological functions, its reactivity, and the biology of ferritin. Ferritin can be localized in different cellular compartments and secreted by cells with a variety of functions depending on its spatial context. Here, we discuss how cellular ferritin localization is tightly linked to its function in a tissue-specific manner, and how impairment of iron homeostasis is implicated in diseases, including cancer and coronavirus disease 2019. Ferritin is a potential biomarker and we discuss latest research where it has been employed for imaging purposes and drug delivery.
Collapse
Affiliation(s)
- Marina Plays
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| | - Sebastian Müller
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| | - Raphaël Rodriguez
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| |
Collapse
|
6
|
NCOA4 is regulated by HIF and mediates mobilization of murine hepatic iron stores after blood loss. Blood 2021; 136:2691-2702. [PMID: 32659785 DOI: 10.1182/blood.2020006321] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/27/2020] [Indexed: 12/17/2022] Open
Abstract
The mechanisms by which phlebotomy promotes the mobilization of hepatic iron stores are not well understood. NCOA4 (nuclear receptor coactivator 4) is a widely expressed intracellular protein previously shown to mediate the autophagic degradation of ferritin. Here, we investigate a local requirement for NCOA4 in the regulation of hepatic iron stores and examine mechanisms of NCOA4 regulation. Hepatocyte-targeted Ncoa4 knockdown in nonphlebotomized mice had only modest effects on hepatic ferritin subunit levels and nonheme iron concentration. After phlebotomy, mice with hepatocyte-targeted Ncoa4 knockdown exhibited anemia and hypoferremia similar to control mice with intact Ncoa4 regulation but showed a markedly impaired ability to lower hepatic ferritin subunit levels and hepatic nonheme iron concentration. This impaired hepatic response was observed even when dietary iron was limited. In both human and murine hepatoma cell lines, treatment with chemicals that stabilize hypoxia inducible factor (HIF), including desferrioxamine, cobalt chloride, and dimethyloxalylglycine, raised NCOA4 messenger RNA. This NCOA4 messenger RNA induction occurred within 3 hours, preceded a rise in NCOA4 protein, and was attenuated in the setting of dual HIF-1α and HIF-2α knockdown. In summary, we show for the first time that NCOA4 plays a local role in facilitating iron mobilization from the liver after blood loss and that HIF regulates NCOA4 expression in cells of hepatic origin. Because the prolyl hydroxylases that regulate HIF stability are oxygen- and iron-dependent enzymes, our findings suggest a novel mechanism by which hypoxia and iron deficiency may modulate NCOA4 expression to impact iron homeostasis.
Collapse
|
7
|
Whiteley SL, Holleley CE, Wagner S, Blackburn J, Deveson IW, Marshall Graves JA, Georges A. Two transcriptionally distinct pathways drive female development in a reptile with both genetic and temperature dependent sex determination. PLoS Genet 2021; 17:e1009465. [PMID: 33857129 PMCID: PMC8049264 DOI: 10.1371/journal.pgen.1009465] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
How temperature determines sex remains unknown. A recent hypothesis proposes that conserved cellular mechanisms (calcium and redox; 'CaRe' status) sense temperature and identify genes and regulatory pathways likely to be involved in driving sexual development. We take advantage of the unique sex determining system of the model organism, Pogona vitticeps, to assess predictions of this hypothesis. P. vitticeps has ZZ male: ZW female sex chromosomes whose influence can be overridden in genetic males by high temperatures, causing male-to-female sex reversal. We compare a developmental transcriptome series of ZWf females and temperature sex reversed ZZf females. We demonstrate that early developmental cascades differ dramatically between genetically driven and thermally driven females, later converging to produce a common outcome (ovaries). We show that genes proposed as regulators of thermosensitive sex determination play a role in temperature sex reversal. Our study greatly advances the search for the mechanisms by which temperature determines sex.
Collapse
Affiliation(s)
- Sarah L. Whiteley
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
- Australian National Wildlife Collection CSIRO National Research Collections Australia, Canberra, Australia
| | - Clare E. Holleley
- Australian National Wildlife Collection CSIRO National Research Collections Australia, Canberra, Australia
| | - Susan Wagner
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - James Blackburn
- Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s Clinical School, UNSW, Sydney, Australia
| | - Ira W. Deveson
- Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s Clinical School, UNSW, Sydney, Australia
| | - Jennifer A. Marshall Graves
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
- Latrobe University, Melbourne, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| |
Collapse
|
8
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Kemmerling U, Cáceres AJ, Michels PA, Concepción JL, Quiñones W. Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biol 2020; 10:200302. [PMID: 33234025 PMCID: PMC7729029 DOI: 10.1098/rsob.200302] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphoglycerate kinase (PGK) is a glycolytic enzyme that is well conserved among the three domains of life. PGK is usually a monomeric enzyme of about 45 kDa that catalyses one of the two ATP-producing reactions in the glycolytic pathway, through the conversion of 1,3-bisphosphoglycerate (1,3BPGA) to 3-phosphoglycerate (3PGA). It also participates in gluconeogenesis, catalysing the opposite reaction to produce 1,3BPGA and ADP. Like most other glycolytic enzymes, PGK has also been catalogued as a moonlighting protein, due to its involvement in different functions not associated with energy metabolism, which include pathogenesis, interaction with nucleic acids, tumorigenesis progression, cell death and viral replication. In this review, we have highlighted the overall aspects of this enzyme, such as its structure, reaction kinetics, activity regulation and possible moonlighting functions in different protistan organisms, especially both free-living and parasitic Kinetoplastea. Our analysis of the genomes of different kinetoplastids revealed the presence of open-reading frames (ORFs) for multiple PGK isoforms in several species. Some of these ORFs code for unusually large PGKs. The products appear to contain additional structural domains fused to the PGK domain. A striking aspect is that some of these PGK isoforms are predicted to be catalytically inactive enzymes or ‘dead’ enzymes. The roles of PGKs in kinetoplastid parasites are analysed, and the apparent significance of the PGK gene duplication that gave rise to the different isoforms and their expression in Trypanosoma cruzi is discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile 8380453, Santigo de Chile
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Paul A Michels
- Centre for Immunity, Infection and Evolution, The King's Buildings, Edinburgh EH9 3FL, UK.,Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| |
Collapse
|
9
|
Liu J, Guo ZN, Yan XL, Huang S, Ren JX, Luo Y, Yang Y. Crosstalk Between Autophagy and Ferroptosis and Its Putative Role in Ischemic Stroke. Front Cell Neurosci 2020; 14:577403. [PMID: 33132849 PMCID: PMC7566169 DOI: 10.3389/fncel.2020.577403] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a conserved process to maintains homeostasis via the degradation of toxic cell contents, which can either promote cell survival or accelerate cellular demise. Ferroptosis is a recently discovered iron-dependent cell death pathway associated with the accumulation of lethal reactive lipid species. In the past few years, an increasing number of studies have suggested the crosstalk between autophagy and ferroptosis. Ischemic stroke is a complex brain disease regulated by several cell death pathways, including autophagy and ferroptosis. However, the potential links between autophagy and ferroptosis in ischemic stroke have not yet been explored. In this review, we briefly overview the mechanisms of ferroptosis and autophagy, as well as their possible connections in ischemic stroke. The elucidation of crosstalk between different cell death pathways may provide insight into new future ischemic stroke therapies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Jia-Xin Ren
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
| | - Yun Luo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
10
|
Quiles Del Rey M, Mancias JD. NCOA4-Mediated Ferritinophagy: A Potential Link to Neurodegeneration. Front Neurosci 2019; 13:238. [PMID: 30930742 PMCID: PMC6427834 DOI: 10.3389/fnins.2019.00238] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/28/2019] [Indexed: 01/15/2023] Open
Abstract
NCOA4 (Nuclear receptor coactivator 4) mediates the selective autophagic degradation of ferritin, the cellular cytosolic iron storage complex, thereby playing a critical role in intracellular and systemic iron homeostasis. Disruptions in iron homeostasis and autophagy are observed in several neurodegenerative disorders raising the possibility that NCOA4-mediated ferritinophagy links these two observations and may underlie, in part, the pathophysiology of neurodegeneration. Here, we review the available evidence detailing the molecular mechanisms of NCOA4-mediated ferritinophagy and recent studies examining its role in systemic iron homeostasis and erythropoiesis. We propose additional studies to examine the potential role of NCOA4 in the brain in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria Quiles Del Rey
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Joseph D Mancias
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
11
|
Santana-Codina N, Mancias JD. The Role of NCOA4-Mediated Ferritinophagy in Health and Disease. Pharmaceuticals (Basel) 2018; 11:E114. [PMID: 30360520 PMCID: PMC6316710 DOI: 10.3390/ph11040114] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/26/2022] Open
Abstract
Nuclear receptor coactivator 4 (NCOA4) is a selective cargo receptor that mediates the autophagic degradation of ferritin ("ferritinophagy"), the cytosolic iron storage complex. NCOA4-mediated ferritinophagy maintains intracellular iron homeostasis by facilitating ferritin iron storage or release according to demand. Ferritinophagy is involved in iron-dependent physiological processes such as erythropoiesis, where NCOA4 mediates ferritin iron release for mitochondrial heme synthesis. Recently, ferritinophagy has been shown to regulate ferroptosis, a newly described form of iron-dependent cell death mediated by excess lipid peroxidation. Dysregulation of iron metabolism and ferroptosis have been described in neurodegeneration, cancer, and infection, but little is known about the role of ferritinophagy in the pathogenesis of these diseases. Here, we will review the biochemical regulation of NCOA4, its contribution to physiological processes and its role in disease. Finally, we will discuss the potential of activating or inhibiting ferritinophagy and ferroptosis for therapeutic purposes.
Collapse
Affiliation(s)
- Naiara Santana-Codina
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Institute of Medicine, Room 221, 4 Blackfan Circle, Boston, MA 02215, USA.
| | - Joseph D Mancias
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Institute of Medicine, Room 221, 4 Blackfan Circle, Boston, MA 02215, USA.
| |
Collapse
|
12
|
Expression and function of nuclear receptor coactivator 4 isoforms in transformed endometriotic and malignant ovarian cells. Oncotarget 2017; 9:5344-5367. [PMID: 29435183 PMCID: PMC5797054 DOI: 10.18632/oncotarget.23747] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/22/2017] [Indexed: 01/10/2023] Open
Abstract
Iron is proposed to contribute to the transition from endometriosis to specific subtypes of ovarian cancers (OVCAs). Regulation of intracellular iron occurs via a ferritinophagic process involving NCOA4 (Nuclear Receptor Coactivator 4), represented by two major isoforms (NCOA4α and NCOA4β), whose contribution to ovarian cancer biology remains uninvestigated. We thus generated transformed endometriotic cells (via HRASV12A, c-MYCT58A, and p53 inactivation) whose migratory potential was increased in response to conditioned media from senescent endometriotic cells. We identified elevated NCOA4 mRNA in transformed endometriotic cells (relative to non-transformed). Knockdown of NCOA4 increased ferritin heavy chain (FTH1) and p21 protein which was accompanied by reduced cell survival while NCOA4β overexpression reduced colony formation. NCOA4α and NCOA4β mRNA were elevated in malignant versus non-malignant gynecological cells; NCOA4α protein was increased in the assessed malignant cell lines as well as in a series of OVCA subtypes (relative to normal adjacent tissues). Further, NCOA4 protein expression was regulated in a proteasome- and autophagy-independent manner. Collectively, our results implicate NCOA4 in ovarian cancer biology in which it could be involved in the transition from precursors to OVCA.
Collapse
|
13
|
Barthold JS, Pugarelli J, MacDonald ML, Ren J, Adetunji MO, Polson SW, Mateson A, Wang Y, Sol-Church K, McCahan SM, Akins RE, Devoto M, Robbins AK. Polygenic inheritance of cryptorchidism susceptibility in the LE/orl rat. Mol Hum Reprod 2016; 22:18-34. [PMID: 26502805 PMCID: PMC4694052 DOI: 10.1093/molehr/gav060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/21/2015] [Accepted: 10/22/2015] [Indexed: 01/07/2023] Open
Abstract
STUDY HYPOTHESIS Susceptibility to inherited cryptorchidism in the LE/orl rat may be associated with genetic loci that influence developmental patterning of the gubernaculum by the fetal testis. STUDY FINDING Cryptorchidism in the LE/orl rat is associated with a unique combination of homozygous minor alleles at multiple loci, and the encoded proteins are co-localized with androgen receptor (AR) and Leydig cells in fetal gubernaculum and testis, respectively. WHAT IS KNOWN ALREADY Prior studies have shown aberrant perinatal gubernacular migration, muscle patterning defects and reduced fetal testicular testosterone in the LE/orl strain. In addition, altered expression of androgen-responsive, cytoskeletal and muscle-related transcripts in the LE/orl fetal gubernaculum suggest a role for defective AR signaling in cryptorchidism susceptibility. STUDY DESIGN, SAMPLES/MATERIALS, METHODS The long-term LE/orl colony and short-term colonies of outbred Crl:LE and Crl:SD, and inbred WKY/Ncrl rats were maintained for studies. Animals were intercrossed (LE/orl X WKY/Ncrl), and obligate heterozygotes were reciprocally backcrossed to LE/orl rats to generate 54 F2 males used for genotyping and/or linkage analysis. At least five fetuses per gestational time point from two or more litters were used for quantitative real-time RT-PCR (qRT-PCR) and freshly harvested embryonic (E) day 17 gubernaculum was used to generate conditionally immortalized cell lines. We completed genotyping and gene expression analyses using genome-wide microsatellite markers and single nucleotide polymorphism (SNP) arrays, PCR amplification, direct sequencing, restriction enzyme digest with fragment analysis, whole genome sequencing (WGS), and qRT-PCR. Linkage analysis was performed in Haploview with multiple testing correction, and qRT-PCR data were analyzed using ANOVA after log transformation. Imaging was performed using custom and commercial antibodies directed at candidate proteins in gubernaculum and testis tissues, and gubernaculum cell lines. MAIN RESULTS AND THE ROLE OF CHANCE LE/orl rats showed reduced fertility and fecundity, and higher risk of perinatal death as compared with Crl:LE rats, but there were no differences in breeding outcomes between normal and unilaterally cryptorchid males. Linkage analysis identified multiple peaks, and with selective breeding of outbred Crl:LE and Crl:SD strains for alleles within two of the most significant (P < 0.003) peaks on chromosomes 6 and 16, we were able to generate a non-LE/orl cryptorchid rat. Associated loci contain potentially functional minor alleles (0.25-0.36 in tested rat strains) including an exonic deletion in Syne2, a large intronic insertion in Ncoa4 (an AR coactivator) and potentially deleterious variants in Solh/Capn15, Ankrd28, and Hsd17b2. Existing WGS data indicate that homozygosity for these combined alleles does not occur in any other sequenced rat strain. We observed a modifying effect of the Syne2(del) allele on expression of other candidate genes, particularly Ncoa4, and for muscle and hormone-responsive transcripts. The selected candidate genes/proteins are highly expressed, androgen-responsive and/or co-localized with developing muscle and AR in fetal gubernaculum, and co-localized with Leydig cells in fetal testis. LIMITATIONS, REASONS FOR CAUTION The present study identified multiple cryptorchidism-associated linkage peaks in the LE/orl rat, containing potentially causal alleles. These are strong candidate susceptibility loci, but further studies are needed to demonstrate functional relevance to the phenotype. WIDER IMPLICATIONS OF THE FINDINGS Association data from both human and rat models of spontaneous, nonsyndromic cryptorchidism support a polygenic etiology of the disease. Both the present study and a human genome-wide association study suggest that common variants with weak effects contribute to susceptibility, and may exist in genes encoding proteins that participate in AR signaling in the developing gubernaculum. These findings have potential implications for the gene-environment interaction in the etiology of cryptorchidism. LARGE SCALE DATA Sequences were deposited in the Rat Genome Database (RGD, http://rgd.mcw.edu/). STUDY FUNDING AND COMPETING INTERESTS This work was supported by: R01HD060769 from the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD), 2P20GM103446 and P20GM103464 from the National Institute of General Medical Sciences (NIGMS), and Nemours Biomedical Research. The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Julia Spencer Barthold
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Joan Pugarelli
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Madolyn L MacDonald
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Jia Ren
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Modupeore O Adetunji
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Abigail Mateson
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Yanping Wang
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Katia Sol-Church
- Biomolecular Core Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Suzanne M McCahan
- Bioinformatics Core, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Robert E Akins
- Tissue Engineering and Regenerative Medicine Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Marcella Devoto
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Alan K Robbins
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| |
Collapse
|
14
|
Biasiotto G, Di Lorenzo D, Archetti S, Zanella I. Iron and Neurodegeneration: Is Ferritinophagy the Link? Mol Neurobiol 2015; 53:5542-74. [PMID: 26468157 DOI: 10.1007/s12035-015-9473-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022]
Abstract
Mounting evidence indicates that the lysosome-autophagy pathway plays a critical role in iron release from ferritin, the main iron storage cellular protein, hence in the distribution of iron to the cells. The recent identification of nuclear receptor co-activator 4 as the receptor for ferritin delivery to selective autophagy sheds further light on the understanding of the mechanisms underlying this pathway. The emerging view is that iron release from ferritin through the lysosomes is a general mechanism in normal and tumour cells of different tissue origins, but it has not yet been investigated in brain cells. Defects in the lysosome-autophagy pathway are often involved in the pathogenesis of neurodegenerative disorders, and brain iron homeostasis disruption is a hallmark of many of these diseases. However, in most cases, it has not been established whether iron dysregulation is directly involved in the pathogenesis of the diseases or if it is a secondary effect derived from other pathogenic mechanisms. The recent evidence of the crucial involvement of autophagy in cellular iron handling offers new perspectives about the role of iron in neurodegeneration, suggesting that autophagy dysregulation could cause iron dyshomeostasis. In this review, we recapitulate our current knowledge on the routes through which iron is released from ferritin, focusing on the most recent advances. We summarise the current evidence concerning lysosome-autophagy pathway dysfunctions and those of iron metabolism and discuss their potential interconnections in several neurodegenerative disorders, such as Alzheimer's, Parkinson's and Huntington's diseases; amyotrophic lateral sclerosis; and frontotemporal lobar dementia.
Collapse
Affiliation(s)
- Giorgio Biasiotto
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Diego Di Lorenzo
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Silvana Archetti
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy.
| |
Collapse
|
15
|
Xu Z, Yang L, Xu S, Zhang Z, Cao Y. The receptor proteins: pivotal roles in selective autophagy. Acta Biochim Biophys Sin (Shanghai) 2015; 47:571-580. [PMID: 26112016 DOI: 10.1093/abbs/gmv055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/30/2015] [Indexed: 02/05/2023] Open
Abstract
Autophagy is a highly regulated and multistep biological process whereby cells under metabolic, proteotoxic, or other stresses remove dysfunctional organelles and/or misfolded/polyubiquitinated proteins by shuttling them via specialized structures called autophagosomes to the lysosome for degradation. Although autophagy is generally considered to be a non-selective process, accumulating evidence suggests that it can also selectively degrade specific target cargoes. These selective targets include proteins, mitochondria, and even invading bacteria. The discovery and characterization of autophagic adapters, such as p62/Sequestosome 1 (SQSTM1) and Neighbor of BRCA1 gene 1 (NBR1), have provided mechanistic insights into selective autophagy. These receptors are all able to act as cargo receptors for the degradation of ubiquitinated substrates. This review mainly summarizes the most up-to-date findings regarding the key receptor proteins that play important roles in regulating selective autophagy.
Collapse
Affiliation(s)
- Zhijie Xu
- Cancer Research Institute, Central South University, Changsha 410078, China Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| | - Lifang Yang
- Cancer Research Institute, Central South University, Changsha 410078, China Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| | - San Xu
- Cancer Research Institute, Central South University, Changsha 410078, China Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| | - Zhibao Zhang
- Cancer Research Institute, Central South University, Changsha 410078, China Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| | - Ya Cao
- Cancer Research Institute, Central South University, Changsha 410078, China Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| |
Collapse
|
16
|
Guévélou E, Huvet A, Galindo-Sánchez CE, Milan M, Quillien V, Daniel JY, Quéré C, Boudry P, Corporeau C. Sex-Specific Regulation of AMP-Activated Protein Kinase (AMPK) in the Pacific Oyster Crassostrea gigas1. Biol Reprod 2013; 89:100. [DOI: 10.1095/biolreprod.113.109728] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
17
|
Chan C, Virtanen C, Winegarden NA, Colgan TJ, Brown TJ, Greenblatt EM. Discovery of biomarkers of endometrial receptivity through a minimally invasive approach: a validation study with implications for assisted reproduction. Fertil Steril 2013; 100:810-7. [PMID: 23725802 DOI: 10.1016/j.fertnstert.2013.04.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/18/2013] [Accepted: 04/30/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine whether a minimally invasive approach to sampling endometrial cells that can be applied during an active conception cycle can generate robust biomarker candidates for endometrial receptivity by genomewide gene expression profiling. DESIGN Longitudinal study comparing gene expression profiles of cells isolated from uterine aspirates collected during the prereceptive and receptive phases of a natural cycle. SETTING University-affiliated hospital. PATIENT(S) Healthy volunteers, ≤40 years of age, with regular menstrual cycles and no history of infertility. INTERVENTION(S) One menstrual cycle monitored with urinary kits to identify the luteinizing hormone (LH) surge; uterine aspirations collected at LH + 2 days (LH + 2) and at LH + 7; endometrial biopsy obtained on LH + 7; RNA extraction from the cellular material for gene expression profiling, and differential gene expression validated by NanoString assay and cross-validated against a publically available data set. MAIN OUTCOME MEASURE(S) Differentially expressed genes between LH + 2 and LH + 7 samples. RESULT(S) NanoString assay validated 96% of the 245 genes found differentially expressed at LH + 7. Unsupervised hierarchical clustering of aspiration and biopsy samples demonstrated the concordance of the sampling methods. A predictor gene cassette derived by a shrunken centroid class prediction technique correctly classified the receptive phase within an external data set. CONCLUSION(S) Uterine aspiration, which can be performed during an active conception cycle, identified robust candidate biomarkers of endometrial receptivity, and will enable their validation by direct correlation with clinical outcomes.
Collapse
Affiliation(s)
- Crystal Chan
- Department of Obstetrics and Gynaecology University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
18
|
Lu H, Cui JY, Gunewardena S, Yoo B, Zhong XB, Klaassen CD. Hepatic ontogeny and tissue distribution of mRNAs of epigenetic modifiers in mice using RNA-sequencing. Epigenetics 2012; 7:914-29. [PMID: 22772165 DOI: 10.4161/epi.21113] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Developmental regulation of gene expression is controlled by distinct epigenetic signatures catalyzed by various epigenetic modifiers. Little is known about the ontogeny and tissue distribution of these epigenetic modifiers. In the present study, we used a novel approach of RNA-sequencing to elucidate hepatic ontogeny and tissue distribution of mRNA expression of 142 epigenetic modifiers, including enzymes involved in DNA methylation/demethylation, histone acetylation/deacetylation, histone methylation/demethylation, histone phosphorylation and chromosome remodeling factors in male C57BL/6 mice. Livers from male C57BL/6 mice were collected at 12 ages from prenatal to adulthood. Many of these epigenetic modifiers were expressed at much higher levels in perinatal livers than adult livers, such as Dnmt1, Dnmt3a, Dnmt3b, Apobec3, Kat1, Ncoa4, Setd8, Ash2l, Dot1l, Cbx1, Cbx3, Cbx5, Cbx6, Ezh2, Suz12, Eed, Suv39h1, Suv420h2, Dek, Hdac1, Hdac2, Hdac7, Kdm2b, Kdm5c, Kdm7, Prmt1-5, Prmt7, Smarca4, Smarcb1, Chd4 and Ino80e. In contrast, hepatic mRNA expression of a few epigenetic modifiers increased during postnatal liver development, such as Smarca2, Kdm1b, Cbx7 and Chd3. In adult mice (60 d of age), most epigenetic modifiers were expressed at moderately (1-3-fold) higher levels in kidney and/or small intestine than liver. In conclusion, this study, for the first time, unveils developmental changes in mRNA abundance of all major known epigenetic modifiers in mouse liver. These data suggest that ontogenic changes in mRNA expression of epigenetic modifiers may play important roles in determining the addition and/or removal of corresponding epigenetic signatures during liver development.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Kollara A, Brown TJ. Expression and function of nuclear receptor co-activator 4: evidence of a potential role independent of co-activator activity. Cell Mol Life Sci 2012; 69:3895-909. [PMID: 22562579 PMCID: PMC3492700 DOI: 10.1007/s00018-012-1000-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/13/2012] [Accepted: 04/17/2012] [Indexed: 12/22/2022]
Abstract
Nuclear receptor coactivator 4 (NcoA4), also known as androgen receptor-associated protein 70 (ARA70), was initially discovered as a component of Ret-Fused Gene expressed in a subset of papillary thyroid carcinomas. Subsequent studies have established NcoA4 as a coactivator for a variety of nuclear receptors, including peroxisome proliferator activated receptors α and γ, and receptors for steroid hormones, vitamins D and A, thyroid hormone, and aryl hydrocarbons. While human NcoA4 has both LXXLL and FXXLF motifs that mediate p160 coactivator nuclear receptor interactions, this ubiquitously expressed protein lacks clearly defined functional domains. Several studies indicate that NcoA4 localizes predominantly to the cytoplasm and affects ligand-binding specificity of the androgen receptor, which has important implications for androgen-independent prostate cancer. Two NcoA4 variants, which may exert differential activities, have been identified in humans. Recent studies suggest that NcoA4 may play a role in development, carcinogenesis, inflammation, erythrogenesis, and cell cycle progression that may be independent of its role as a receptor coactivator. This review summarizes what is currently known of the structure, expression, regulation, and potential functions of this unique protein in cancerous and non-cancerous pathologies.
Collapse
Affiliation(s)
- Alexandra Kollara
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 25 Orde Street, 6-1001TB, Toronto, ON, M5T 3H7, Canada
| | | |
Collapse
|
20
|
Kollara A, Ringuette MJ, Brown TJ. Dynamic distribution of nuclear coactivator 4 during mitosis: association with mitotic apparatus and midbodies. PLoS One 2011; 6:e22257. [PMID: 21814571 PMCID: PMC3144208 DOI: 10.1371/journal.pone.0022257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 06/21/2011] [Indexed: 11/19/2022] Open
Abstract
The cytoplasmic localization of Nuclear Receptor Coactivator 4 (NcoA4), also referred to as androgen receptor associated protein 70 (ARA70), indicates it may possess activities in addition to its role within the nucleus as a transcriptional enhancer. Towards identifying novel functions of NcoA4, we performed an in silico analysis of its amino acid sequence to identify potential functional domains and related proteins, and examined its subcellular distribution throughout the cell cycle. NcoA4 has no known or predicted functional or structural domains with the exception of an LxxLL and FxxLF nuclear receptor interaction motif and an N-terminal putative coiled-coil domain. Phylogenetic analysis indicated that NcoA4 has no paralogs and that a region referred to as ARA70-I family domain, located within the N-terminus and overlapping with the coiled-coil domain, is evolutionarily conserved in metazoans ranging from cnidarians to mammals. An adjacent conserved region, designated ARA70-II family domain, with no significant sequence similarity to the ARA70-I domain, is restricted to vertebrates. We demonstrate NcoA4 co-localizes with microtubules and microtubule organizing centers during prophase. Strong NcoA4 accumulation at the centrosomes was detected during interphase and telophase, with decreased levels at metaphase and anaphase. NcoA4 co-localized with tubulin and acetylated tubulin to the mitotic spindles during metaphase and anaphase, and to midbodies during telophase. Consistent with these observations, we demonstrated an interaction between NcoA4 and α-tubulin. Co-localization was not observed with microfilaments. These findings indicate a dynamic distribution of NcoA4 with components of the mitotic apparatus that is consistent with a potential non-transcriptional regulatory function(s) during cell division, which may be evolutionarily conserved.
Collapse
Affiliation(s)
- Alexandra Kollara
- Department of Obstetrics and Gynecology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Maurice J. Ringuette
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Theodore J. Brown
- Department of Obstetrics and Gynecology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|