1
|
Madadi AK, Sohn MJ. Advances in Intrathecal Nanoparticle Delivery: Targeting the Blood-Cerebrospinal Fluid Barrier for Enhanced CNS Drug Delivery. Pharmaceuticals (Basel) 2024; 17:1070. [PMID: 39204177 PMCID: PMC11357388 DOI: 10.3390/ph17081070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
The blood-cerebrospinal fluid barrier (BCSFB) tightly regulates molecular exchanges between the bloodstream and cerebrospinal fluid (CSF), creating challenges for effective central nervous system (CNS) drug delivery. This review assesses intrathecal (IT) nanoparticle (NP) delivery systems that aim to enhance drug delivery by circumventing the BCSFB, complementing approaches that target the blood-brain barrier (BBB). Active pharmaceutical ingredients (APIs) face hurdles like restricted CNS distribution and rapid clearance, which diminish the efficacy of IT therapies. NPs can be engineered to extend drug circulation times, improve CNS penetration, and facilitate sustained release. This review discusses key pharmacokinetic (PK) parameters essential for the effectiveness of these systems. NPs can quickly traverse the subarachnoid space and remain within the leptomeninges for extended periods, often exceeding three weeks. Some designs enable deeper brain parenchyma penetration. Approximately 80% of NPs in the CSF are cleared through the perivascular glymphatic pathway, with microglia-mediated transport significantly contributing to their paravascular clearance. This review synthesizes recent progress in IT-NP delivery across the BCSFB, highlighting critical findings, ongoing challenges, and the therapeutic potential of surface modifications and targeted delivery strategies.
Collapse
Affiliation(s)
- Ahmad Khalid Madadi
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjingu, Busan 47392, Republic of Korea;
| | - Moon-Jun Sohn
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjingu, Busan 47392, Republic of Korea;
- Department of Neurosurgery, Neuroscience & Radiosurgery Hybrid Research Center, Inje University Ilsan Paik Hospital, College of Medicine, Juhwa-ro 170, Ilsanseo-gu, Goyang City 10380, Republic of Korea
| |
Collapse
|
2
|
Lee J, Sul HJ, Kim KH, Chang JY, Shong M. Primary Cilia Mediate TSH-Regulated Thyroglobulin Endocytic Pathways. Front Endocrinol (Lausanne) 2021; 12:700083. [PMID: 34552555 PMCID: PMC8451241 DOI: 10.3389/fendo.2021.700083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/12/2021] [Indexed: 12/02/2022] Open
Abstract
Primary cilia are sensory organelles with a variety of receptors and channels on their membranes. Recently, primary cilia were proposed to be crucial sites for exocytosis and endocytosis of vesicles associated with endocytic control of various ciliary signaling pathways. Thyroglobulin (Tg) synthesis and Tg exocytosis/endocytosis are critical for the functions of thyroid follicular cells, where primary cilia are relatively well preserved. LRP2/megalin has been detected on the apical surface of absorptive epithelial cells, including thyrocytes. LRP2/megalin on thyrocytes serves as a Tg receptor and can mediate Tg endocytosis. In this study, we investigated the role of primary cilia in LRP2/megalin expression in thyroid gland stimulated with endogenous TSH using MMI-treated and Tg-Cre;Ift88flox/flox mice. LRP2/megalin expression in thyroid follicles was higher in MMI-treated mice than in untreated control mice. MMI-treated mice exhibited a significant increase in ciliogenesis in thyroid follicular cells relative to untreated controls. Furthermore, MMI-induced ciliogenesis accompanied increases in LRP2/megalin expression in thyroid follicular cells, in which LRP2/megalin was localized to the primary cilium. By contrast, in Tg-Cre;Ift88flox/flox mice, thyroid with defective primary cilia expressed markedly lower levels of LRP2/megalin. Serum Tg levels were elevated in MMI-treated mice and reduced in Tg-Cre;Ift88flox/flox mice. Taken together, these results indicate that defective ciliogenesis in murine thyroid follicular cells is associated with impaired LRP2/megalin expression and reduced serum Tg levels. Our results strongly suggest that primary cilia harbors LRP2/megalin, and are involved in TSH-mediated endocytosis of Tg in murine thyroid follicles.
Collapse
Affiliation(s)
- Junguee Lee
- Department of Pathology, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Junguee Lee, ; Minho Shong,
| | - Hae Joung Sul
- Department of Pathology, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kun-Ho Kim
- Department of Nuclear Medicine, Chungnam National University Hospital and College of Medicine, Daejeon, South Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Junguee Lee, ; Minho Shong,
| |
Collapse
|
3
|
Charlton JR, Tan W, Daouk G, Teot L, Rosen S, Bennett KM, Cwiek A, Nam S, Emma F, Jouret F, Oliveira JP, Tranebjærg L, Frykholm C, Mane S, Hildebrandt F, Srivastava T, Storm T, Christensen EI, Nielsen R. Beyond the tubule: pathological variants of LRP2, encoding the megalin receptor, result in glomerular loss and early progressive chronic kidney disease. Am J Physiol Renal Physiol 2020; 319:F988-F999. [PMID: 33103447 DOI: 10.1152/ajprenal.00295.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pathogenic variants in the LRP2 gene, encoding the multiligand receptor megalin, cause a rare autosomal recessive syndrome: Donnai-Barrow/Facio-Oculo-Acoustico-Renal (DB/FOAR) syndrome. Because of the rarity of the syndrome, the long-term consequences of the tubulopathy on human renal health have been difficult to ascertain, and the human clinical condition has hitherto been characterized as a benign tubular condition with asymptomatic low-molecular-weight proteinuria. We investigated renal function and morphology in a murine model of DB/FOAR syndrome and in patients with DB/FOAR. We analyzed glomerular filtration rate in mice by FITC-inulin clearance and clinically characterized six families, including nine patients with DB/FOAR and nine family members. Urine samples from patients were analyzed by Western blot analysis and biopsy materials were analyzed by histology. In the mouse model, we used histological methods to assess nephrogenesis and postnatal renal structure and contrast-enhanced magnetic resonance imaging to assess glomerular number. In megalin-deficient mice, we found a lower glomerular filtration rate and an increase in the abundance of injury markers, such as kidney injury molecule-1 and N-acetyl-β-d-glucosaminidase. Renal injury was validated in patients, who presented with increased urinary kidney injury molecule-1, classical markers of chronic kidney disease, and glomerular proteinuria early in life. Megalin-deficient mice had normal nephrogenesis, but they had 19% fewer nephrons in early adulthood and an increased fraction of nephrons with disconnected glomerulotubular junction. In conclusion, megalin dysfunction, as present in DB/FOAR syndrome, confers an increased risk of progression into chronic kidney disease.
Collapse
Affiliation(s)
- Jennifer R Charlton
- Division of Nephrology, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Weizhen Tan
- Division of Nephrology, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Ghaleb Daouk
- Division of Nephrology, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Lisa Teot
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Seymour Rosen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts.,Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Kevin M Bennett
- Department of Radiology, Washington University in Saint Louis, St. Louis, Missouri
| | - Aleksandra Cwiek
- Division of Nephrology, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Sejin Nam
- Department of Physics, University of Hawai'i at Manoa, Manoa, Hawai'i
| | - Francesco Emma
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital- Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - François Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Unit of Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - João Paulo Oliveira
- Service of Medical Genetics, São João University Hospital Centre and Faculty of Medicine, University of Porto and i3S-Institute for Health Research and Innovation, Porto, Portugal
| | - Lisbeth Tranebjærg
- Department of Clinical Genetics, Rigshospitalet/The Kennedy Centre, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
| | - Carina Frykholm
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Tina Storm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Induced pluripotent stem cell-based disease modeling identifies ligand-induced decay of megalin as a cause of Donnai-Barrow syndrome. Kidney Int 2020; 98:159-167. [PMID: 32471643 PMCID: PMC7322522 DOI: 10.1016/j.kint.2020.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 01/16/2023]
Abstract
Donnai-Barrow syndrome (DBS) is an autosomal-recessive disorder characterized by multiple pathologies including malformation of forebrain and eyes, as well as resorption defects of the kidney proximal tubule. The underlying cause of DBS are mutations in LRP2, encoding the multifunctional endocytic receptor megalin. Here, we identified a unique missense mutation R3192Q of LRP2 in an affected family that may provide novel insights into the molecular causes of receptor dysfunction in the kidney proximal tubule and other tissues affected in DBS. Using patient-derived induced pluripotent stem cell lines we generated neuroepithelial and kidney cell types as models of the disease. Using these cell models, we documented the inability of megalin R3192Q to properly discharge ligand and ligand-induced receptor decay in lysosomes. Thus, mutant receptors are aberrantly targeted to lysosomes for catabolism, essentially depleting megalin in the presence of ligand in this affected family.
Collapse
|
5
|
Strazielle N, Ghersi-Egea JF. Potential Pathways for CNS Drug Delivery Across the Blood-Cerebrospinal Fluid Barrier. Curr Pharm Des 2017; 22:5463-5476. [PMID: 27464721 PMCID: PMC5421134 DOI: 10.2174/1381612822666160726112115] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/27/2016] [Indexed: 12/24/2022]
Abstract
The blood-brain interfaces restrict the cerebral bioavailability of pharmacological compounds. Various drug delivery strategies have been developed to improve drug penetration into the brain. Most strategies target the microvascular endothelium forming the blood-brain barrier proper. Targeting the blood-cerebrospinal fluid (CSF) barrier formed by the epithelium of the choroid plexuses in addition to the blood-brain barrier may offer added-value for the treatment of central nervous system diseases. For instance, targeting the CSF spaces, adjacent tissue, or the choroid plexuses themselves is of interest for the treatment of neuroinflammatory and infectious diseases, cerebral amyloid angiopathy, selected brain tumors, hydrocephalus or neurohumoral dysregulation. Selected CSF-borne materials seem to reach deep cerebral structures by mechanisms that need to be understood in the context of chronic CSF delivery. Drug delivery through both barriers can reduce CSF sink action towards parenchymal drugs. Finally, targeting the choroid plexus-CSF system can be especially relevant in the context of neonatal and pediatric diseases of the central nervous system. Transcytosis appears the most promising mechanism to target in order to improve drug delivery through brain barriers. The choroid plexus epithelium displays strong vesicular trafficking and secretory activities that deserve to be explored in the context of cerebral drug delivery. Folate transport and exosome release into the CSF, plasma protein transport, and various receptor-mediated endocytosis pathways may prove useful mechanisms to exploit for efficient drug delivery into the CSF. This calls for a clear evaluation of transcytosis mechanisms at the blood-CSF barrier, and a thorough evaluation of CSF drug delivery rates.
Collapse
Affiliation(s)
- Nathalie Strazielle
- Blood-Brain Interfaces Exploratory Platform BIP, Lyon Neurosciences Research Center, Faculty of medicine Laennec, Rue G Paradin, 69008, Lyon, France.
| | | |
Collapse
|
6
|
Endocytic receptor LRP2/megalin—of holoprosencephaly and renal Fanconi syndrome. Pflugers Arch 2017; 469:907-916. [DOI: 10.1007/s00424-017-1992-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022]
|
7
|
Christ A, Herzog K, Willnow TE. LRP2, an auxiliary receptor that controls sonic hedgehog signaling in development and disease. Dev Dyn 2016; 245:569-79. [PMID: 26872844 DOI: 10.1002/dvdy.24394] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 12/31/2022] Open
Abstract
To fulfill their multiple roles in organ development and adult tissue homeostasis, hedgehog (HH) morphogens act through their receptor Patched (PTCH) on target cells. However, HH actions also require HH binding proteins, auxiliary cell surface receptors that agonize or antagonize morphogen signaling in a context-dependent manner. Here, we discuss recent findings on the LDL receptor-related protein 2 (LRP2), an exemplary HH binding protein that modulates sonic hedgehog activities in stem and progenitor cell niches in embryonic and adult tissues. LRP2 functions are crucial for developmental processes in a number of tissues, including the brain, the eye, and the heart, and defects in this receptor pathway are the cause of devastating congenital diseases in humans. Developmental Dynamics 245:569-579, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annabel Christ
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Katja Herzog
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| |
Collapse
|
8
|
Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function. Stem Cells Int 2016; 2016:2108495. [PMID: 26949399 PMCID: PMC4754494 DOI: 10.1155/2016/2108495] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/24/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022] Open
Abstract
The central nervous system (CNS) is a highly organised structure. Many signalling systems work in concert to ensure that neural stem cells are appropriately directed to generate progenitor cells, which in turn mature into functional cell types including projection neurons, interneurons, astrocytes, and oligodendrocytes. Herein we explore the role of the low density lipoprotein (LDL) receptor family, in particular family members LRP1 and LRP2, in regulating the behaviour of neural stem and progenitor cells during development and adulthood. The ability of LRP1 and LRP2 to bind a diverse and extensive range of ligands, regulate ligand endocytosis, recruit nonreceptor tyrosine kinases for direct signal transduction and signal in conjunction with other receptors, enables them to modulate many crucial neural cell functions.
Collapse
|
9
|
Clemente D, Ortega MC, Melero-Jerez C, de Castro F. The effect of glia-glia interactions on oligodendrocyte precursor cell biology during development and in demyelinating diseases. Front Cell Neurosci 2013; 7:268. [PMID: 24391545 PMCID: PMC3868919 DOI: 10.3389/fncel.2013.00268] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/03/2013] [Indexed: 01/12/2023] Open
Abstract
Oligodendrocyte precursor cells (OPCs) originate in specific areas of the developing central nervous system (CNS). Once generated, they migrate towards their destinations where they differentiate into mature oligodendrocytes. In the adult, 5-8% of all cells in the CNS are OPCs, cells that retain the capacity to proliferate, migrate, and differentiate into oligodendrocytes. Indeed, these endogenous OPCs react to damage in demyelinating diseases, like multiple sclerosis (MS), representing a key element in spontaneous remyelination. In the present work, we review the specific interactions between OPCs and other glial cells (astrocytes, microglia) during CNS development and in the pathological scenario of MS. We focus on: (i) the role of astrocytes in maintaining the homeostasis and spatial distribution of different secreted cues that determine OPC proliferation, migration, and differentiation during CNS development; (ii) the role of microglia and astrocytes in the redistribution of iron, which is crucial for myelin synthesis during CNS development and for myelin repair in MS; (iii) how microglia secrete different molecules, e.g., growth factors, that favor the recruitment of OPCs in acute phases of MS lesions; and (iv) how astrocytes modify the extracellular matrix in MS lesions, affecting the ability of OPCs to attempt spontaneous remyelination. Together, these issues demonstrate how both astroglia and microglia influence OPCs in physiological and pathological situations, reinforcing the concept that both development and neural repair are complex and global phenomena. Understanding the molecular and cellular mechanisms that control OPC survival, proliferation, migration, and differentiation during development, as well as in the mature CNS, may open new opportunities in the search for reparative therapies in demyelinating diseases like MS.
Collapse
Affiliation(s)
- Diego Clemente
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos Toledo, Spain
| | - María Cristina Ortega
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos Toledo, Spain
| | - Carolina Melero-Jerez
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos Toledo, Spain
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos Toledo, Spain
| |
Collapse
|
10
|
Aseem O, Smith BT, Cooley MA, Wilkerson BA, Argraves KM, Remaley AT, Argraves WS. Cubilin maintains blood levels of HDL and albumin. J Am Soc Nephrol 2013; 25:1028-36. [PMID: 24357674 DOI: 10.1681/asn.2013060671] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cubilin is an endocytic receptor highly expressed in renal proximal tubules, where it mediates uptake of albumin and filtered forms of apoA-I/HDL. Cubilin deficiency leads to urinary loss of albumin and apoA-I; however, the consequences of cubilin loss on the homeostasis of blood albumin and apoA-I/HDL have not been studied. Using mice heterozygous for cubilin gene deletion (cubilin HT mice), we show that cubilin haploinsufficiency leads to reduced renal proximal tubular uptake of albumin and apoA-I and significantly increased urinary loss of albumin and apoA-I. Moreover, cubilin HT mice displayed significantly decreased blood levels of albumin, apoA-I, and HDL. The levels of albumin and apoA-I protein or mRNA expressed in the liver, kidney, or intestine of cubilin HT mice did not change significantly. The clearance rate of small HDL3 particles (density>1.13 g/ml) from the blood increased significantly in cubilin HT mice. In contrast, the rate of clearance of larger HDL2 particles from the blood did not change significantly, indicating a decreased half-life for HDL particles capable of filtering through the glomerulus. On the basis of these findings, we conclude that cubilin deficiency reduces renal salvage and delivery back to the blood of albumin and apoA-I, which decreases blood levels of albumin and apoA-I/HDL. These findings raise the possibility that therapeutic increase of renal cubilin expression might reduce proteinuria and increase blood levels of albumin and HDL.
Collapse
Affiliation(s)
- Obaidullah Aseem
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Charleston, South Carolina, and
| | - Brian T Smith
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Charleston, South Carolina, and
| | - Marion A Cooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Charleston, South Carolina, and
| | - Brent A Wilkerson
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Charleston, South Carolina, and
| | - Kelley M Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Charleston, South Carolina, and
| | - Alan T Remaley
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - W Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Charleston, South Carolina, and
| |
Collapse
|
11
|
Strazielle N, Ghersi-Egea JF. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm 2013; 10:1473-91. [PMID: 23298398 DOI: 10.1021/mp300518e] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The brain develops and functions within a strictly controlled environment resulting from the coordinated action of different cellular interfaces located between the blood and the extracellular fluids of the brain, which include the interstitial fluid and the cerebrospinal fluid (CSF). As a correlate, the delivery of pharmacologically active molecules and especially macromolecules to the brain is challenged by the barrier properties of these interfaces. Blood-brain interfaces comprise both the blood-brain barrier located at the endothelium of the brain microvessels and the blood-CSF barrier located at the epithelium of the choroid plexuses. Although both barriers develop extensive surface areas of exchange between the blood and the neuropil or the CSF, the molecular fluxes across these interfaces are tightly regulated. Cerebral microvessels acquire a barrier phenotype early during cerebral vasculogenesis under the influence of the Wnt/β-catenin pathway, and of recruited pericytes. Later in development, astrocytes also play a role in blood-brain barrier maintenance. The tight choroid plexus epithelium develops very early during embryogenesis. It is specified by various signaling molecules from the embryonic dorsal midline, such as bone morphogenic proteins, and grows under the influence of Sonic hedgehog protein. Tight junctions at each barrier comprise a distinctive set of claudins from the pore-forming and tightening categories that determine their respective paracellular barrier characteristics. Vesicular traffic is limited in the cerebral endothelium and abundant in the choroidal epithelium, yet without evidence of active fluid phase transcytosis. Inorganic ion transport is highly regulated across the barriers. Small organic compounds such as nutrients, micronutrients and hormones are transported into the brain by specific solute carriers. Other bioactive metabolites, lipophilic toxic xenobiotics or pharmacological agents are restrained from accumulating in the brain by several ATP-binding cassette efflux transporters, multispecific solute carriers, and detoxifying enzymes. These various molecular effectors differently distribute between the two barriers. Receptor-mediated endocytotic and transcytotic mechanisms are active in the barriers. They enable brain penetration of selected polypeptides and proteins, or inversely macromolecule efflux as it is the case for immnoglobulins G. An additional mechanism specific to the BCSFB mediates the transport of selected plasma proteins from blood into CSF in the developing brain. All these mechanisms could be explored and manipulated to improve macromolecule delivery to the brain.
Collapse
Affiliation(s)
- N Strazielle
- Brain-i, Lyon Neuroscience Research Center, Lyon, France.
| | | |
Collapse
|
12
|
Willnow TE, Christ A, Hammes A. Endocytic receptor-mediated control of morphogen signaling. Development 2013; 139:4311-9. [PMID: 23132241 DOI: 10.1242/dev.084467] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Receptor-mediated endocytosis provides a mechanism by which cells take up signaling molecules from the extracellular space. Recent studies have shown that one class of endocytic receptors, the low-density lipoprotein receptor-related proteins (LRPs), is of particular relevance for embryonic development. In this Primer, we describe how LRPs constitute central pathways that modulate morphogen presentation to target tissues and cellular signal reception, and how LRP dysfunction leads to developmental disturbances in many species.
Collapse
Affiliation(s)
- Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, D-13125 Berlin, Germany.
| | | | | |
Collapse
|
13
|
Christ A, Christa A, Kur E, Lioubinski O, Bachmann S, Willnow TE, Hammes A. LRP2 is an auxiliary SHH receptor required to condition the forebrain ventral midline for inductive signals. Dev Cell 2012; 22:268-78. [PMID: 22340494 DOI: 10.1016/j.devcel.2011.11.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/31/2011] [Accepted: 11/21/2011] [Indexed: 11/29/2022]
Abstract
Sonic hedgehog (SHH) is a regulator of forebrain development that acts through its receptor, patched 1. However, little is known about cellular mechanisms at neurulation, whereby SHH from the prechordal plate governs specification of the rostral diencephalon ventral midline (RDVM), a major forebrain organizer. We identified LRP2, a member of the LDL receptor gene family, as a component of the SHH signaling machinery in the RDVM. LRP2 acts as an apical SHH-binding protein that sequesters SHH in its target field and controls internalization and cellular trafficking of SHH/patched 1 complexes. Lack of LRP2 in mice and in cephalic explants results in failure to respond to SHH, despite functional expression of patched 1 and smoothened, whereas overexpression of LRP2 variants in cells increases SHH signaling capacity. Our data identify a critical role for LRP2 in SHH signaling and reveal the molecular mechanism underlying forebrain anomalies in mice and patients with Lrp2 defects.
Collapse
Affiliation(s)
- Annabel Christ
- Max-Delbrück-Center for Molecular Medicine, Charité Universitätsmedizin, D-13125 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Ortega MC, Cases O, Merchán P, Kozyraki R, Clemente D, de Castro F. Megalin mediates the influence of sonic hedgehog on oligodendrocyte precursor cell migration and proliferation during development. Glia 2012; 60:851-66. [PMID: 22354480 DOI: 10.1002/glia.22316] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 02/03/2012] [Indexed: 12/31/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) of the optic nerve are generated in the preoptic area, from where they migrate to colonize it entirely. Sonic hedgehog (Shh) induces the proliferation of these cells as well as influencing their migration, acting through its canonical receptor (Ptc-1). However, the multiligand receptor megalin (or LRP-2) is also involved in Shh-induced OPC proliferation and migration, and thus, we have evaluated the relevance of this interaction. During the stages at which Shh influences OPC development, we found megalin to be selectively expressed by optic nerve astrocytes, whereas Ptc-1 and Gli1 were found in OPCs. Indeed, this pattern of expression paralleled the rostral-caudal expression of the three Shh-related molecules during the time course of plp-dm20(+) -OPC colonization. The blockage of megalin partially abolished OPC chemoattraction and fully impaired Shh-induced proliferation. Using in vitro co-cultures of dissociated optic nerve cells, we demonstrated that Shh was internalized by astrocytes via megalin, and sufficient Shh was subsequently released to produce the biological effects on OPCs observed in the nerve. Together, these data indicate that at least part of the influence of Shh on OPCs is mediated by megalin during optic nerve development, and that astrocytes expressing megalin transiently capture Shh to present it to OPCs and/or to control the gradient of this molecule during development.
Collapse
Affiliation(s)
- María Cristina Ortega
- Grupo de Neurobiología del Desarrollo-GNDe, Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, Toledo, Spain
| | | | | | | | | | | |
Collapse
|
15
|
von Toerne C, Bedke J, Safi S, Porubsky S, Gretz N, Loewe R, Nelson PJ, Gröne HJ. Modulation of Wnt and Hedgehog signaling pathways is linked to retinoic acid-induced amelioration of chronic allograft dysfunction. Am J Transplant 2012; 12:55-68. [PMID: 21992189 DOI: 10.1111/j.1600-6143.2011.03776.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic renal allograft damage (CAD) is manifested by a smoldering inflammatory process that leads to transplant glomerulopathy, diffuse interstitial fibrosis and tubular atrophy with loss of tubular structures. Using a Fischer 344 (RT1lvl) to Lewis (RT1l) rat renal allograft model, transcriptomic profiling and pathway mapping, we have previously shown that dynamic dysregulation of the Wnt signaling pathways may underlie progressive CAD. Retinoic acid, an important regulator of differentiation during vertebrate embryogenesis, can moderate the damage observed in this experimental model of CAD. We show here that subsets of the Hedgehog (Hh) and canonical Wnt signaling pathways are linked to the pathophysiology of progressive fibrosis, loss of cilia in epithelia and chronic dysfunction. Oral treatment with 13cis retinoic acid (13cRA) was found to selectively ameliorate the dysregulation of the Hh and canonical Wnt pathways associated with CAD, and lead to a general preservation of cilial structures. Interplay between these pathways helps explain the therapeutic effects of retinoic acid treatment in CAD, and suggests future targets for moderating chronic fibrosing organ damage.
Collapse
Affiliation(s)
- C von Toerne
- Clinical Biochemistry Group, Medical Policlinic, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Nelson PJ, von Toerne C, Gröne HJ. Wnt-signaling pathways in progressive renal fibrosis. Expert Opin Ther Targets 2011; 15:1073-83. [PMID: 21623684 DOI: 10.1517/14728222.2011.588210] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The prevention and potential reversal of interstitial fibrosis is a central strategy for the treatment of progressive renal disease. This strategy requires a better understanding of the underlying pathophysiologic processes involved in progressive renal fibrosis. AREAS COVERED The developmental processes in which Wnt (combination of 'wingless' and 'INT')/frizzled signaling is involved is discussed in this review, including cell fate determination, cell polarity, tissue patterning and control of cell proliferation. These pathways are also active in the adult where they play key roles in the maintenance of tissue homeostasis, wound repair and chronic tissue damage. EXPERT OPINION Wnt biology helps to control cell polarity, moderates cell proliferation and underlies other processes linked to renal homeostasis. Reactivation and dysregulation of the Wnt pathways underlie chronic fibrosis and progressive renal failure. Wnt signaling is, however, context-dependent: the pathways are complex and undergo many levels of cross-talk with other regulatory systems and regulatory pathways. On one hand, this may help to explain the positive effects of Wnt-signaling blockades seen in some animal models of chronic renal damage and, on the other, this suggests that it may be difficult to predict how modifications of the Wnt pathway may influence a process.
Collapse
Affiliation(s)
- Peter J Nelson
- Ludwig-Maximilians University, Medical Policlinic, Clinical Biochemistry Group, Munich, Germany.
| | | | | |
Collapse
|
17
|
Adly MA. Analysis of the expression pattern of the carrier protein transthyretin and its receptor megalin in the human scalp skin and hair follicles: hair cycle-associated changes. Histochem Cell Biol 2010; 134:591-602. [PMID: 21104416 DOI: 10.1007/s00418-010-0763-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2010] [Indexed: 11/28/2022]
Abstract
Transthyretin is a serum and cerebrospinal fluid protein synthesized early in development by the liver, choroid plexus and several other tissues. It is a carrier protein for the antioxidant vitamins, retinol, and thyroid hormones. Transthyretin helps internalize thyroxine and retinol-binding protein into cells by binding to megalin, which is a multi-ligand receptor expressed on the luminal surface of various epithelia. We investigated the expression of transthyretin and its receptor megalin in the human skin; however, their expression pattern in the hair follicle is still to be elucidated. This study addresses this issue and tests the hypothesis that "the expression of transthyretin and megalin undergoes hair follicle cycle-dependent changes." A total of 50 normal human scalp skin biopsies were examined (healthy females, 53-62 years) using immunofluorescence staining methods and real-time PCR. In each case, 50 hair follicles were analyzed (35, 10, and 5 follicles in anagen, catagen, and telogen, respectively). Transthyretin and megalin were prominently expressed in the human scalp skin and hair follicles, on both gene and protein levels. The concentrations of transthyretin and megalin were 0.12 and 0.03 Ul/ml, respectively, as indicated by PCR. The expression showed hair follicle cycle-associated changes i.e., strong expression during early and mature anagen, very weak expression during catagen and moderate expression during telogen. The expression values of these proteins in the anagen were statistically significantly higher than those of either catagen or telogen hair follicles (P ≤ 0.001). This study provides the first morphologic indication that transthyretin and megalin are variably expressed in the human scalp skin and hair follicles. It also reports variations in the expression of these proteins during hair follicle cycling. The clinical ramifications of these findings are open for further investigations.
Collapse
Affiliation(s)
- Mohamed A Adly
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt.
| |
Collapse
|
18
|
Saqui-Salces M, Merchant JL. Hedgehog signaling and gastrointestinal cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:786-95. [PMID: 20307590 DOI: 10.1016/j.bbamcr.2010.03.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/12/2010] [Accepted: 03/15/2010] [Indexed: 12/23/2022]
Abstract
Hedgehog (Hh) signaling is critical for embryonic development and in differentiation, proliferation, and maintenance of multiple adult tissues. De-regulation of the Hh pathway is associated with birth defects and cancer. In the gastrointestinal tract, Hh ligands Sonic (Shh) and Indian (Ihh), as well as the receptor Patched (Ptch1), and transcription factors of Glioblastoma family (Gli) are all expressed during development. In the adult, Shh expression is restricted to the stomach and colon, while Ihh expression occurs throughout the luminal gastrointestinal tract, its expression being highest in the proximal duodenum. Several studies have demonstrated a requirement for Hh signaling during gastrointestinal tract development. However to date, the specific role of the Hh pathway in the adult stomach and intestine is not completely understood. The current review will place into context the implications of recent published data related to the biochemistry and cell biology of Hh signaling on the luminal gastrointestinal tract during development, normal physiology and subsequently carcinogenesis.
Collapse
Affiliation(s)
- Milena Saqui-Salces
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
19
|
Morales CR, Fox A, El-Alfy M, Ni X, Argraves WS. Expression of Patched-1 and Smoothened in testicular meiotic and post-meiotic cells. Microsc Res Tech 2010; 72:809-15. [PMID: 19484749 DOI: 10.1002/jemt.20733] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Desert hedgehog (Dhh) signaling plays an essential role in the normal development of the testis and in the process of spermatogenesis. Little is known about the involvement in spermatogenesis of the prototypic member of the family, Ptc1, which acts to suppress hedgehog signaling through Smoothened (Smo). Here, we have examined the expression of Ptc1, Smo, and Dhh in mouse and rat seminiferous epithelium. Our findings demonstrate that Ptc1 and Smo are expressed by primary spermatocytes and by round and condensing spermatids whereas Dhh is expressed by Sertoli cells. The findings suggest that Sertoli cells coordinate Dhh-dependent spermatogenesis events via Ptc1 and Smo prior to the first meiotic division and in postmeiotic (haploid) cells, particularly during the first half of spermiogenesis.
Collapse
Affiliation(s)
- Carlos R Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Holoprosencephaly (HPE), the most common human forebrain malformation, occurs in 1 in 250 fetuses and 1 in 16,000 live births. HPE is etiologically heterogeneous, and its pathology is variable. Several mouse models of HPE have been generated, and some of the molecular causes of different forms of HPE and the mechanisms underlying its variable pathology have been revealed by these models. Herein, we summarize the current knowledge on the genetic alterations that cause HPE and discuss some important questions about this disease that remain to be answered.
Collapse
Affiliation(s)
- Xin Geng
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
21
|
Gelineau-van Waes J, Heller S, Bauer LK, Wilberding J, Maddox JR, Aleman F, Rosenquist TH, Finnell RH. Embryonic development in the reduced folate carrier knockout mouse is modulated by maternal folate supplementation. ACTA ACUST UNITED AC 2008; 82:494-507. [PMID: 18383508 DOI: 10.1002/bdra.20453] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The reduced folate carrier (RFC1) is a ubiquitously expressed integral membrane protein that mediates delivery of 5-methyltetrahydrofolate into mammalian cells. In this study, embryonic/fetal development is characterized in an RFC1 knockout mouse model in which pregnant dams receive different levels of folate supplementation. METHODS RFC1(+/-) males were mated to RFC1(+/-) females, and pregnant dams were treated with vehicle (control) or folic acid (25 or 50 mg/kg) by daily subcutaneous injection (0.1 mL/10 g bwt), beginning on E0.5 and continuing throughout gestation until the time of sacrifice. RESULTS Without maternal folate supplementation, RFC1 nullizygous embryos die shortly postimplantation. Supplementation of pregnant dams with 25 mg/kg/day folic acid prolongs survival of mutant embryos until E9.5-E10.5, but they are developmentally delayed relative to wild-type littermates, display a marked absence of erythropoiesis, severe neural tube and limb bud defects, and failure of chorioallantoic fusion. Fgfr2 protein levels are significantly reduced or absent in the extraembryonic membranes of RFC1 nullizygous embryos. Maternal folate supplementation with 50 mg/kg/day results in survival of 22% of RFC1 mutants to E18.5, but they develop with multiple malformations of the eyelids, lungs, heart, and skin. CONCLUSIONS High doses of daily maternal folate supplementation during embryonic/fetal development are necessary for early postimplantation embryonic viability of RFC1 nullizygous embryos, and play a critical role in chorioallantoic fusion, erythropoiesis, and proper development of the neural tube, limbs, lungs, heart, and skin.
Collapse
Affiliation(s)
- Janee Gelineau-van Waes
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The identification of endogenous sterol derivatives that modulate the Hedgehog (Hh) signalling pathway has begun to suggest testable hypotheses for the cellular biological functions of Patched, and for the lipoprotein association of Hh. Progress in the field of intracellular sterol trafficking has emphasized how tightly the distribution of intracellular sterol is controlled, and suggests that the synthesis of sterol derivatives can be influenced by specific sterol-delivery pathways. The combination of this field with Hh studies will rapidly give us a more sophisticated understanding of both the Hh signal-transduction pathway and the cell biology of sterol metabolism.
Collapse
Affiliation(s)
- Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
23
|
Abstract
Low density lipoprotein receptor-related protein, megalin, is a multifunctional lipoproptein receptor expressed by absorptive epithelia for endocytosis of numerous ligands. Megalin is widely expressed during embryonic life and is essential for development of the nervous system as evidenced by severe forebrain abnormalities in megalin (-/-). Here, we investigated the influence of megalin deficiency on prenatal spinal cord development in mice. In contrast to wild-type mice, cells expressing Olig2 and NG2, that is, oligodendroglial precursor cells, are absent from embryonic stage E16 in megalin (-/-) mice. At the end of prenatal development, there is a failure in vertebral development, and the number of astrocytes are markedly reduced in megalin (-/-) mice. These findings indicate that megalin is essential in astro-oligodendroglial interactions during development of the spinal cord.
Collapse
|
24
|
Gelineau-van Waes J, Maddox JR, Smith LM, van Waes M, Wilberding J, Eudy JD, Bauer LK, Finnell RH. Microarray analysis of E9.5 reduced folate carrier (RFC1; Slc19a1) knockout embryos reveals altered expression of genes in the cubilin-megalin multiligand endocytic receptor complex. BMC Genomics 2008; 9:156. [PMID: 18400109 PMCID: PMC2383917 DOI: 10.1186/1471-2164-9-156] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 04/09/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The reduced folate carrier (RFC1) is an integral membrane protein and facilitative anion exchanger that mediates delivery of 5-methyltetrahydrofolate into mammalian cells. Adequate maternal-fetal transport of folate is necessary for normal embryogenesis. Targeted inactivation of the murine RFC1 gene results in post-implantation embryolethality, but daily folic acid supplementation of pregnant dams prolongs survival of homozygous embryos until mid-gestation. At E10.5 RFC1-/- embryos are developmentally delayed relative to wildtype littermates, have multiple malformations, including neural tube defects, and die due to failure of chorioallantoic fusion. The mesoderm is sparse and disorganized, and there is a marked absence of erythrocytes in yolk sac blood islands. The identification of alterations in gene expression and signaling pathways involved in the observed dysmorphology following inactivation of RFC1-mediated folate transport are the focus of this investigation. RESULTS Affymetrix microarray analysis of the relative gene expression profiles in whole E9.5 RFC1-/- vs. RFC1+/+ embryos identified 200 known genes that were differentially expressed. Major ontology groups included transcription factors (13.04%), and genes involved in transport functions (ion, lipid, carbohydrate) (11.37%). Genes that code for receptors, ligands and interacting proteins in the cubilin-megalin multiligand endocytic receptor complex accounted for 9.36% of the total, followed closely by several genes involved in hematopoiesis (8.03%). The most highly significant gene network identified by Ingenuitytrade mark Pathway analysis included 12 genes in the cubilin-megalin multiligand endocytic receptor complex. Altered expression of these genes was validated by quantitative RT-PCR, and immunohistochemical analysis demonstrated that megalin protein expression disappeared from the visceral yolk sac of RFC1-/- embryos, while cubilin protein was widely misexpressed. CONCLUSION Inactivation of RFC1 impacts the expression of several ligands and interacting proteins in the cubilin-amnionless-megalin complex that are involved in the maternal-fetal transport of folate and other nutrients, lipids and morphogens such as sonic hedgehog (Shh) and retinoids that play critical roles in normal embryogenesis.
Collapse
Affiliation(s)
- Janee Gelineau-van Waes
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Farzan SF, Singh S, Schilling NS, Robbins DJ. The adventures of sonic hedgehog in development and repair. III. Hedgehog processing and biological activity. Am J Physiol Gastrointest Liver Physiol 2008; 294:G844-9. [PMID: 18239057 PMCID: PMC2694571 DOI: 10.1152/ajpgi.00564.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Hedgehog (Hh) family of secreted proteins is necessary for aspects of the development and maintenance of the gastrointestinal tract. Hh is thought to function as a morphogen, a mitogen, a cell survival factor, and an axon guidance factor. Given its wide role in development, as well as in a variety of disease states, understanding the regulation of Hh function and activity is critically important. However, the study of Hh signaling has been impeded by its unusual biology. Hh is unique in that it is the only protein covalently modified by cholesterol, which in turn affects numerous aspects of its localization, release, movement, and activity. All are important factors when considering Hh's physiological role, and animals have developed an intricate system of regulators responsible for both promoting and inhibiting the activity of Hh. This review is intended to give a broad overview of how the biosynthesis and movement of Hh contributes to its biological activity.
Collapse
Affiliation(s)
- Shohreh F. Farzan
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Samer Singh
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Neal S. Schilling
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - David J. Robbins
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756
| |
Collapse
|
26
|
Matus DQ, Magie CR, Pang K, Martindale MQ, Thomsen GH. The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution. Dev Biol 2008; 313:501-18. [PMID: 18068698 PMCID: PMC2288667 DOI: 10.1016/j.ydbio.2007.09.032] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 09/10/2007] [Accepted: 09/10/2007] [Indexed: 11/24/2022]
Abstract
Hedgehog signaling is an important component of cell-cell communication during bilaterian development, and abnormal Hedgehog signaling contributes to disease and birth defects. Hedgehog genes are composed of a ligand ("hedge") domain and an autocatalytic intein ("hog") domain. Hedgehog (hh) ligands bind to a conserved set of receptors and activate downstream signal transduction pathways terminating with Gli/Ci transcription factors. We have identified five intein-containing genes in the anthozoan cnidarian Nematostella vectensis, two of which (NvHh1 and NvHh2) contain definitive hedgehog ligand domains, suggesting that to date, cnidarians are the earliest branching metazoan phylum to possess definitive Hh orthologs. Expression analysis of NvHh1 and NvHh2, the receptor NvPatched, and a downstream transcription factor NvGli (a Gli3/Ci ortholog) indicate that these genes may have conserved roles in planar and trans-epithelial signaling during gut and germline development, while the three remaining intein-containing genes (NvHint1,2,3) are expressed in a cell-type-specific manner in putative neural precursors. Metazoan intein-containing genes that lack a hh ligand domain have previously only been identified within nematodes. However, we have identified intein-containing genes from both Nematostella and in two newly annotated lophotrochozoan genomes. Phylogenetic analyses suggest that while nematode inteins may be derived from an ancestral true hedgehog gene, the newly identified cnidarian and lophotrochozoan inteins may be orthologous, suggesting that both true hedgehog and hint genes may have been present in the cnidarian-bilaterian ancestor. Genomic surveys of N. vectensis suggest that most of the components of both protostome and deuterostome Hh signaling pathways are present in anthozoans and that some appear to have been lost in ecdysozoan lineages. Cnidarians possess many bilaterian cell-cell signaling pathways (Wnt, TGFbeta, FGF, and Hh) that appear to act in concert to pattern tissues along the oral-aboral axis of the polyp. Cnidarians represent a diverse group of animals with a predominantly epithelial body plan, and perhaps selective pressures to pattern epithelia resulted in the ontogeny of the hedgehog pathway in the common ancestor of the Cnidaria and Bilateria.
Collapse
Affiliation(s)
- David Q Matus
- Kewalo Marine Lab University of Hawaii, Honolulu, HI 76813, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Signalling by Hh (Hedgehog) proteins is among the most actively studied receptor-mediated phenomena relevant to development and post-embryonic homoeostatic events. The impact of signalling by the Hh proteins is profound, and work pertaining to the presentation of these proteins and the pathways engaged by them continues to yield unique insights into basic aspects of morphogenic signalling. We review here the mechanisms of signalling relevant to the actions of Hh proteins in vertebrates. We emphasize findings within the past several years on the recognition of, in particular, Sonic hedgehog by target cells, pathways of transduction employed by the seven-pass transmembrane protein Smoothened and end points of action, as manifest in the regulation of the Gli transcription factors. Topics of extended interest are those regarding the employment of heterotrimeric G-proteins and G-protein-coupled receptor kinases by Smoothened. We also address the pathways, insofar as known, linking Smoothened to the expression and stability of Gli1, Gli2 and Gli3. The mechanisms by which Hh proteins signal have few, if any, parallels. It is becoming clear in vertebrates, however, that several facets of signalling are shared in common with other venues of signalling. The challenge in understanding both the actions of Hh proteins and the overlapping forms of regulation will be in understanding, in molecular terms, both common and divergent signalling events.
Collapse
Affiliation(s)
- Natalia A Riobo
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|