1
|
Yoon JH, Lee YS, Kim O, Ashktorab H, Smoot DT, Nam SW, Park WS. NKX6.3 protects against gastric mucosal atrophy by downregulating β-amyloid production. World J Gastroenterol 2019; 25:330-345. [PMID: 30686901 PMCID: PMC6343100 DOI: 10.3748/wjg.v25.i3.330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Atrophic gastritis is characterized by loss of appropriate glands and reduction in gastric secretory function due to chronic inflammatory processes in gastric mucosa. Moreover, atrophic gastritis is considered as a precancerous condition of gastric cancer. However, little is known about the molecular mechanism underlying gastric mucosal atrophy and its contribution to gastric carcinogenesis. Thus, we hypothesized that transcription factor NKX6.3 might be involved in maintaining gastric epithelial homeostasis by regulating amyloid β (Aβ) production. AIM To determine whether NKX6.3 might protect against gastric mucosal atrophy by regulating Aβ production. METHODS We identified NKX6.3 depletion induced cell death by cell count and Western blot assay. Production and mechanism of Aβ oligomer were analyzed by enzyme-linked immunosorbent assay, Western blot, immunoprecipitation, real-time quantitative polymerase chain reaction and immunofluorescence analysis. We further validated the correlation between expression of NKX6.3, Helicobacter pylori CagA, Aβ oligomer, apolipoprotein E (ApoE), and β-secretase 1 (Bace1) in 55 gastric mucosae. RESULTS NKX6.3 depletion increased both adherent and floating cell populations in HFE-145 cells. Expression levels of cleaved caspase-3, -9, and poly ADP ribose polymerase were elevated in floating HFE-145shNKX6.3 cells. NKX6.3 depletion produced Aβ peptide oligomers, and increased expression of ApoE, amyloid precursor protein, Aβ, Bace1, low-density lipoprotein receptor, nicastrin, high mobility group box1, and receptor for advanced glycosylation end product proteins. In immunoprecipitation assay, γ-secretase complex was stably formed only in HFE-145shNKX6.3 cells. In gastric mucosae with atrophy, expression of Aβ peptide oligomer, ApoE, and Bace1 was detected and inversely correlated with NKX6.3 expression. Treatment with recombinant Aβ 1-42 produced Aβ oligomeric forms and decreased cell viability in HFE-145shNKX6.3 cells. Additionally, NKX6.3 depletion increased expression of inflammatory cytokines and cyclooxygenase-2. CONCLUSION NKX6.3 inhibits gastric mucosal atrophy by regulating Aβ accumulation and inflammatory reaction in gastric epithelial cells.
Collapse
Affiliation(s)
- Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Yeon Soo Lee
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Olga Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington, DC 20060, United States
| | - Duane T Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208, United States
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| |
Collapse
|
2
|
Jeffery N, Harries LW. β-cell differentiation status in type 2 diabetes. Diabetes Obes Metab 2016; 18:1167-1175. [PMID: 27550203 DOI: 10.1111/dom.12778] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (T2D) affects 415 million people worldwide and is characterized by chronic hyperglycaemia and insulin resistance, progressing to insufficient insulin production, as a result of β-cell failure. Over time, chronic hyperglycaemia can ultimately lead to loss of β-cell function, leaving patients insulin-dependent. Until recently the loss of β-cell mass seen in T2D was considered to be the result of increased rates of apoptosis; however, it has been proposed that apoptosis alone cannot account for the extent of β-cell mass loss seen in the disease, and that a loss of function may also occur as a result of changes in β-cell differentiation status. In the present review, we consider current knowledge of determinants of β-cell fate in the context of understanding its relevance to disease process in T2D, and also the impact of a diabetogenic environment (hyperglycaemia, hypoxia, inflammation and dyslipidaemia) on the expression of genes involved in maintenance of β-cell identity. We describe current knowledge of the impact of the diabetic microenvironment on gene regulatory processes such alternative splicing, the expression of disallowed genes and epigenetic modifications. Elucidating the molecular mechanisms that underpin changes to β-cell differentiation status and the concomitant β-cell failure offers potential treatment targets for the future management of patients with T2D.
Collapse
Affiliation(s)
- Nicola Jeffery
- Department of Molecular Genetics, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon, UK
| | - Lorna W Harries
- Department of Molecular Genetics, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon, UK
| |
Collapse
|
3
|
Li W, Itou J, Tanaka S, Nishimura T, Sato F, Toi M. A homeobox protein, NKX6.1, up-regulates interleukin-6 expression for cell growth in basal-like breast cancer cells. Exp Cell Res 2016; 343:177-189. [PMID: 27032575 DOI: 10.1016/j.yexcr.2016.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/19/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
Among breast cancer subtypes, basal-like breast cancer is particularly aggressive, and research on the molecules involved in its pathology might contribute to therapy. In this study, we found that expression of NKX6.1, a homeobox transcription factor, is higher in basal-like breast cancer than in other subtypes. In loss-of-function experiments on basal-like breast cancer cell lines, NKX6.1-depleted cells exhibited reduced cell growth. Because cytokine interleukin-6 (IL-6) is expressed in basal-like breast cancer, and increases cell growth, we analyzed expression levels of IL6, an IL-6 gene, and observed reduced IL6 expression in NKX6.1-depleted cells. In a reporter assay, IL6 promoter activity was reduced by loss of NKX6.1 function. A pull-down assay showed that NKX6.1 binds to the proximal region in IL6 promoter. These results indicate that NKX6.1 directly up-regulates IL6 expression. To investigate further, we established cells with forced expression of IL-6. We observed that exogenous IL-6 expression restored the reduced cell growth of NKX6.1-depleted cells. Furthermore, orthotopic xenografts showed that NKX6.1-depleted cells lost the capacity for tumor formation. We therefore conclude that NKX6.1 is a factor for IL-6-regulated growth and tumor formation in basal-like breast cancer. Our findings facilitate profound understanding of basal-like breast cancer, and the development of suitable therapy.
Collapse
Affiliation(s)
- Wenzhao Li
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Junji Itou
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Sunao Tanaka
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomomi Nishimura
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Fumiaki Sato
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
4
|
Israel JW, Martik ML, Byrne M, Raff EC, Raff RA, McClay DR, Wray GA. Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris. PLoS Biol 2016; 14:e1002391. [PMID: 26943850 PMCID: PMC4778923 DOI: 10.1371/journal.pbio.1002391] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/26/2016] [Indexed: 01/08/2023] Open
Abstract
The ecologically significant shift in developmental strategy from planktotrophic (feeding) to lecithotrophic (nonfeeding) development in the sea urchin genus Heliocidaris is one of the most comprehensively studied life history transitions in any animal. Although the evolution of lecithotrophy involved substantial changes to larval development and morphology, it is not known to what extent changes in gene expression underlie the developmental differences between species, nor do we understand how these changes evolved within the context of the well-defined gene regulatory network (GRN) underlying sea urchin development. To address these questions, we used RNA-seq to measure expression dynamics across development in three species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph H. tuberculata, and an outgroup planktotroph Lytechinus variegatus. Using well-established statistical methods, we developed a novel framework for identifying, quantifying, and polarizing evolutionary changes in gene expression profiles across the transcriptome and within the GRN. We found that major changes in gene expression profiles were more numerous during the evolution of lecithotrophy than during the persistence of planktotrophy, and that genes with derived expression profiles in the lecithotroph displayed specific characteristics as a group that are consistent with the dramatically altered developmental program in this species. Compared to the transcriptome, changes in gene expression profiles within the GRN were even more pronounced in the lecithotroph. We found evidence for conservation and likely divergence of particular GRN regulatory interactions in the lecithotroph, as well as significant changes in the expression of genes with known roles in larval skeletogenesis. We further use coexpression analysis to identify genes of unknown function that may contribute to both conserved and derived developmental traits between species. Collectively, our results indicate that distinct evolutionary processes operate on gene expression during periods of life history conservation and periods of life history divergence, and that this contrast is even more pronounced within the GRN than across the transcriptome as a whole.
Collapse
Affiliation(s)
- Jennifer W. Israel
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Megan L. Martik
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Maria Byrne
- Schools of Medical and Biological Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Elizabeth C. Raff
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Rudolf A. Raff
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - David R. McClay
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Gregory A. Wray
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
5
|
A Gene Regulatory Network Cooperatively Controlled by Pdx1 and Sox9 Governs Lineage Allocation of Foregut Progenitor Cells. Cell Rep 2015; 13:326-36. [PMID: 26440894 DOI: 10.1016/j.celrep.2015.08.082] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/10/2015] [Accepted: 08/29/2015] [Indexed: 01/05/2023] Open
Abstract
The generation of pancreas, liver, and intestine from a common pool of progenitors in the foregut endoderm requires the establishment of organ boundaries. How dorsal foregut progenitors activate pancreatic genes and evade the intestinal lineage choice remains unclear. Here, we identify Pdx1 and Sox9 as cooperative inducers of a gene regulatory network that distinguishes the pancreatic from the intestinal lineage. Genetic studies demonstrate dual and cooperative functions for Pdx1 and Sox9 in pancreatic lineage induction and repression of the intestinal lineage choice. Pdx1 and Sox9 bind to regulatory sequences near pancreatic and intestinal differentiation genes and jointly regulate their expression, revealing direct cooperative roles for Pdx1 and Sox9 in gene activation and repression. Our study identifies Pdx1 and Sox9 as important regulators of a transcription factor network that initiates pancreatic fate and sheds light on the gene regulatory circuitry that governs the development of distinct organs from multi-lineage-competent foregut progenitors.
Collapse
|
6
|
Riley KG, Gannon M. Pancreas Development and Regeneration. PRINCIPLES OF DEVELOPMENTAL GENETICS 2015:565-590. [DOI: 10.1016/b978-0-12-405945-0.00031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Lunnon K, Smith R, Hannon E, De Jager P, Srivastava G, Volta M, Troakes C, Al-Sarraj S, Burrage J, Macdonald R, Condliffe D, Harries LW, Katsel P, Haroutunian V, Kaminsky Z, Joachim C, Powell J, Lovestone S, Bennett DA, Schalkwyk L, Mill J. Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nat Neurosci 2014; 17:1164-70. [PMID: 25129077 PMCID: PMC4410018 DOI: 10.1038/nn.3782] [Citation(s) in RCA: 424] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 07/07/2014] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is characterized by progressive neuropathology and cognitive decline. We performed a cross-tissue analysis of methylomic variation in AD using samples from four independent human post-mortem brain cohorts. We identified a differentially methylated region in the ankyrin 1 (ANK1) gene that was associated with neuropathology in the entorhinal cortex, a primary site of AD manifestation. This region was confirmed as being substantially hypermethylated in two other cortical regions (superior temporal gyrus and prefrontal cortex), but not in the cerebellum, a region largely protected from neurodegeneration in AD, or whole blood obtained pre-mortem from the same individuals. Neuropathology-associated ANK1 hypermethylation was subsequently confirmed in cortical samples from three independent brain cohorts. This study represents, to the best of our knowledge, the first epigenome-wide association study of AD employing a sequential replication design across multiple tissues and highlights the power of this approach for identifying methylomic variation associated with complex disease.
Collapse
Affiliation(s)
- Katie Lunnon
- University of Exeter Medical School, Exeter University, Exeter, UK
| | - Rebecca Smith
- Institute of Psychiatry, King’s College London, London, UK
| | - Eilis Hannon
- University of Exeter Medical School, Exeter University, Exeter, UK
| | - Philip De Jager
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, USA
| | - Gyan Srivastava
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women’s Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, USA
| | - Manuela Volta
- Institute of Psychiatry, King’s College London, London, UK
| | - Claire Troakes
- Institute of Psychiatry, King’s College London, London, UK
| | - Safa Al-Sarraj
- Institute of Psychiatry, King’s College London, London, UK
| | - Joe Burrage
- University of Exeter Medical School, Exeter University, Exeter, UK
| | - Ruby Macdonald
- University of Exeter Medical School, Exeter University, Exeter, UK
| | | | - Lorna W. Harries
- University of Exeter Medical School, Exeter University, Exeter, UK
| | - Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, USA
| | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, USA
- JJ Peters VA Medical Center, Bronx, New York, USA
| | - Zachary Kaminsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Catharine Joachim
- Department of Neuropathology, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - John Powell
- Institute of Psychiatry, King’s College London, London, UK
| | - Simon Lovestone
- Institute of Psychiatry, King’s College London, London, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | | | - Jonathan Mill
- University of Exeter Medical School, Exeter University, Exeter, UK
- Institute of Psychiatry, King’s College London, London, UK
| |
Collapse
|
8
|
Annunziata R, Perillo M, Andrikou C, Cole AG, Martinez P, Arnone MI. Pattern and process during sea urchin gut morphogenesis: the regulatory landscape. Genesis 2014; 52:251-68. [PMID: 24376127 DOI: 10.1002/dvg.22738] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/16/2013] [Indexed: 01/02/2023]
Abstract
The development of the endoderm is a multistage process. From the initial specification of the endodermal domain in the embryo to the final regionalization of the gut, there are multiple stages that require the involvement of complex gene regulatory networks. In one concrete case, the sea urchin embryo, some of these stages and their genetic control are (relatively) well understood. Several studies have underscored the relevance of individual transcription factor activities in the process, but very few have focused the attention on gene interactions within specific gene regulatory networks (GRNs). Sea urchins offer an ideal system to study the different factors involved in the morphogenesis of the gut. Here we review the knowledge gained over the last 10 years on the process and its regulation, from the early specification of endodermal lineages to the late events linked to the patterning of functional domains in the gut. A lesson of remarkable importance has been learnt from comparison of the mechanisms involved in gut formation in different bilaterian animals; some of these genetic mechanisms are particularly well conserved. Patterning the gut seems to involve common molecular players and shared interactions, whether we look at mammals or echinoderms. This astounding degree of conservation reveals some key aspects of deep homology that are most probably shared by all bilaterian guts.
Collapse
Affiliation(s)
- Rossella Annunziata
- Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Burzynski GM, Reed X, Taher L, Stine ZE, Matsui T, Ovcharenko I, McCallion AS. Systematic elucidation and in vivo validation of sequences enriched in hindbrain transcriptional control. Genome Res 2012; 22:2278-89. [PMID: 22759862 PMCID: PMC3483557 DOI: 10.1101/gr.139717.112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Illuminating the primary sequence encryption of enhancers is central to understanding the regulatory architecture of genomes. We have developed a machine learning approach to decipher motif patterns of hindbrain enhancers and identify 40,000 sequences in the human genome that we predict display regulatory control that includes the hindbrain. Consistent with their roles in hindbrain patterning, MEIS1, NKX6-1, as well as HOX and POU family binding motifs contributed strongly to this enhancer model. Predicted hindbrain enhancers are overrepresented at genes expressed in hindbrain and associated with nervous system development, and primarily reside in the areas of open chromatin. In addition, 77 (0.2%) of these predictions are identified as hindbrain enhancers on the VISTA Enhancer Browser, and 26,000 (60%) overlap enhancer marks (H3K4me1 or H3K27ac). To validate these putative hindbrain enhancers, we selected 55 elements distributed throughout our predictions and six low scoring controls for evaluation in a zebrafish transgenic assay. When assayed in mosaic transgenic embryos, 51/55 elements directed expression in the central nervous system. Furthermore, 30/34 (88%) predicted enhancers analyzed in stable zebrafish transgenic lines directed expression in the larval zebrafish hindbrain. Subsequent analysis of sequence fragments selected based upon motif clustering further confirmed the critical role of the motifs contributing to the classifier. Our results demonstrate the existence of a primary sequence code characteristic to hindbrain enhancers. This code can be accurately extracted using machine-learning approaches and applied successfully for de novo identification of hindbrain enhancers. This study represents a critical step toward the dissection of regulatory control in specific neuronal subtypes.
Collapse
Affiliation(s)
- Grzegorz M Burzynski
- McKusick-Nathans Institute of Genetic Medicine, Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Gefen-Halevi S, Rachmut IH, Molakandov K, Berneman D, Mor E, Meivar-Levy I, Ferber S. NKX6.1 promotes PDX-1-induced liver to pancreatic β-cells reprogramming. Cell Reprogram 2011; 12:655-64. [PMID: 21108535 DOI: 10.1089/cell.2010.0030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Reprogramming adult mammalian cells is an attractive approach for generating cell-based therapies for degenerative diseases, such as diabetes. Adult human liver cells exhibit a high level of developmental plasticity and have been suggested as a potential source of pancreatic progenitor tissue. An instructive role for dominant pancreatic transcription factors in altering the hepatic developmental fate along the pancreatic lineage and function has been demonstrated. Here we analyze whether transcription factors expressed in mature pancreatic β-cells preferentially activate β-cell lineage differentiation in liver. NKX6.1 is a transcription factor uniquely expressed in β-cells of the adult pancreas, its potential role in reprogramming liver cells to pancreatic lineages has never been analyzed. Our results suggest that NKX6.1 activates immature pancreatic markers such as NGN-3 and ISL-1 but not pancreatic hormones gene expression in human liver cells. We hypothesized that its restricted capacity to activate a wide pancreatic repertoire in liver could be related to its incapacity to activate endogenous PDX-1 expression in liver cells. Indeed, the complementation of NKX6.1 by ectopic PDX-1 expression substantially and specifically promoted insulin expression and glucose regulated processed hormone secretion to a higher extent than that of PDX-1 alone, without increasing the reprogrammed cells. This may suggest a potential role for NKX6.1 in promoting PDX-1 reprogrammed cells maturation along the β-cell-like lineage. By contrast, NKX6.1 repressed PDX-1 induced proglucagon gene expression. The individual and concerted effects of pancreatic transcription factors in adult extra-pancreatic cells, is expected to facilitate developing regenerative medicine approaches for cell replacement therapy in diabetics.
Collapse
Affiliation(s)
- Shiraz Gefen-Halevi
- Sheba Regenerative Medicine, Stem cells and Tissue engineering Center , Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Over the last years, there has been great success in driving stem cells toward insulin-expressing cells. However, the protocols developed to date have some limitations, such as low reliability and low insulin production. The most successful protocols used for generation of insulin-producing cells from stem cells mimic in vitro pancreatic organogenesis by directing the stem cells through stages that resemble several pancreatic developmental stages. Islet cell fate is coordinated by a complex network of inductive signals and regulatory transcription factors that, in a combinatorial way, determine pancreatic organ specification, differentiation, growth, and lineage. Together, these signals and factors direct the progression from multipotent progenitor cells to mature pancreatic cells. Later in development and adult life, several of these factors also contribute to maintain the differentiated phenotype of islet cells. A detailed understanding of the processes that operate in the pancreas during embryogenesis will help us to develop a suitable source of cells for diabetes therapy. In this chapter, we will discuss the main transcription factors involved in pancreas specification and beta-cell formation.
Collapse
|
12
|
Syu LJ, Uhler J, Zhang H, Mellerick DM. The Drosophila Nkx6 homeodomain protein has both activation and repression domains and can activate target gene expression. Brain Res 2009; 1266:8-17. [PMID: 19232326 DOI: 10.1016/j.brainres.2009.01.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 01/04/2009] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
Consistent with the common role of Nkx6 family members in specifying motor neuron identity, we show that over-expression of Drosophila Nkx6 results in an increase in the number of Fasiclin II expressing motor neurons in the intersegmental nerve B branch. Our dissection of the regulatory domains of Nkx6 using chimeric cell culture assays revealed the presence of two repression domains and a single activation domain within this transcription factor. As well as its conserved homeodomain, Nkx6 also has a candidate Engrailed homology 1 (Eh1) domain that is conserved amongst all NKx6 family members, through which vertebrate NKx6-type proteins bind the co-repressor, Groucho (Muhr, J., et al., 2001. Groucho-mediated transcriptional repression establishes progenitor cell pattern and neuronal fate in the ventral neural tube. Cell 104, 861-73). Paralleling our previous reports that the Eh1 domain of Vnd and Ind are ineffective in Gal4 chimeric assays (Von Ohlen, T., Syu, L.J., Mellerick, D.M., 2007. Conserved properties of the Drosophila homeodomain protein. Ind. Mech. Dev. 124, 925-934; Yu, Z., et al., 2005. Contextual interactions determine whether the Drosophila homeodomain protein, Vnd, acts as a repressor or activator. Nucleic Acids Res. 33, 1-12), we found that the Eh1 domain of Nkx6 did not significantly enhance repression in Gal4 chimeric assays. However, when we performed co-immunoprecipitation analyses, we found that Nkx6 can bind Groucho and that binding of Nkx6 to this co-repressor is modulated intra-molecularly. Full length Nkx6 interacted with Groucho poorly, because sequences at the carboxyl terminal of NKx6 interfere with Groucho binding, despite the presence of the Eh1 domain. In contrast, a carboxyl terminal Nkx6 deletion bound Groucho strongly. In keeping with the presence of an activation domain within Nkx6, we also report that Nkx6 can activate reporter expression driven by an Nkx6.1 enhancer that mediates auto-activation in transient transfection assays. The presence of multiple repression domains in Nkx6 supports Nkx6's role as a repressor, potentially using both Groucho-dependent and independent mechanisms. Thus, Nkx6 likely functions as a dual regulator in embryos.
Collapse
Affiliation(s)
- Li-Jyun Syu
- Pathology Department, University of Michigan, Med Sci I, M5240 Ann Arbor, MI 48109-0646, USA
| | | | | | | |
Collapse
|
13
|
Abstract
The major forms of diabetes are characterized by pancreatic islet beta-cell dysfunction and decreased beta-cell numbers, raising hope for cell replacement therapy. Although human islet transplantation is a cell-based therapy under clinical investigation for the treatment of type 1 diabetes, the limited availability of human cadaveric islets for transplantation will preclude its widespread therapeutic application. The result has been an intense focus on the development of alternate sources of beta cells, such as through the guided differentiation of stem or precursor cell populations or the transdifferentiation of more plentiful mature cell populations. Realizing the potential for cell-based therapies, however, requires a thorough understanding of pancreas development and beta-cell formation. Pancreas development is coordinated by a complex interplay of signaling pathways and transcription factors that determine early pancreatic specification as well as the later differentiation of exocrine and endocrine lineages. This review describes the current knowledge of these factors as they relate specifically to the emergence of endocrine beta cells from pancreatic endoderm. Current therapeutic efforts to generate insulin-producing beta-like cells from embryonic stem cells have already capitalized on recent advances in our understanding of the embryonic signals and transcription factors that dictate lineage specification and will most certainly be further enhanced by a continuing emphasis on the identification of novel factors and regulatory relationships.
Collapse
Affiliation(s)
- Jennifer M. Oliver-Krasinski
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Doris A. Stoffers
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
14
|
Hafler BP, Choi MY, Shivdasani RA, Rowitch DH. Expression and function of Nkx6.3 in vertebrate hindbrain. Brain Res 2008; 1222:42-50. [PMID: 18586225 PMCID: PMC2555971 DOI: 10.1016/j.brainres.2008.04.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 04/18/2008] [Accepted: 04/18/2008] [Indexed: 11/15/2022]
Abstract
Homeodomain transcription factors serve important functions in organogenesis and tissue differentiation, particularly with respect to the positional identity of individual cells. The Nkx6 subfamily controls tissue differentiation in the developing central nervous system where they function as transcriptional repressor proteins. Recent work indicates that Nkx6.3 is expressed in hindbrain V2 interneurons that co-express Nkx6.1, suggesting the possibility of functional redundancy. Here, we report that Nkx6.3 expression is specific to Chx10+ V2a interneurons but not to Gata3+ V2b interneurons of the hindbrain, and that Nkx6.3 expression appears to mark cells of the prospective medullary reticular formation. Molecular analysis of Nkx6.3 null embryonic mouse hindbrain did not reveal detectable defects in progenitor markers, motor neuron or V2 interneuron sub-types. Forced expression of Nkx6.3 and Nkx6.1 promote V2 interneuron differentiation in the developing chick hindbrain. These findings indicate Nkx6.3 function is dispensable for CNS development and lead to the proposal that absence of overt defects is due to functional compensation from a related homeodomain transcription factor.
Collapse
Affiliation(s)
- Brain P. Hafler
- Department of Pediatric Oncology, Harvard Medical School
- Department of Neurobiology, Harvard Medical School
| | - Michael Y. Choi
- Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School
- Massachusetts General Hospital, Harvard Medical School
- Brigham & Women’s Hospital, Harvard Medical School
| | - Ramesh A. Shivdasani
- Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School
- Brigham & Women’s Hospital, Harvard Medical School
- Department of Medicine, Harvard Medical School
| | | |
Collapse
|
15
|
Requirement of the tissue-restricted homeodomain transcription factor Nkx6.3 in differentiation of gastrin-producing G cells in the stomach antrum. Mol Cell Biol 2008; 28:3208-18. [PMID: 18347062 DOI: 10.1128/mcb.01737-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many homeodomain transcription factors function in organogenesis and cell differentiation. The Nkx family illustrates these functions especially well, and the Nkx6 subfamily controls differentiation in the central nervous system and pancreas. Nkx6.3, a recent addition to this subfamily, overlaps Nkx6.1 and Nkx6.2 in expression in the hindbrain and stomach. Nkx6.3 transcripts localize in the epithelium of the most distal stomach region, the antrum and pylorus; expression in the adult intestine is lower and confined to the proximal duodenum. Nkx6.3(-)(/)(-) mice develop and grow normally, with a grossly intact stomach and duodenum. These mice show markedly reduced gastrin mRNA, many fewer gastrin-producing (G) cells in the stomach antrum, hypogastrinemia, and increased stomach luminal pH, with a corresponding increase in somatostatin mRNA levels and antral somatostatin-producing (D) cells. They express normal levels of other transcription factors required for gastric endocrine cell differentiation, Pdx1, Pax6, and Ngn3; conversely, Ngn3(-)(/)(-) mice, which also show reduced gastrin levels, express Nkx6.3 normally. These studies implicate Nkx6.3 as a selective regulator of G- and D-cell lineages, which are believed to derive from a common progenitor, and suggest that it operates in parallel with Ngn3.
Collapse
|
16
|
Klinck R, Serup P, Madsen OD, Jørgensen MC. Specificity of four monoclonal anti-NKx6-1 antibodies. J Histochem Cytochem 2008; 56:415-24. [PMID: 18212389 DOI: 10.1369/jhc.7a7350.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The homeodomain transcription factor Nkx6-1 is essential for proper motor neuron development and development of insulin-producing pancreatic beta-cells. Nkx6-1 is closely related to Nkx6-2 and Nkx6-3, and all three are expressed in the developing central nervous system and in the developing foregut. Immunohistochemical detection of protein expression is an important tool for description of the temporal differences in expression patterns. When several gene family members like the Nkx6 factors have overlapping or juxtaposed expression domains, there is an elevated risk of unrecognized cross-reactivity, and it is therefore crucial to determine the specificities of antibodies against such targets. In this study we have determined the epitope consensus sequences of four monoclonal antibodies against Nkx6-1 using SPOT membranes, and we refined the results by combined peptide recognition and blocking assays. We show that two of the monoclonal anti-Nkx6-1 antibodies specifically recognize Nkx6-1 and do not cross-react to Nkx6-2 and Nkx6-3. The other two monoclonal anti-Nkx6-1 antibodies are specific to Nkx6-1 in mice but do not recognize Nkx6-1 in chicken and human.
Collapse
Affiliation(s)
- Rasmus Klinck
- Hagedorn Research Institute, Niels Steensensvej 6, DK-2820 Gentofte, Denmark
| | | | | | | |
Collapse
|
17
|
Zhao S, Jiang H, Wang W, Mao B. Cloning and developmental expression of the Xenopus Nkx6 genes. Dev Genes Evol 2007; 217:477-83. [PMID: 17450377 DOI: 10.1007/s00427-007-0155-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 03/28/2007] [Indexed: 11/24/2022]
Abstract
The evolutionarily conserved Nkx6 family transcription factors play important roles in the patterning of the central nervous system (CNS) and pancreas in vertebrates. In this study, we describe the cloning and expression patterns of the three Nkx6 family genes in Xenopus laevis. Like their mouse and chicken homologues, Xenopus Nkx6 family genes are mainly expressed in the CNS and anterior endodermal tissues during embryonic development. Nkx6.1 and Nkx6.2 share overlapping expression domains in the ventral neural tube at neurula stages and later in the ventral part of developing hindbrain and spinal cord. Nkx6.3 is detected in the non-neural ectoderm from cleavage to early neurula stages and in the caudal hindbrain and the mandibular arch at tail bud stages. In the endoderm, Nkx6.2 is expressed in the hypochord at tail bud stages. At tadpole stages, the three Nkx6 genes are differentially expressed in the anterior endoderm derivatives, including the pancreas, stomach, esophagus, and lung.
Collapse
Affiliation(s)
- Shuhua Zhao
- CAS-Max Planck Junior Scientist Group on Neural Patterning, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, People's Republic of China
| | | | | | | |
Collapse
|