1
|
Barta P, Nachtigal P, Maixnerova J, Zemankova L, Trejtnar F. Validation of Freshly Isolated Rat Renal Cells as a Tool for Preclinical Assessment of Radiolabeled Receptor-Specific Peptide Uptake in the Kidney. Pharmaceuticals (Basel) 2023; 16:ph16050696. [PMID: 37242479 DOI: 10.3390/ph16050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The synthetic analogs of regulatory peptides radiolabeled with adequate radionuclides are perspective tools in nuclear medicine. However, undesirable uptake and retention in the kidney limit their application. Specific in vitro methods are used to evaluate undesirable renal accumulation. Therefore, we investigated the usefulness of freshly isolated rat renal cells for evaluating renal cellular uptake of receptor-specific peptide analogs. Special attention was given to megalin as this transport system is an important contributor to the active renal uptake of the peptides. Freshly isolated renal cells were obtained from native rat kidneys by the collagenase method. Compounds with known accumulation in renal cells were used to verify the viability of cellular transport systems. Megalin expressions in isolated rat renal cells were compared to two other potential renal cell models by Western blotting. Specific tubular cell markers were used to confirm the presence of proximal tubular cells expressing megalin in isolated rat renal cell preparations by immunohistochemistry. Colocalization experiments on isolated rat kidney cells confirmed the presence of proximal tubular cells bearing megalin in preparations. The applicability of the method was tested by an accumulation study with several analogs of somatostatin and gastrin labeled with indium-111 or lutetium-177. Therefore, isolated rat renal cells may be an effective screening tool for in vitro analyses of renal uptake and comparative renal accumulation studies of radiolabeled peptides or other radiolabeled compounds with potential nephrotoxicity.
Collapse
Affiliation(s)
- Pavel Barta
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Kralové, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralové, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Jana Maixnerova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralové, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Lenka Zemankova
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Frantisek Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralové, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
2
|
Tsukimoto S, Hakata Y, Tsuji-Kawahara S, Enya T, Tsukamoto T, Mizuno S, Takahashi S, Nakao S, Miyazawa M. Distinctive High Expression of Antiretroviral APOBEC3 Protein in Mouse Germinal Center B Cells. Viruses 2022; 14:v14040832. [PMID: 35458563 PMCID: PMC9029289 DOI: 10.3390/v14040832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Tissue and subcellular localization and its changes upon cell activation of virus-restricting APOBEC3 at protein levels are important to understanding physiological functions of this cytidine deaminase, but have not been thoroughly analyzed in vivo. To precisely follow the possible activation-induced changes in expression levels of APOBEC3 protein in different mouse tissues and cell populations, genome editing was utilized to establish knock-in mice that express APOBEC3 protein with an in-frame FLAG tag. Flow cytometry and immunohistochemical analyses were performed prior to and after an immunological stimulation. Cultured B cells expressed higher levels of APOBEC3 protein than T cells. All differentiation and activation stages of freshly prepared B cells expressed significant levels of APOBEC3 protein, but germinal center cells possessed the highest levels of APOBEC3 protein localized in their cytoplasm. Upon immunological stimulation with sheep red blood cells in vivo, germinal center cells with high levels of APOBEC3 protein expression increased in their number, but FLAG-specific fluorescence intensity in each cell did not change. T cells, even those in germinal centers, did not express significant levels of APOBEC3 protein. Thus, mouse APOBEC3 protein is expressed at distinctively high levels in germinal center B cells. Antigenic stimulation did not affect expression levels of cellular APOBEC3 protein despite increased numbers of germinal center cells.
Collapse
Affiliation(s)
- Shota Tsukimoto
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
- Department of Anesthesiology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan;
| | - Yoshiyuki Hakata
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
| | - Sachiyo Tsuji-Kawahara
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
| | - Takuji Enya
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
- Department of Pediatrics, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan
| | - Tetsuo Tsukamoto
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Laboratory Animal Science, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Shinichi Nakao
- Department of Anesthesiology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan;
| | - Masaaki Miyazawa
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
- Anti-Aging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- Correspondence:
| |
Collapse
|
3
|
Miyasato Y, Yoshizawa T, Sato Y, Nakagawa T, Miyasato Y, Kakizoe Y, Kuwabara T, Adachi M, Ianni A, Braun T, Komohara Y, Mukoyama M, Yamagata K. Sirtuin 7 Deficiency Ameliorates Cisplatin-induced Acute Kidney Injury Through Regulation of the Inflammatory Response. Sci Rep 2018; 8:5927. [PMID: 29651144 PMCID: PMC5897539 DOI: 10.1038/s41598-018-24257-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/29/2018] [Indexed: 12/31/2022] Open
Abstract
Cisplatin-induced acute kidney injury (AKI) has been recognized as one of cisplatin’s serious side effects, limiting its use in cancer therapy. Sirtuin 1 (SIRT1) and SIRT3 play protective roles against cisplatin-induced kidney injury. However, the role of SIRT7 in cisplatin-induced kidney injury is not yet known. In this study, we found that Sirt7 knockout (KO) mice were resistant to cisplatin-induced AKI. Furthermore, our studies identified that loss of SIRT7 decreases the expression of tumor necrosis factor-α (TNF-α) by regulating the nuclear expression of the transcription factor nuclear factor kappa B. It has been reported that cisplatin-induced nephrotoxicity is mediated by TNF-α. Our results indicate that SIRT7 plays an important role in cisplatin-induced AKI and suggest the possibility of SIRT7 as a novel therapeutic target for cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yoshikazu Miyasato
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan.,Department of Nephrology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Terumasa Nakagawa
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Yuko Miyasato
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Masataka Adachi
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Alessandro Ianni
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan.
| |
Collapse
|
4
|
Nascimento-Brito S, Paulo Zukurov J, Maricato JT, Volpini AC, Salim ACM, Araújo FMG, Coimbra RS, Oliveira GC, Antoneli F, Janini LMR. HIV-1 Tropism Determines Different Mutation Profiles in Proviral DNA. PLoS One 2015; 10:e0139037. [PMID: 26413773 PMCID: PMC4587555 DOI: 10.1371/journal.pone.0139037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/07/2015] [Indexed: 01/19/2023] Open
Abstract
In order to establish new infections HIV-1 particles need to attach to receptors expressed on the cellular surface. HIV-1 particles interact with a cell membrane receptor known as CD4 and subsequently with another cell membrane molecule known as a co-receptor. Two major different co-receptors have been identified: C-C chemokine Receptor type 5 (CCR5) and C-X-C chemokine Receptor type 4 (CXCR4) Previous reports have demonstrated cellular modifications upon HIV-1 binding to its co-receptors including gene expression modulations. Here we investigated the effect of viral binding to either CCR5 or CXCR4 co-receptors on viral diversity after a single round of reverse transcription. CCR5 and CXCR4 pseudotyped viruses were used to infect non-stimulated and stimulated PBMCs and purified CD4 positive cells. We adopted the SOLiD methodology to sequence virtually the entire proviral DNA from all experimental infections. Infections with CCR5 and CXCR4 pseudotyped virus resulted in different patterns of genetic diversification. CCR5 virus infections produced extensive proviral diversity while in CXCR4 infections a more localized substitution process was observed. In addition, we present pioneering results of a recently developed method for the analysis of SOLiD generated sequencing data applicable to the study of viral quasi-species. Our findings demonstrate the feasibility of viral quasi-species evaluation by NGS methodologies. We presented for the first time strong evidence for a host cell driving mechanism acting on the HIV-1 genetic variability under the control of co-receptor stimulation. Additional investigations are needed to further clarify this question, which is relevant to viral diversification process and consequent disease progression.
Collapse
Affiliation(s)
- Sieberth Nascimento-Brito
- Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Rio de Janeiro, Brazil
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Juliana T. Maricato
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Angela C. Volpini
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Anna Christina M. Salim
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Flávio M. G. Araújo
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Roney S. Coimbra
- Biosystems Informatics Group, CPqRR, FIOCRUZ, Belo Horizonte, Brazil
| | - Guilherme C. Oliveira
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Fernando Antoneli
- Departamento de Informática em Saúde, EPM, UNIFESP, São Paulo, Brazil
- Laboratório de Biocomplexidade e Genômica Evolutiva, EPM, UNIFESP, São Paulo, Brazil
| | - Luiz Mário R. Janini
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Departamento de Medicina, EPM, UNIFESP, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
5
|
Schmitt K, Hill MS, Liu Z, Ruiz A, Culley N, Pinson DM, Stephens EB. Comparison of the replication and persistence of simian-human immunodeficiency viruses expressing Vif proteins with mutation of the SLQYLA or HCCH domains in macaques. Virology 2010; 404:187-203. [PMID: 20627348 PMCID: PMC2974619 DOI: 10.1016/j.virol.2010.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/17/2010] [Accepted: 04/18/2010] [Indexed: 01/30/2023]
Abstract
The Vif protein of primate lentiviruses interacts with APOBEC3 proteins, which results in shunting of the APOBEC3-Vif complex to the proteosome for degradation. Using the simian-human immunodeficiency virus (SHIV)/macaque model, we compared the replication and pathogenicity of SHIVs that express a Vif protein in which the entire SLQYLA (SHIV(Vif5A)) or HCCH (SHIV(VifHCCH(-))) domains were substituted with alanine residues. Each virus was inoculated into three macaques and various viral and immunological parameters followed for 6 months. All macaques maintained stable circulating CD4+ T cells, developed low viral loads, maintained the engineered mutations, yielded no histological lesions, and developed immunoprecipitating antibodies early post-inoculation. Sequence analysis of nef and vpu from three lymphoid tissues revealed a high percentage of G-to-A-substitutions. Our results show that while the presence of HCCH and SLQYLA domains are critical in vivo, there may exist APOBEC3 negative reservoirs that allow for low levels of viral replication and persistence but not disease.
Collapse
Affiliation(s)
- Kimberly Schmitt
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - M. Sarah Hill
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Zhenqian Liu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Autumn Ruiz
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Nathan Culley
- Laboratory Animal Resources, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - David M. Pinson
- Laboratory Medicine and Pathology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Edward B. Stephens
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
6
|
Gauthier S, Tremblay MJ. Interleukin-4 inhibits an early phase in the HIV-1 life cycle in the human colorectal cell line HT-29. Clin Immunol 2010; 135:146-55. [DOI: 10.1016/j.clim.2009.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 12/03/2009] [Accepted: 12/04/2009] [Indexed: 12/11/2022]
|
7
|
Romani B, Engelbrecht S, Glashoff RH. Antiviral roles of APOBEC proteins against HIV-1 and suppression by Vif. Arch Virol 2009; 154:1579-88. [DOI: 10.1007/s00705-009-0481-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 07/22/2009] [Indexed: 01/18/2023]
|
8
|
Mutations in the highly conserved SLQYLA motif of Vif in a simian-human immunodeficiency virus result in a less pathogenic virus and are associated with G-to-A mutations in the viral genome. Virology 2008; 383:362-72. [PMID: 19027134 DOI: 10.1016/j.virol.2008.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 09/22/2008] [Accepted: 10/08/2008] [Indexed: 11/22/2022]
Abstract
The simian-human immunodeficiency virus (SHIV)/macaque model for human immunodeficiency virus type 1 has become a useful tool to assess the role of accessory genes in lentiviral pathogenesis. In this study, we introduced two amino acid changes in the highly conserved SLQYLA domain (to AAQYLA) of the SIV Vif protein. The resulting virus, SHIV(VifAAQYLA), was used to infect three macaques, which were followed for over six months. Plasma viral loads and circulating CD4(+) T cell levels were assessed during the course of infection. The three macaques inoculated with SHIV(VifAAQYLA) did not develop significant CD4(+) T cell loss over the course of their infection, had plasma viral RNA loads that were over 100-fold lower than macaques inoculated with parental SHIV(KU-1bMC33), and developed no histological lesions in lymphoid tissues. DNA and RT-PCR analysis revealed that only a select number of tissues were infected with this virus. Sequence analysis indicates that the site-directed changes were stable during the first three weeks after inoculation but thereafter the S147A amino acid substitution changed to a threonine in two of three macaques. The L148A substitution remained stable in the vif amplified from the PBMC of all three macaques. Sequence analysis of vif, vpu, env and nef genes revealed G-to-A mutations in the genes amplified from macaques inoculated with SHIV(VifAAQYLA), which were higher than in a macaque inoculated with parental SHIV(KU-1bMC33). We found that the majority (>85%) of the G-to-A mutations were in the context of 5'-TC (minus strand) and not 5'-CC, suggestive that one or more of the rhesus APOBEC3 proteins may be responsible for the observed mutational patterns. The data also suggest that rhesus APOBEC3G probably accounted for a minority of the mutations since its GG-to-AG mutational pattern was infrequently detected. Finally, macaques inoculated with SHIV(VifAAQYLA) developed immunoprecipitating antibody responses against the virus. The results from this study provide the first in vivo evidence of the importance of the SLQYLA domain in viral pathogenesis and show that targeted mutations in vif can lead to a persistent infection with G-to-A changes accumulating in the viral genome.
Collapse
|
9
|
Gong R, Latif S, Morris DJ, Brem AS. Co-localization of glucocorticoid metabolizing and prostaglandin synthesizing enzymes in rat kidney and liver. Life Sci 2008; 83:725-31. [DOI: 10.1016/j.lfs.2008.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/10/2008] [Accepted: 09/15/2008] [Indexed: 11/28/2022]
|
10
|
Human renal 11beta-hydroxysteroid dehydrogenase 1 functions and co-localizes with COX-2. Life Sci 2008; 82:631-7. [PMID: 18261751 DOI: 10.1016/j.lfs.2007.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/15/2007] [Accepted: 12/15/2007] [Indexed: 11/23/2022]
Abstract
The local renal metabolism of glucocorticoids (GCs) by isoforms of 11beta-hydroxysteroid dehydrogenase (11beta-HSD1 and 11beta-HSD2) determines their biological effects. 11beta-HSD2, located in collecting duct epithelial cells of the mammalian and human kidney, serves as a putative "guardian" preventing GCs from binding to mineralocorticoid receptors. Various investigators have shown that both isoforms are present in kidney tissue from the rat, dog and other mammals. There is controversy as to whether 11beta-HSD1 exists and functions in human kidney. The current studies examine the locale and function of both isoforms in human kidney. The expression of 11beta-HSD1 was similar to that of 11beta-HSD2 by Western blot. Two distinct Lineweaver Burke plots could be drawn providing enzyme kinetics for both isoforms. The apparent Km for the NADP dependent 11beta-HSD1 enzyme was 0.42 muM while the apparent Km for the NAD dependent 11beta-HSD2 enzyme was 10.2 nM. Human renal 11beta-HSD1 appears to function as a dehydrogenase with no significant "reverse" reductase activity. Using immuno-histochemistry and Western blot analysis, 11beta-HSD1 was found to co-localize with COX-2 in proximal tubule cells; COX-2 was not seen with 11beta-HSD2 in cortical collecting duct. Thus, normal human kidney contains active 11beta-HSD1 and 11beta-HSD2. 11beta-HSD1 co-localizes with COX-2 in proximal tubule cells.
Collapse
|
11
|
Increased APOBEC3G expression is associated with extensive G-to-A hypermutation in viral DNA in rhesus macaque brain during lentiviral infection. J Neuropathol Exp Neurol 2007; 66:901-12. [PMID: 17917584 DOI: 10.1097/nen.0b013e3181567a59] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
APOBEC3G restricts retrovirus replication through inducing guanosine-to-adenosine (G-to-A) hypermutations in viral DNA. Its role in brain "intrinsic immunity" has not been elucidated nor has it been convincingly demonstrated which brain cell compartments produce this defense factor in human immunodeficiency virus (HIV) infection, acquired immunodeficiency syndrome (AIDS), and antiretroviral therapy. Here, we investigated by immunohistochemistry and in situ hybridization the cell-specific regulation of APOBEC3G in rhesus macaque brains during infection with simian immunodeficiency virus (SIV) clone deltaB670, a primate model of HIV disease. We found that APOBEC3G protein and mRNA were exclusively expressed by some perivascular macrophages throughout the brain of noninfected and asymptomatic SIV-infected monkeys. Depending on virus burden, APOBEC3G was induced in microglia/macrophage-derived cells and T lymphocytes in late-stage SIV infection. Intracellularly, APOBEC3G was found in the cytoplasm and/or in the nucleus. APOBEC3G-positive cells were in close proximity to SIV gag-positive cells or were SIV-copositive. Induction of APOBEC3G was accompanied by G-to-A hypermutations in the gag and pol regions of retroviral DNA isolated from brain sections of AIDS-symptomatic monkeys. Although brain-directed treatment with antiretroviral 6-chloro-2',3'-dideoxyguanosine suppressed brain SIV burden, encephalitis and reduced cerebral APOBEC3G synthesis hypermutations were still detectable. Upregulation of APOBEC3G may restrict spread of SIV in the brain and thus limit brain damage during lentiviral infection.
Collapse
|