1
|
Huayta J, Seay S, Laster J, Rivera NA, Joyce AS, Ferguson PL, Hsu-Kim H, Meyer JN. Assessment of developmental neurotoxicology-associated alterations in neuronal architecture and function using Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632560. [PMID: 39868199 PMCID: PMC11761668 DOI: 10.1101/2025.01.11.632560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Few of the many chemicals that regulatory agencies are charged with assessing for risk have been carefully tested for developmental neurotoxicity (DNT). To speed up testing efforts, as well as to reduce the use of vertebrate animals, great effort is being devoted to alternate laboratory models for testing DNT. A major mechanism of DNT is altered neuronal architecture resulting from chemical exposure during neurodevelopment. Caenorhabditis elegans is a nematode that has been extensively studied by neurobiologists and developmental biologists, and to a lesser extent by neurotoxicologists. The developmental trajectory of the nervous system in C. elegans is easily visualized, normally entirely invariant, and fully mapped. Therefore, we hypothesized that C. elegans could be a powerful in vivo model to test chemicals for the potential to alter developmental patterning of neuronal architecture. To test whether this might be true, we developed a novel C. elegans DNT testing paradigm that includes exposure throughout development, examines all major neurotransmitter neuronal types for architectural alterations, and tests behaviors specific to dopaminergic, cholinergic, and glutamatergic functions. We used this paradigm to characterize the effects of early-life exposures to the developmental neurotoxicants lead, cadmium, and benzo(a)pyrene (BaP) on dopaminergic, cholinergic, and glutamatergic architecture. We also assessed whether exposures would alter neuronal specification as assessed by expression of reporter genes diagnostic of specific neurotransmitters. We identified no cases in which the apparent neurotransmitter type of the neurons we examined changed, but many in which neuronal morphology was altered. We also found that neuron-specific behaviors were altered during C. elegans mid-adulthood for populations with measured morphological neurodegeneration in earlier stages. The functional changes were consistent with the morphological changes we observed in terms of type of neuron affected. We identified changes consistent with those reported in the mammalian DNT literature, strengthening the case for C. elegans as a DNT model, and made novel observations that should be followed up in future studies.
Collapse
Affiliation(s)
- Javier Huayta
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Sarah Seay
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Joseph Laster
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Nelson A Rivera
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Abigail S Joyce
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - P Lee Ferguson
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Heileen Hsu-Kim
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Dill H, Liewald JF, Becker M, Seidenthal M, Gottschalk A. Neuropeptidergic regulation of neuromuscular signaling in larval zebrafish alters swimming behavior and synaptic transmission. iScience 2024; 27:110687. [PMID: 39252958 PMCID: PMC11381845 DOI: 10.1016/j.isci.2024.110687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/13/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Chemical synaptic transmission is modulated to accommodate different activity levels, thus enabling homeostatic scaling in pre- and postsynaptic compartments. In nematodes, cholinergic neurons use neuropeptide signaling to modulate synaptic vesicle content. To explore if this mechanism is conserved in vertebrates, we studied the involvement of neuropeptides in cholinergic transmission at the neuromuscular junction of larval zebrafish. Optogenetic stimulation by photoactivated adenylyl cyclase evoked locomotion. We generated mutants lacking the neuropeptide-processing enzyme carboxypeptidase E (cpe), and the most abundant neuropeptide precursor in motor neurons, tachykinin (tac1). Both mutants showed exaggerated locomotion after photostimulation. Recording excitatory postsynaptic currents demonstrated overall larger amplitudes in the wild type. Exaggerated locomotion in the mutants thus reflected upscaling of postsynaptic excitability. Both mutant muscles expressed more nicotinic acetylcholine receptors (nAChRs) on their surface; thus, neuropeptide signaling regulates synaptic transmitter output in zebrafish motor neurons, and muscle cells homeostatically regulate nAChR surface expression, compensating reduced presynaptic input.
Collapse
Affiliation(s)
- Holger Dill
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Jana F Liewald
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Michelle Becker
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Marius Seidenthal
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| |
Collapse
|
3
|
Xiong A, Richmond JE, Kim H. Presynaptic neurons self-tune by inversely coupling neurotransmitter release with the abundance of CaV2 voltage-gated Ca 2+ channels. Proc Natl Acad Sci U S A 2024; 121:e2404969121. [PMID: 39172783 PMCID: PMC11363341 DOI: 10.1073/pnas.2404969121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024] Open
Abstract
The abundance of CaV2 voltage-gated calcium channels is linked to presynaptic homeostatic plasticity (PHP), a process that recalibrates synaptic strength to maintain the stability of neural circuits. However, the molecular and cellular mechanisms governing PHP and CaV2 channels are not completely understood. Here, we uncover a previously not described form of PHP in Caenorhabditis elegans, revealing an inverse regulatory relationship between the efficiency of neurotransmitter release and the abundance of UNC-2/CaV2 channels. Gain-of-function unc-2SL(S240L) mutants, which carry a mutation analogous to the one causing familial hemiplegic migraine type 1 in humans, showed markedly reduced channel abundance despite increased channel functionality. Reducing synaptic release in these unc-2SL(S240L) mutants restored channel levels to those observed in wild-type animals. Conversely, loss-of-function unc-2DA(D726A) mutants, which harbor the D726A mutation in the channel pore, exhibited a marked increase in channel abundance. Enhancing synaptic release in unc-2DA mutants reversed this increase in channel levels. Importantly, this homeostatic regulation of UNC-2 channel levels is accompanied by the structural remodeling of the active zone (AZ); specifically, unc-2DA mutants, which exhibit increased channel abundance, showed parallel increases in select AZ proteins. Finally, our forward genetic screen revealed that WWP-1, a HECT family E3 ubiquitin ligase, is a key homeostatic mediator that removes UNC-2 from synapses. These findings highlight a self-tuning PHP regulating UNC-2/CaV2 channel abundance along with AZ reorganization, ensuring synaptic strength and stability.
Collapse
Affiliation(s)
- Ame Xiong
- Discipline of Cell Biology & Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL60064
| | - Janet E. Richmond
- Department of Biological Sciences, University of Illinois, Chicago, IL60607
| | - Hongkyun Kim
- Discipline of Cell Biology & Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL60064
| |
Collapse
|
4
|
Meijer M, Öttl M, Yang J, Subkhangulova A, Kumar A, Feng Z, van Voorst TW, Groffen AJ, van Weering JRT, Zhang Y, Verhage M. Tomosyns attenuate SNARE assembly and synaptic depression by binding to VAMP2-containing template complexes. Nat Commun 2024; 15:2652. [PMID: 38531902 PMCID: PMC10965968 DOI: 10.1038/s41467-024-46828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Tomosyns are widely thought to attenuate membrane fusion by competing with synaptobrevin-2/VAMP2 for SNARE-complex assembly. Here, we present evidence against this scenario. In a novel mouse model, tomosyn-1/2 deficiency lowered the fusion barrier and enhanced the probability that synaptic vesicles fuse, resulting in stronger synapses with faster depression and slower recovery. While wild-type tomosyn-1m rescued these phenotypes, substitution of its SNARE motif with that of synaptobrevin-2/VAMP2 did not. Single-molecule force measurements indeed revealed that tomosyn's SNARE motif cannot substitute synaptobrevin-2/VAMP2 to form template complexes with Munc18-1 and syntaxin-1, an essential intermediate for SNARE assembly. Instead, tomosyns extensively bind synaptobrevin-2/VAMP2-containing template complexes and prevent SNAP-25 association. Structure-function analyses indicate that the C-terminal polybasic region contributes to tomosyn's inhibitory function. These results reveal that tomosyns regulate synaptic transmission by cooperating with synaptobrevin-2/VAMP2 to prevent SNAP-25 binding during SNARE assembly, thereby limiting initial synaptic strength and equalizing it during repetitive stimulation.
Collapse
Affiliation(s)
- Marieke Meijer
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands.
| | - Miriam Öttl
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Jie Yang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA.
| | - Aygul Subkhangulova
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Avinash Kumar
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Zicheng Feng
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Torben W van Voorst
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Alexander J Groffen
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands
| | - Jan R T van Weering
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands
| | - Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.
| | - Matthijs Verhage
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands.
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Zeng WX, Liu H, Hao Y, Qian KY, Tian FM, Li L, Yu B, Zeng XT, Gao S, Hu Z, Tong XJ. CaMKII mediates sexually dimorphic synaptic transmission at neuromuscular junctions in C. elegans. J Cell Biol 2023; 222:e202301117. [PMID: 37624117 PMCID: PMC10457463 DOI: 10.1083/jcb.202301117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Sexually dimorphic behaviors are ubiquitous throughout the animal kingdom. Although both sex-specific and sex-shared neurons have been functionally implicated in these diverse behaviors, less is known about the roles of sex-shared neurons. Here, we discovered sexually dimorphic cholinergic synaptic transmission in C. elegans occurring at neuromuscular junctions (NMJs), with males exhibiting increased release frequencies, which result in sexually dimorphic locomotion behaviors. Scanning electron microscopy revealed that males have significantly more synaptic vesicles (SVs) at their cholinergic synapses than hermaphrodites. Analysis of previously published transcriptome identified the male-enriched transcripts and focused our attention on UNC-43/CaMKII. We ultimately show that differential accumulation of UNC-43 at cholinergic neurons controls axonal SV abundance and synaptic transmission. Finally, we demonstrate that sex reversal of all neurons in hermaphrodites generates male-like cholinergic transmission and locomotion behaviors. Thus, beyond demonstrating UNC-43/CaMKII as an essential mediator of sex-specific synaptic transmission, our study provides molecular and cellular insights into how sex-shared neurons can generate sexually dimorphic locomotion behaviors.
Collapse
Affiliation(s)
- Wan-Xin Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haowen Liu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, Australia
| | - Yue Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kang-Ying Qian
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fu-Min Tian
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lei Li
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, Australia
| | - Bin Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Ting Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shangbang Gao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, Australia
- Department of Neuroscience, City University of Hong Kong, Kowloon, China
| | - Xia-Jing Tong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
6
|
Subkhangulova A, Gonzalez-Lozano MA, Groffen AJA, van Weering JRT, Smit AB, Toonen RF, Verhage M. Tomosyn affects dense core vesicle composition but not exocytosis in mammalian neurons. eLife 2023; 12:e85561. [PMID: 37695731 PMCID: PMC10495110 DOI: 10.7554/elife.85561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Tomosyn is a large, non-canonical SNARE protein proposed to act as an inhibitor of SNARE complex formation in the exocytosis of secretory vesicles. In the brain, tomosyn inhibits the fusion of synaptic vesicles (SVs), whereas its role in the fusion of neuropeptide-containing dense core vesicles (DCVs) is unknown. Here, we addressed this question using a new mouse model with a conditional deletion of tomosyn (Stxbp5) and its paralogue tomosyn-2 (Stxbp5l). We monitored DCV exocytosis at single vesicle resolution in tomosyn-deficient primary neurons using a validated pHluorin-based assay. Surprisingly, loss of tomosyns did not affect the number of DCV fusion events but resulted in a strong reduction of intracellular levels of DCV cargos, such as neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF). BDNF levels were largely restored by re-expression of tomosyn but not by inhibition of lysosomal proteolysis. Tomosyn's SNARE domain was dispensable for the rescue. The size of the trans-Golgi network and DCVs was decreased, and the speed of DCV cargo flux through Golgi was increased in tomosyn-deficient neurons, suggesting a role for tomosyns in DCV biogenesis. Additionally, tomosyn-deficient neurons showed impaired mRNA expression of some DCV cargos, which was not restored by re-expression of tomosyn and was also observed in Cre-expressing wild-type neurons not carrying loxP sites, suggesting a direct effect of Cre recombinase on neuronal transcription. Taken together, our findings argue against an inhibitory role of tomosyns in neuronal DCV exocytosis and suggests an evolutionary conserved function of tomosyns in the packaging of secretory cargo at the Golgi.
Collapse
Affiliation(s)
- Aygul Subkhangulova
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) AmsterdamAmsterdamNetherlands
| | - Miguel A Gonzalez-Lozano
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) AmsterdamAmsterdamNetherlands
| | - Alexander JA Groffen
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center (UMC)AmsterdamNetherlands
| | - Jan RT van Weering
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center (UMC)AmsterdamNetherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) AmsterdamAmsterdamNetherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) AmsterdamAmsterdamNetherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) AmsterdamAmsterdamNetherlands
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center (UMC)AmsterdamNetherlands
| |
Collapse
|
7
|
Mahadik SS, Lundquist EA. TOM-1/tomosyn acts with the UNC-6/netrin receptor UNC-5 to inhibit growth cone protrusion in Caenorhabditis elegans. Development 2023; 150:dev201031. [PMID: 37014062 PMCID: PMC10112904 DOI: 10.1242/dev.201031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/24/2023] [Indexed: 04/05/2023]
Abstract
In the polarity/protrusion model of growth cone repulsion from UNC-6/netrin, UNC-6 first polarizes the growth cone of the VD motor neuron axon via the UNC-5 receptor, and then regulates protrusion asymmetrically across the growth cone based on this polarity. UNC-6 stimulates protrusion dorsally through the UNC-40/DCC receptor, and inhibits protrusion ventrally through UNC-5, resulting in net dorsal growth. Previous studies showed that UNC-5 inhibits growth cone protrusion via the flavin monooxygenases and potential destabilization of F-actin, and via UNC-33/CRMP and restriction of microtubule plus-end entry into the growth cone. We show that UNC-5 inhibits protrusion through a third mechanism involving TOM-1/tomosyn. A short isoform of TOM-1 inhibited protrusion downstream of UNC-5, and a long isoform had a pro-protrusive role. TOM-1/tomosyn inhibits formation of the SNARE complex. We show that UNC-64/syntaxin is required for growth cone protrusion, consistent with a role of TOM-1 in inhibiting vesicle fusion. Our results are consistent with a model whereby UNC-5 utilizes TOM-1 to inhibit vesicle fusion, resulting in inhibited growth cone protrusion, possibly by preventing the growth cone plasma membrane addition required for protrusion.
Collapse
Affiliation(s)
- Snehal S. Mahadik
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, 5049 Haworth Hall, Lawrence, KS 66045, USA
| | - Erik A. Lundquist
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, 5049 Haworth Hall, Lawrence, KS 66045, USA
| |
Collapse
|
8
|
van Bommel DM, Toonen RF, Verhage M. Mapping localization of 21 endogenous proteins in the Golgi apparatus of rodent neurons. Sci Rep 2023; 13:2871. [PMID: 36806293 PMCID: PMC9938882 DOI: 10.1038/s41598-023-29998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The Golgi apparatus is the major sorting hub in the secretory pathway and particularly important for protein sorting in neurons. Knowledge about protein localization in Golgi compartments is largely based on work in cell lines. Here, we systematically compared protein localization of 21 endogenous proteins in the Golgi apparatus of mouse neurons using confocal microscopy and line scan analysis. We localized these proteins by measuring the distance relative to the canonical TGN marker TGN38. Based on this, proteins fell into three groups: upstream of, overlapping with or downstream of TGN38. Seven proteins showed complete overlap with TGN38, while proteins downstream of TGN38 were located at varying distances from TGN38. Proteins upstream of TGN38 were localized in between TGN38 and the cis-/medial Golgi markers Giantin and GM130. This localization was consistent with protein function. Our data provide an overview of the relative localization of endogenous proteins in the Golgi of primary mouse neurons.
Collapse
Affiliation(s)
- Danique M. van Bommel
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Ruud F. Toonen
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands. .,Functional Genomics, Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), UMC Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Mizumoto K, Jin Y, Bessereau JL. Synaptogenesis: unmasking molecular mechanisms using Caenorhabditis elegans. Genetics 2023; 223:iyac176. [PMID: 36630525 PMCID: PMC9910414 DOI: 10.1093/genetics/iyac176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/22/2022] [Indexed: 01/13/2023] Open
Abstract
The nematode Caenorhabditis elegans is a research model organism particularly suited to the mechanistic understanding of synapse genesis in the nervous system. Armed with powerful genetics, knowledge of complete connectomics, and modern genomics, studies using C. elegans have unveiled multiple key regulators in the formation of a functional synapse. Importantly, many signaling networks display remarkable conservation throughout animals, underscoring the contributions of C. elegans research to advance the understanding of our brain. In this chapter, we will review up-to-date information of the contribution of C. elegans to the understanding of chemical synapses, from structure to molecules and to synaptic remodeling.
Collapse
Affiliation(s)
- Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Yishi Jin
- Department of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jean-Louis Bessereau
- Univ Lyon, University Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Melis, 69008 Lyon, France
| |
Collapse
|
10
|
Kropp PA, Rogers P, Kelly SE, McWhirter R, Goff WD, Levitan IM, Miller DM, Golden A. Patient-specific variants of NFU1/NFU-1 disrupt cholinergic signaling in a model of multiple mitochondrial dysfunctions syndrome 1. Dis Model Mech 2023; 16:286662. [PMID: 36645076 PMCID: PMC9922734 DOI: 10.1242/dmm.049594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023] Open
Abstract
Neuromuscular dysfunction is a common feature of mitochondrial diseases and frequently presents as ataxia, spasticity and/or dystonia, all of which can severely impact individuals with mitochondrial diseases. Dystonia is one of the most common symptoms of multiple mitochondrial dysfunctions syndrome 1 (MMDS1), a disease associated with mutations in the causative gene (NFU1) that impair iron-sulfur cluster biogenesis. We have generated Caenorhabditis elegans strains that recreated patient-specific point variants in the C. elegans ortholog (nfu-1) that result in allele-specific dysfunction. Each of these mutants, Gly147Arg and Gly166Cys, have altered acetylcholine signaling at neuromuscular junctions, but opposite effects on activity and motility. We found that the Gly147Arg variant was hypersensitive to acetylcholine and that knockdown of acetylcholine release rescued nearly all neuromuscular phenotypes of this variant. In contrast, we found that the Gly166Cys variant caused predominantly postsynaptic acetylcholine hypersensitivity due to an unclear mechanism. These results are important for understanding the neuromuscular conditions of MMDS1 patients and potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Peter A Kropp
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Biology Department, Kenyon College, Gambier, OH 43022, USA
| | - Philippa Rogers
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sydney E Kelly
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca McWhirter
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Willow D Goff
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Biology Department, Colgate University, Hamilton, NY 13346, USA
| | - Ian M Levitan
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA.,Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37235, USA
| | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Yang X, Tu W, Gao X, Zhang Q, Guan J, Zhang J. Functional regulation of syntaxin-1: An underlying mechanism mediating exocytosis in neuroendocrine cells. Front Endocrinol (Lausanne) 2023; 14:1096365. [PMID: 36742381 PMCID: PMC9892835 DOI: 10.3389/fendo.2023.1096365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
The fusion of the secretory vesicle with the plasma membrane requires the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein complexes formed by synaptobrevin, syntaxin-1, and SNAP-25. Within the pathway leading to exocytosis, the transitions between the "open" and "closed" conformations of syntaxin-1 function as a switch for the fusion of vesicles with the plasma membranes; rapid assembly and disassembly of syntaxin-1 clusters on the plasma membrane provide docking and fusion sites for secretory vesicles in neuroendocrine cells; and the fully zippered trans-SNARE complex, which requires the orderly, rapid and accurate binding of syntaxin-1 to other SNARE proteins, play key roles in triggering fusion. All of these reactions that affect exocytosis under physiological conditions are tightly regulated by multiple factors. Here, we review the current evidence for the involvement of syntaxin-1 in the mechanism of neuroendocrine cell exocytosis, discuss the roles of multiple factors such as proteins, lipids, protein kinases, drugs, and toxins in SNARE complex-mediated membrane fusion, and present an overview of syntaxin-1 mutation-associated diseases with a view to developing novel mechanistic therapeutic targets for the treatment of neuroendocrine disorders.
Collapse
Affiliation(s)
- Xinquan Yang
- Anesthesia and Perioperative Medicine laboratory, the Affiliated Lianyungang Hospital of Jiangsu University, Lianyungang, China
| | - Weifeng Tu
- Faculty of Anesthesioloy, Suzhou Hospital Affiliated to Medical School of Nanjing University, Suzhou, China
| | - Xuzhu Gao
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Qi Zhang
- Anesthesia and Perioperative Medicine laboratory, the Affiliated Lianyungang Hospital of Jiangsu University, Lianyungang, China
| | - Jinping Guan
- Anesthesia and Perioperative Medicine laboratory, the Affiliated Lianyungang Hospital of Jiangsu University, Lianyungang, China
| | - Junlong Zhang
- Anesthesia and Perioperative Medicine laboratory, the Affiliated Lianyungang Hospital of Jiangsu University, Lianyungang, China
- *Correspondence: Junlong Zhang,
| |
Collapse
|
12
|
Palfreyman MT, West SE, Jorgensen EM. SNARE Proteins in Synaptic Vesicle Fusion. ADVANCES IN NEUROBIOLOGY 2023; 33:63-118. [PMID: 37615864 DOI: 10.1007/978-3-031-34229-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitters are stored in small membrane-bound vesicles at synapses; a subset of synaptic vesicles is docked at release sites. Fusion of docked vesicles with the plasma membrane releases neurotransmitters. Membrane fusion at synapses, as well as all trafficking steps of the secretory pathway, is mediated by SNARE proteins. The SNAREs are the minimal fusion machinery. They zipper from N-termini to membrane-anchored C-termini to form a 4-helix bundle that forces the apposed membranes to fuse. At synapses, the SNAREs comprise a single helix from syntaxin and synaptobrevin; SNAP-25 contributes the other two helices to complete the bundle. Unc13 mediates synaptic vesicle docking and converts syntaxin into the permissive "open" configuration. The SM protein, Unc18, is required to initiate and proofread SNARE assembly. The SNAREs are then held in a half-zippered state by synaptotagmin and complexin. Calcium removes the synaptotagmin and complexin block, and the SNAREs drive vesicle fusion. After fusion, NSF and alpha-SNAP unwind the SNAREs and thereby recharge the system for further rounds of fusion. In this chapter, we will describe the discovery of the SNAREs, their relevant structural features, models for their function, and the central role of Unc18. In addition, we will touch upon the regulation of SNARE complex formation by Unc13, complexin, and synaptotagmin.
Collapse
Affiliation(s)
- Mark T Palfreyman
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sam E West
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Erik M Jorgensen
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
13
|
Chow CH, Huang M, Sugita S. The Role of Tomosyn in the Regulation of Neurotransmitter Release. ADVANCES IN NEUROBIOLOGY 2023; 33:233-254. [PMID: 37615869 DOI: 10.1007/978-3-031-34229-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Soluble NSF attachment protein receptor (SNARE) proteins play a central role in synaptic vesicle (SV) exocytosis. These proteins include the vesicle-associated SNARE protein (v-SNARE) synaptobrevin and the target membrane-associated SNARE proteins (t-SNAREs) syntaxin and SNAP-25. Together, these proteins drive membrane fusion between synaptic vesicles (SV) and the presynaptic plasma membrane to generate SV exocytosis. In the presynaptic active zone, various proteins may either enhance or inhibit SV exocytosis by acting on the SNAREs. Among the inhibitory proteins, tomosyn, a syntaxin-binding protein, is of particular importance because it plays a critical and evolutionarily conserved role in controlling synaptic transmission. In this chapter, we describe how tomosyn was discovered, how it interacts with SNAREs and other presynaptic regulatory proteins to regulate SV exocytosis and synaptic plasticity, and how its various domains contribute to its synaptic functions.
Collapse
Affiliation(s)
- Chun Hin Chow
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Mengjia Huang
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Shuzo Sugita
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
- Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Wang ZW, Niu L, Riaz S. Regulation of Ryanodine Receptor-Dependent Neurotransmitter Release by AIP, Calstabins, and Presenilins. ADVANCES IN NEUROBIOLOGY 2023; 33:287-304. [PMID: 37615871 DOI: 10.1007/978-3-031-34229-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Ryanodine receptors (RyRs) are Ca2+ release channels located in the endoplasmic reticulum membrane. Presynaptic RyRs play important roles in neurotransmitter release and synaptic plasticity. Recent studies suggest that the proper function of presynaptic RyRs relies on several regulatory proteins, including aryl hydrocarbon receptor-interacting protein, calstabins, and presenilins. Dysfunctions of these regulatory proteins can greatly impact neurotransmitter release and synaptic plasticity by altering the function or expression of RyRs. This chapter aims to describe the interaction between these proteins and RyRs, elucidating their crucial role in regulating synaptic function.
Collapse
Affiliation(s)
- Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Sadaf Riaz
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
15
|
Shahoha M, Cohen R, Ben-Simon Y, Ashery U. cAMP-Dependent Synaptic Plasticity at the Hippocampal Mossy Fiber Terminal. Front Synaptic Neurosci 2022; 14:861215. [PMID: 35444523 PMCID: PMC9013808 DOI: 10.3389/fnsyn.2022.861215] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a crucial second messenger involved in both pre- and postsynaptic plasticity in many neuronal types across species. In the hippocampal mossy fiber (MF) synapse, cAMP mediates presynaptic long-term potentiation and depression. The main cAMP-dependent signaling pathway linked to MF synaptic plasticity acts via the activation of the protein kinase A (PKA) molecular cascade. Accordingly, various downstream putative synaptic PKA target proteins have been linked to cAMP-dependent MF synaptic plasticity, such as synapsin, rabphilin, synaptotagmin-12, RIM1a, tomosyn, and P/Q-type calcium channels. Regulating the expression of some of these proteins alters synaptic release probability and calcium channel clustering, resulting in short- and long-term changes to synaptic efficacy. However, despite decades of research, the exact molecular mechanisms by which cAMP and PKA exert their influences in MF terminals remain largely unknown. Here, we review current knowledge of different cAMP catalysts and potential downstream PKA-dependent molecular cascades, in addition to non-canonical cAMP-dependent but PKA-independent cascades, which might serve as alternative, compensatory or competing pathways to the canonical PKA cascade. Since several other central synapses share a similar form of presynaptic plasticity with the MF, a better description of the molecular mechanisms governing MF plasticity could be key to understanding the relationship between the transcriptional and computational levels across brain regions.
Collapse
Affiliation(s)
- Meishar Shahoha
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ronni Cohen
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yoav Ben-Simon
- Department of Neurophysiology, Vienna Medical University, Vienna, Austria
- *Correspondence: Yoav Ben-Simon,
| | - Uri Ashery
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Uri Ashery,
| |
Collapse
|
16
|
Wang S, Ma C. Neuronal SNARE complex assembly guided by Munc18-1 and Munc13-1. FEBS Open Bio 2022; 12:1939-1957. [PMID: 35278279 PMCID: PMC9623535 DOI: 10.1002/2211-5463.13394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 01/25/2023] Open
Abstract
Neurotransmitter release by Ca2+ -triggered synaptic vesicle exocytosis is essential for information transmission in the nervous system. The soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) syntaxin-1, SNAP-25, and synaptobrevin-2 form the SNARE complex to bring synaptic vesicles and the plasma membranes together and to catalyze membrane fusion. Munc18-1 and Munc13-1 regulate synaptic vesicle priming via orchestrating neuronal SNARE complex assembly. In this review, we summarize recent advances toward the functions and molecular mechanisms of Munc18-1 and Munc13-1 in guiding neuronal SNARE complex assembly, and discuss the functional similarities and differences between Munc18-1 and Munc13-1 in neurons and their homologs in other intracellular membrane trafficking systems.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
17
|
Sauvola CW, Akbergenova Y, Cunningham KL, Aponte-Santiago NA, Littleton JT. The decoy SNARE Tomosyn sets tonic versus phasic release properties and is required for homeostatic synaptic plasticity. eLife 2021; 10:e72841. [PMID: 34713802 PMCID: PMC8612732 DOI: 10.7554/elife.72841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Synaptic vesicle (SV) release probability (Pr) is a key presynaptic determinant of synaptic strength established by cell-intrinsic properties and further refined by plasticity. To characterize mechanisms that generate Pr heterogeneity between distinct neuronal populations, we examined glutamatergic tonic (Ib) and phasic (Is) motoneurons in Drosophila with stereotyped differences in Pr and synaptic plasticity. We found the decoy soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) Tomosyn is differentially expressed between these motoneuron subclasses and contributes to intrinsic differences in their synaptic output. Tomosyn expression enables tonic release in Ib motoneurons by reducing SNARE complex formation and suppressing Pr to generate decreased levels of SV fusion and enhanced resistance to synaptic fatigue. In contrast, phasic release dominates when Tomosyn expression is low, enabling high intrinsic Pr at Is terminals at the expense of sustained release and robust presynaptic potentiation. In addition, loss of Tomosyn disrupts the ability of tonic synapses to undergo presynaptic homeostatic potentiation.
Collapse
Affiliation(s)
- Chad W Sauvola
- Department of Brain and Cognitive Sciences, The Picower Institute of Learning and Memory, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yulia Akbergenova
- Department of Brain and Cognitive Sciences, The Picower Institute of Learning and Memory, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Karen L Cunningham
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | | | - J Troy Littleton
- Department of Brain and Cognitive Sciences, The Picower Institute of Learning and Memory, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
18
|
Sauvola CW, Littleton JT. SNARE Regulatory Proteins in Synaptic Vesicle Fusion and Recycling. Front Mol Neurosci 2021; 14:733138. [PMID: 34421538 PMCID: PMC8377282 DOI: 10.3389/fnmol.2021.733138] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Membrane fusion is a universal feature of eukaryotic protein trafficking and is mediated by the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) family. SNARE proteins embedded in opposing membranes spontaneously assemble to drive membrane fusion and cargo exchange in vitro. Evolution has generated a diverse complement of SNARE regulatory proteins (SRPs) that ensure membrane fusion occurs at the right time and place in vivo. While a core set of SNAREs and SRPs are common to all eukaryotic cells, a specialized set of SRPs within neurons confer additional regulation to synaptic vesicle (SV) fusion. Neuronal communication is characterized by precise spatial and temporal control of SNARE dynamics within presynaptic subdomains specialized for neurotransmitter release. Action potential-elicited Ca2+ influx at these release sites triggers zippering of SNAREs embedded in the SV and plasma membrane to drive bilayer fusion and release of neurotransmitters that activate downstream targets. Here we discuss current models for how SRPs regulate SNARE dynamics and presynaptic output, emphasizing invertebrate genetic findings that advanced our understanding of SRP regulation of SV cycling.
Collapse
Affiliation(s)
- Chad W Sauvola
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
19
|
Synapsin Is Required for Dense Core Vesicle Capture and cAMP-Dependent Neuropeptide Release. J Neurosci 2021; 41:4187-4201. [PMID: 33820857 DOI: 10.1523/jneurosci.2631-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022] Open
Abstract
Release of neuropeptides from dense core vesicles (DCVs) is essential for neuromodulation. Compared with the release of small neurotransmitters, much less is known about the mechanisms and proteins contributing to neuropeptide release. By optogenetics, behavioral analysis, electrophysiology, electron microscopy, and live imaging, we show that synapsin SNN-1 is required for cAMP-dependent neuropeptide release in Caenorhabditis elegans hermaphrodite cholinergic motor neurons. In synapsin mutants, behaviors induced by the photoactivated adenylyl cyclase bPAC, which we previously showed to depend on ACh and neuropeptides (Steuer Costa et al., 2017), are altered as in animals with reduced cAMP. Synapsin mutants have slight alterations in synaptic vesicle (SV) distribution; however, a defect in SV mobilization was apparent after channelrhodopsin-based photostimulation. DCVs were largely affected in snn-1 mutants: DCVs were ∼30% reduced in synaptic terminals, and their contents not released following bPAC stimulation. Imaging axonal DCV trafficking, also in genome-engineered mutants in the serine-9 protein kinase A phosphorylation site, showed that synapsin captures DCVs at synapses, making them available for release. SNN-1 colocalized with immobile, captured DCVs. In synapsin deletion mutants, DCVs were more mobile and less likely to be caught at release sites, and in nonphosphorylatable SNN-1B(S9A) mutants, DCVs traffic less and accumulate, likely by enhanced SNN-1 dependent tethering. Our work establishes synapsin as a key mediator of neuropeptide release.SIGNIFICANCE STATEMENT Little is known about mechanisms that regulate how neuropeptide-containing dense core vesicles (DCVs) traffic along the axon, how neuropeptide release is orchestrated, and where it occurs. We found that one of the longest known synaptic proteins, required for the regulation of synaptic vesicles and their storage in nerve terminals, synapsin, is also essential for neuropeptide release. By electrophysiology, imaging, and electron microscopy in Caenorhabditis elegans, we show that synapsin regulates this process by tethering the DCVs to the cytoskeleton in axonal regions where neuropeptides are to be released. Without synapsin, DCVs cannot be captured at the release sites and, consequently, cannot fuse with the membrane, and neuropeptides are not released. We suggest that synapsin fulfills this role also in vertebrates, including humans.
Collapse
|
20
|
Wang S, Liu Y, Crisman L, Wan C, Miller J, Yu H, Shen J. Genetic evidence for an inhibitory role of tomosyn in insulin-stimulated GLUT4 exocytosis. Traffic 2021; 21:636-646. [PMID: 32851733 DOI: 10.1111/tra.12760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022]
Abstract
Exocytosis is a vesicle fusion process driven by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). A classic exocytic pathway is insulin-stimulated translocation of the glucose transporter type 4 (GLUT4) from intracellular vesicles to the plasma membrane in adipocytes and skeletal muscles. The GLUT4 exocytic pathway plays a central role in maintaining blood glucose homeostasis and is compromised in insulin resistance and type 2 diabetes. A candidate regulator of GLUT4 exocytosis is tomosyn, a soluble protein expressed in adipocytes. Tomosyn directly binds to GLUT4 exocytic SNAREs in vitro but its role in GLUT4 exocytosis was unknown. In this work, we used CRISPR-Cas9 genome editing to delete the two tomosyn-encoding genes in adipocytes. We observed that both basal and insulin-stimulated GLUT4 exocytosis was markedly elevated in the double knockout (DKO) cells. By contrast, adipocyte differentiation and insulin signaling remained intact in the DKO adipocytes. In a reconstituted liposome fusion assay, tomosyn inhibited all the SNARE complexes underlying GLUT4 exocytosis. The inhibitory activity of tomosyn was relieved by NSF and α-SNAP, which act in concert to remove tomosyn from GLUT4 exocytic SNAREs. Together, these studies revealed an inhibitory role for tomosyn in insulin-stimulated GLUT4 exocytosis in adipocytes. We suggest that tomosyn-arrested SNAREs represent a reservoir of fusion capacity that could be harnessed to treat patients with insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Shifeng Wang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA.,Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yinghui Liu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Lauren Crisman
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Jessica Miller
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Haijia Yu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
21
|
Tien CW, Yu B, Huang M, Stepien KP, Sugita K, Xie X, Han L, Monnier PP, Zhen M, Rizo J, Gao S, Sugita S. Open syntaxin overcomes exocytosis defects of diverse mutants in C. elegans. Nat Commun 2020; 11:5516. [PMID: 33139696 PMCID: PMC7606450 DOI: 10.1038/s41467-020-19178-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/01/2020] [Indexed: 11/09/2022] Open
Abstract
Assembly of SNARE complexes that mediate neurotransmitter release requires opening of a ‘closed’ conformation of UNC-64/syntaxin. Rescue of unc-13/Munc13 mutant phenotypes by overexpressed open UNC-64/syntaxin suggested a specific function of UNC-13/Munc13 in opening UNC-64/ syntaxin. Here, we revisit the effects of open unc-64/syntaxin by generating knockin (KI) worms. The KI animals exhibit enhanced spontaneous and evoked exocytosis compared to WT animals. Unexpectedly, the open syntaxin KI partially suppresses exocytosis defects of various mutants, including snt-1/synaptotagmin, unc-2/P/Q/N-type Ca2+ channel alpha-subunit and unc-31/CAPS, in addition to unc-13/Munc13 and unc-10/RIM, and enhanced exocytosis in tom-1/Tomosyn mutants. However, open syntaxin aggravates the defects of unc-18/Munc18 mutants. Correspondingly, open syntaxin partially bypasses the requirement of Munc13 but not Munc18 for liposome fusion. Our results show that facilitating opening of syntaxin enhances exocytosis in a wide range of genetic backgrounds, and may provide a general means to enhance synaptic transmission in normal and disease states. Opening of the UNC-64/syntaxin closed conformation by UNC-13/Munc13 to form the neuronal SNARE complex is critical for neurotransmitter release. Here the authors show that facilitating the opening of syntaxin enhances exocytosis not only in unc-13 nulls as well as in diverse C. elegans mutants.
Collapse
Affiliation(s)
- Chi-Wei Tien
- Division of Fundamental Neurobiology, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada, M5T 2S8.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Bin Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengjia Huang
- Division of Fundamental Neurobiology, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada, M5T 2S8.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Karolina P Stepien
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kyoko Sugita
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada, M5T 2S8
| | - Xiaoyu Xie
- Division of Fundamental Neurobiology, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada, M5T 2S8.,Department of Anesthesiology, Dalian Medical University, Dalian, Liaoning, China
| | - Liping Han
- Department of Anesthesiology, Dalian Medical University, Dalian, Liaoning, China.,Department of Anesthesiology, Dalian Municipal Friendship Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Philippe P Monnier
- Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.,Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada, M5T 2S8.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Mei Zhen
- Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5.,Faculty of Medicine, Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA. .,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA. .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Shuzo Sugita
- Division of Fundamental Neurobiology, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada, M5T 2S8. .,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.
| |
Collapse
|
22
|
Melland H, Carr EM, Gordon SL. Disorders of synaptic vesicle fusion machinery. J Neurochem 2020; 157:130-164. [PMID: 32916768 DOI: 10.1111/jnc.15181] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The revolution in genetic technology has ushered in a new age for our understanding of the underlying causes of neurodevelopmental, neuromuscular and neurodegenerative disorders, revealing that the presynaptic machinery governing synaptic vesicle fusion is compromised in many of these neurological disorders. This builds upon decades of research showing that disturbance to neurotransmitter release via toxins can cause acute neurological dysfunction. In this review, we focus on disorders of synaptic vesicle fusion caused either by toxic insult to the presynapse or alterations to genes encoding the key proteins that control and regulate fusion: the SNARE proteins (synaptobrevin, syntaxin-1 and SNAP-25), Munc18, Munc13, synaptotagmin, complexin, CSPα, α-synuclein, PRRT2 and tomosyn. We discuss the roles of these proteins and the cellular and molecular mechanisms underpinning neurological deficits in these disorders.
Collapse
Affiliation(s)
- Holly Melland
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Elysa M Carr
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Sarah L Gordon
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
23
|
Li L, Liu H, Hall Q, Wang W, Yu Y, Kaplan JM, Hu Z. A Hyperactive Form of unc-13 Enhances Ca 2+ Sensitivity and Synaptic Vesicle Release Probability in C. elegans. Cell Rep 2020; 28:2979-2995.e4. [PMID: 31509756 PMCID: PMC6779330 DOI: 10.1016/j.celrep.2019.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/22/2019] [Accepted: 07/31/2019] [Indexed: 11/26/2022] Open
Abstract
Munc13 proteins play several roles in regulating shortterm synaptic plasticity. However, the underlying molecular mechanisms remain largely unclear. Here we report that C. elegans UNC-13L, a Munc13-1 ortholog, has three domains that inhibit synaptic vesicle (SV) exocytosis. These include the X (sequence between C2A and C1), C1, and C2B domains. Deleting all three inhibitory domains produces a hyperactive UNC-13 (sUNC-13) that exhibits dramatically increased neurotransmitter release, Ca2+ sensitivity of release, and release probability. The vesicular pool in unc-13 mutants rescued by sUNC-13 exhibits a faster synaptic recovery and replenishment rate, demonstrating an important role of sUNC-13 in regulating synaptic plasticity. Analysis of double mutants suggests that sUNC-13 enhances tonic release by increasing the open probability of UNC-64/syntaxin-1A, whereas its effects on evoked release appear to be mediated by additional functions, presumably by further regulating the activity of the assembled soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) complex. Li et al. identify three domains in UNC-13L that inhibit neurotransmitter release. Removal of the three inhibitory domains produces a hyperactive UNC-13 that dramatically increases Ca2+ sensitivity and release probability of vesicle exocytosis by opening syntaxin in a highly efficient manner.
Collapse
Affiliation(s)
- Lei Li
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Haowen Liu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Qi Hall
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Wang
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yi Yu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
24
|
Treinin M, Jin Y. Cholinergic transmission in C. elegans: Functions, diversity, and maturation of ACh-activated ion channels. J Neurochem 2020; 158:1274-1291. [PMID: 32869293 DOI: 10.1111/jnc.15164] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Acetylcholine is an abundant neurotransmitter in all animals. Effects of acetylcholine are excitatory, inhibitory, or modulatory depending on the receptor and cell type. Research using the nematode C. elegans has made ground-breaking contributions to the mechanistic understanding of cholinergic transmission. Powerful genetic screens for behavioral mutants or for responses to pharmacological reagents identified the core cellular machinery for synaptic transmission. Pharmacological reagents that perturb acetylcholine-mediated processes led to the discovery and also uncovered the composition and regulators of acetylcholine-activated channels and receptors. From a combination of electrophysiological and molecular cellular studies, we have gained a profound understanding of cholinergic signaling at the levels of synapses, neural circuits, and animal behaviors. This review will begin with a historical overview, then cover in-depth current knowledge on acetylcholine-activated ionotropic receptors, mechanisms regulating their functional expression and their functions in regulating locomotion.
Collapse
Affiliation(s)
- Millet Treinin
- Department of Medical Neurobiology, Hadassah Medical school - Hebrew University, Jerusalem, Israel
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
25
|
Ching TT, Chen YC, Li G, Liu J, Xu XZS, Hsu AL. Short-term enhancement of motor neuron synaptic exocytosis during early aging extends lifespan in Caenorhabditis elegans. Exp Biol Med (Maywood) 2020; 245:1552-1559. [PMID: 32854519 DOI: 10.1177/1535370220950639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
IMPACT STATEMENT The functional decline of motor activity is a common feature in almost all aging animals that leads to frailty, loss of independence, injury, and even death in the elderly population. Thus, understanding the molecular mechanism that drives the initial stage of this functional decline and developing strategies to increase human healthspan and even lifespan by targeting this process would be of great interests to the field. In this study, we found that by precisely targeting the motor neurons to potentiate its synaptic releases either genetically or pharmacologically, we can not only delay the functional aging at NMJs but also slow the rate of aging at the organismal level. Most importantly, we have demonstrated that a critical window of time, that is the early stage of NMJs functional decline, is required for the beneficial effects. A short-term treatment within this time period is sufficient to extend the animals' lifespan.
Collapse
Affiliation(s)
- Tsui-Ting Ching
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 112, Taiwan
| | - Yen-Chieh Chen
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 112, Taiwan
| | - Guang Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianfeng Liu
- International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - X Z Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ao-Lin Hsu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.,Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei 112, Taiwan.,Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Research Center for Healthy Aging and Institute of New Drug Development, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
26
|
Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiol Rev 2020; 100:103-144. [DOI: 10.1152/physrev.00026.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Chad P. Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Frank Schmitz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| |
Collapse
|
27
|
Larson ER. Plant Tomosyn Is a Negative Regulator of SNARE-Mediated Secretion in Pollen. PLANT PHYSIOLOGY 2019; 181:843-844. [PMID: 31685684 PMCID: PMC6836854 DOI: 10.1104/pp.19.01145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
28
|
Hendi A, Kurashina M, Mizumoto K. Intrinsic and extrinsic mechanisms of synapse formation and specificity in C. elegans. Cell Mol Life Sci 2019; 76:2719-2738. [PMID: 31037336 PMCID: PMC11105629 DOI: 10.1007/s00018-019-03109-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Precise neuronal wiring is critical for the function of the nervous system and is ultimately determined at the level of individual synapses. Neurons integrate various intrinsic and extrinsic cues to form synapses onto their correct targets in a stereotyped manner. In the past decades, the nervous system of nematode (Caenorhabditis elegans) has provided the genetic platform to reveal the genetic and molecular mechanisms of synapse formation and specificity. In this review, we will summarize the recent discoveries in synapse formation and specificity in C. elegans.
Collapse
Affiliation(s)
- Ardalan Hendi
- Department of Zoology, The University of British Columbia, 2406-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mizuki Kurashina
- Department of Zoology, The University of British Columbia, 2406-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kota Mizumoto
- Department of Zoology, The University of British Columbia, 2406-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
29
|
Jiang ZJ, Delaney TL, Zanin MP, Haberberger RV, Pitson SM, Huang J, Alford S, Cologna SM, Keating DJ, Gong LW. Extracellular and intracellular sphingosine-1-phosphate distinctly regulates exocytosis in chromaffin cells. J Neurochem 2019; 149:729-746. [PMID: 30963576 DOI: 10.1111/jnc.14703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/28/2018] [Accepted: 03/27/2019] [Indexed: 01/18/2023]
Abstract
Sphingosine-1-phosphate (S1P) is an essential bioactive sphingosine lipid involved in many neurological disorders. Sphingosine kinase 1 (SphK1), a key enzyme for S1P production, is concentrated in presynaptic terminals. However, the role of S1P/SphK1 signaling in exocytosis remains elusive. By detecting catecholamine release from single vesicles in chromaffin cells, we show that a dominant negative SphK1 (SphK1DN ) reduces the number of amperometric spikes and increases the duration of foot, which reflects release through a fusion pore, implying critical roles for S1P in regulating the rate of exocytosis and fusion pore expansion. Similar phenotypes were observed in chromaffin cells obtained from SphK1 knockout mice compared to those from wild-type mice. In addition, extracellular S1P treatment increased the number of amperometric spikes, and this increase, in turn, was inhibited by a selective S1P3 receptor blocker, suggesting extracellular S1P may regulate the rate of exocytosis via activation of S1P3. Furthermore, intracellular S1P application induced a decrease in foot duration of amperometric spikes in control cells, indicating intracellular S1P may regulate fusion pore expansion during exocytosis. Taken together, our study represents the first demonstration that S1P regulates exocytosis through distinct mechanisms: extracellular S1P may modulate the rate of exocytosis via activation of S1P receptors while intracellular S1P may directly control fusion pore expansion during exocytosis. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Taylor L Delaney
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark P Zanin
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Rainer V Haberberger
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Jian Huang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
30
|
Abstract
Modulation of neurotransmitter exocytosis by activated Gi/o coupled G-protein coupled receptors (GPCRs) is a universal regulatory mechanism used both to avoid overstimulation and to influence circuitry. One of the known modulation mechanisms is the interaction between Gβγ and the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNAREs). There are 5 Gβ and 12 Gγ subunits, but specific Gβγs activated by a given GPCR and the specificity to effectors, such as SNARE, in vivo are not known. Although less studied, Gβγ binding to the exocytic fusion machinery (i.e. SNARE) provides a more direct regulatory mechanism for neurotransmitter release. Here, we review some recent insights in the architecture of the synaptic terminal, modulation of synaptic transmission, and implications of G protein modulation of synaptic transmission in diseases. Numerous presynaptic proteins are involved in the architecture of synaptic terminals, particularly the active zone, and their importance in the regulation of exocytosis is still not completely understood. Further understanding of the Gβγ-SNARE interaction and the architecture and mechanisms of exocytosis may lead to the discovery of novel therapeutic targets to help patients with various disorders such as hypertension, attention-deficit/hyperactivity disorder, post-traumatic stress disorder, and acute/chronic pain.
Collapse
Affiliation(s)
- Yun Young Yim
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States.
| |
Collapse
|
31
|
Blazie SM, Jin Y. Pharming for Genes in Neurotransmission: Combining Chemical and Genetic Approaches in Caenorhabditis elegans. ACS Chem Neurosci 2018; 9:1963-1974. [PMID: 29432681 DOI: 10.1021/acschemneuro.7b00509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Synaptic transmission is central to nervous system function. Chemical and genetic screens are valuable approaches to probe synaptic mechanisms in living animals. The nematode Caenorhabditis elegans is a prime system to apply these methods to discover genes and dissect the cellular pathways underlying neurotransmission. Here, we review key approaches to understand neurotransmission and the action of psychiatric drugs in C. elegans. We start with early studies on cholinergic excitatory signaling at the neuromuscular junction, and move into mechanisms mediated by biogenic amines. Finally, we discuss emerging work toward understanding the mechanisms driving synaptic plasticity with a focus on regulation of protein translation.
Collapse
Affiliation(s)
- Stephen M. Blazie
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
32
|
Madera-Salcedo IK, Danelli L, Tiwari N, Dema B, Pacreau E, Vibhushan S, Birnbaum J, Agabriel C, Liabeuf V, Klingebiel C, Menasche G, Macias-Silva M, Benhamou M, Charles N, González-Espinosa C, Vitte J, Blank U. Tomosyn functions as a PKCδ-regulated fusion clamp in mast cell degranulation. Sci Signal 2018; 11:11/537/eaan4350. [DOI: 10.1126/scisignal.aan4350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Genetic dissection of neuropeptide cell biology at high and low activity in a defined sensory neuron. Proc Natl Acad Sci U S A 2018; 115:E6890-E6899. [PMID: 29959203 PMCID: PMC6055185 DOI: 10.1073/pnas.1714610115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuropeptides are ubiquitous modulators of behavior and physiology. They are packaged in specialized secretory organelles called dense core vesicles (DCVs) that are released upon neural stimulation. Whereas local recycling of synaptic vesicles has been investigated intensively, there are few studies on recycling of DCV proteins. We set up a paradigm to study DCVs in a neuron whose activity we can control. We validate our model by confirming many previous observations on DCV cell biology. We identify a set of genes involved in recycling of DCV proteins. We also find evidence that different mechanisms of DCV priming and exocytosis may operate at high and low neural activity. Neuropeptides are ubiquitous modulators of behavior and physiology. They are packaged in specialized secretory organelles called dense core vesicles (DCVs) that are released upon neural stimulation. Unlike synaptic vesicles, which can be recycled and refilled close to release sites, DCVs must be replenished by de novo synthesis in the cell body. Here, we dissect DCV cell biology in vivo in a Caenorhabditis elegans sensory neuron whose tonic activity we can control using a natural stimulus. We express fluorescently tagged neuropeptides in the neuron and define parameters that describe their subcellular distribution. We measure these parameters at high and low neural activity in 187 mutants defective in proteins implicated in membrane traffic, neuroendocrine secretion, and neuronal or synaptic activity. Using unsupervised hierarchical clustering methods, we analyze these data and identify 62 groups of genes with similar mutant phenotypes. We explore the function of a subset of these groups. We recapitulate many previous findings, validating our paradigm. We uncover a large battery of proteins involved in recycling DCV membrane proteins, something hitherto poorly explored. We show that the unfolded protein response promotes DCV production, which may contribute to intertissue communication of stress. We also find evidence that different mechanisms of priming and exocytosis may operate at high and low neural activity. Our work provides a defined framework to study DCV biology at different neural activity levels.
Collapse
|
34
|
Somasundaram A, Taraska JW. Local protein dynamics during microvesicle exocytosis in neuroendocrine cells. Mol Biol Cell 2018; 29:1891-1903. [PMID: 29874123 PMCID: PMC6085826 DOI: 10.1091/mbc.e17-12-0716] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calcium-triggered exocytosis is key to many physiological processes, including neurotransmitter and hormone release by neurons and endocrine cells. Dozens of proteins regulate exocytosis, yet the temporal and spatial dynamics of these factors during vesicle fusion remain unclear. Here we use total internal reflection fluorescence microscopy to visualize local protein dynamics at single sites of exocytosis of small synaptic-like microvesicles in live cultured neuroendocrine PC12 cells. We employ two-color imaging to simultaneously observe membrane fusion (using vesicular acetylcholine ACh transporter tagged to pHluorin) and the dynamics of associated proteins at the moments surrounding exocytosis. Our experiments show that many proteins, including the SNAREs syntaxin1 and VAMP2, the SNARE modulator tomosyn, and Rab proteins, are preclustered at fusion sites and rapidly lost at fusion. The ATPase N-ethylmaleimide–sensitive factor is locally recruited at fusion. Interestingly, the endocytic Bin-Amphiphysin-Rvs domain–containing proteins amphiphysin1, syndapin2, and endophilins are dynamically recruited to fusion sites and slow the loss of vesicle membrane-bound cargo from fusion sites. A similar effect on vesicle membrane protein dynamics was seen with the overexpression of the GTPases dynamin1 and dynamin2. These results suggest that proteins involved in classical clathrin-mediated endocytosis can regulate exocytosis of synaptic-like microvesicles. Our findings provide insights into the dynamics, assembly, and mechanistic roles of many key factors of exocytosis and endocytosis at single sites of microvesicle fusion in live cells.
Collapse
Affiliation(s)
- Agila Somasundaram
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
35
|
SNT-1 Functions as the Ca 2+ Sensor for Tonic and Evoked Neurotransmitter Release in Caenorhabditis Elegans. J Neurosci 2018; 38:5313-5324. [PMID: 29760174 DOI: 10.1523/jneurosci.3097-17.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 12/23/2022] Open
Abstract
Synaptotagmin-1 (Syt1) binds Ca2+ through its tandem C2 domains (C2A and C2B) and triggers Ca2+-dependent neurotransmitter release. Here, we show that snt-1, the homolog of mammalian Syt1, functions as the Ca2+ sensor for both tonic and evoked neurotransmitter release at the Caenorhabditis elegans neuromuscular junction. Mutations that disrupt Ca2+ binding in double C2 domains of SNT-1 significantly impaired tonic release, whereas disrupting Ca2+ binding in a single C2 domain had no effect, indicating that the Ca2+ binding of the two C2 domains is functionally redundant for tonic release. Stimulus-evoked release was significantly reduced in snt-1 mutants, with prolonged release latency as well as faster rise and decay kinetics. Unlike tonic release, evoked release was triggered by Ca2+ binding solely to the C2B domain. Moreover, we showed that SNT-1 plays an essential role in the priming process in different subpopulations of synaptic vesicles with tight or loose coupling to Ca2+ entry.SIGNIFICANCE STATEMENT We showed that SNT-1 in Caenorhabditis elegans regulates evoked neurotransmitter release through Ca2+ binding to its C2B domain in a similar way to Syt1 in the mouse CNS and the fly neuromuscular junction. However, the largely decreased tonic release in snt-1 mutants argues SNT-1 has a clamping function. Indeed, Ca2+-binding mutations in the C2 domains in SNT-1 significantly reduced the frequency of the miniature EPSC, indicating that SNT-1 also acts as a Ca2+ sensor for tonic release. Therefore, revealing the differential mechanisms between invertebrates and vertebrates will provide significant insights into our understanding how synaptic vesicle fusion is regulated.
Collapse
|
36
|
Calahorro F, Izquierdo PG. The presynaptic machinery at the synapse of C. elegans. INVERTEBRATE NEUROSCIENCE : IN 2018; 18:4. [PMID: 29532181 PMCID: PMC5851683 DOI: 10.1007/s10158-018-0207-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/22/2018] [Indexed: 11/17/2022]
Abstract
Synapses are specialized contact sites that mediate information flow between neurons and their targets. Important physical interactions across the synapse are mediated by synaptic adhesion molecules. These adhesions regulate formation of synapses during development and play a role during mature synaptic function. Importantly, genes regulating synaptogenesis and axon regeneration are conserved across the animal phyla. Genetic screens in the nematode Caenorhabditis elegans have identified a number of molecules required for synapse patterning and assembly. C. elegans is able to survive even with its neuronal function severely compromised. This is in comparison with Drosophila and mice where increased complexity makes them less tolerant to impaired function. Although this fact may reflect differences in the function of the homologous proteins in the synapses between these organisms, the most likely interpretation is that many of these components are equally important, but not absolutely essential, for synaptic transmission to support the relatively undemanding life style of laboratory maintained C. elegans. Here, we review research on the major group of synaptic proteins, involved in the presynaptic machinery in C. elegans, showing a strong conservation between higher organisms and highlight how C. elegans can be used as an informative tool for dissecting synaptic components, based on a simple nervous system organization.
Collapse
Affiliation(s)
- Fernando Calahorro
- Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton, SO17 1BJ, UK.
| | - Patricia G Izquierdo
- Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton, SO17 1BJ, UK
| |
Collapse
|
37
|
Systematic Functional Characterization of Human 21st Chromosome Orthologs in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2018; 8:967-979. [PMID: 29367452 PMCID: PMC5844316 DOI: 10.1534/g3.118.200019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Individuals with Down syndrome have neurological and muscle impairments due to an additional copy of the human 21st chromosome (HSA21). Only a few of ∼200 HSA21 genes encoding proteins have been linked to specific Down syndrome phenotypes, while the remainder are understudied. To identify poorly characterized HSA21 genes required for nervous system function, we studied behavioral phenotypes caused by loss-of-function mutations in conserved HSA21 orthologs in the nematode Caenorhabditis elegans. We identified 10 HSA21 orthologs that are required for neuromuscular behaviors: cle-1 (COL18A1), cysl-2 (CBS), dnsn-1 (DONSON), eva-1 (EVA1C), mtq-2 (N6ATM1), ncam-1 (NCAM2), pad-2 (POFUT2), pdxk-1 (PDXK), rnt-1 (RUNX1), and unc-26 (SYNJ1). We also found that three of these genes are required for normal release of the neurotransmitter acetylcholine. This includes a known synaptic gene unc-26 (SYNJ1), as well as uncharacterized genes pdxk-1 (PDXK) and mtq-2 (N6ATM1). As the first systematic functional analysis of HSA21 orthologs, this study may serve as a platform to understand genes that underlie phenotypes associated with Down syndrome.
Collapse
|
38
|
In Vivo Analysis of a Gain-of-Function Mutation Confirms Unc18/Munc18's Role in Priming. J Neurosci 2018; 38:1055-1057. [PMID: 29386300 DOI: 10.1523/jneurosci.3068-17.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 11/21/2022] Open
|
39
|
Saldate JJ, Shiau J, Cazares VA, Stuenkel EL. The ubiquitin-proteasome system functionally links neuronal Tomosyn-1 to dendritic morphology. J Biol Chem 2017; 293:2232-2246. [PMID: 29269412 DOI: 10.1074/jbc.m117.815514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/02/2017] [Indexed: 12/29/2022] Open
Abstract
Altering the expression of Tomosyn-1 (Tomo-1), a soluble, R-SNARE domain-containing protein, significantly affects behavior in mice, Drosophila, and Caenorhabditis elegans Yet, the mechanisms that modulate Tomo-1 expression and its regulatory activity remain poorly defined. Here, we found that Tomo-1 expression levels influence postsynaptic spine density. Tomo-1 overexpression increased dendritic spine density, whereas Tomo-1 knockdown (KD) decreased spine density. These findings identified a novel action of Tomo-1 on dendritic spines, which is unique because it occurs independently of Tomo-1's C-terminal R-SNARE domain. We also demonstrated that the ubiquitin-proteasome system (UPS), which is known to influence synaptic strength, dynamically regulates Tomo-1 protein levels. Immunoprecipitated and affinity-purified Tomo-1 from cultured rat hippocampal neurons was ubiquitinated, and the levels of ubiquitinated Tomo-1 dramatically increased upon pharmacological proteasome blockade. Moreover, Tomo-1 ubiquitination appeared to be mediated through an interaction with the E3 ubiquitin ligase HRD1, as immunoprecipitation of Tomo-1 from neurons co-precipitated HRD1, and this interaction increases upon proteasome inhibition. Further, in vitro reactions indicated direct, HRD1 concentration-dependent Tomo-1 ubiquitination. We also noted that the UPS regulates both Tomo-1 expression and functional output, as HRD1 KD in hippocampal neurons increased Tomo-1 protein level and dendritic spine density. Notably, the effect of HRD1 KD on spine density was mitigated by additional KD of Tomo-1, indicating a direct HRD1/Tomo-1 effector relationship. In summary, our results indicate that the UPS is likely to participate in tuning synaptic efficacy and spine dynamics by precise regulation of neuronal Tomo-1 levels.
Collapse
Affiliation(s)
| | - Jason Shiau
- the Department of Molecular and Integrative Physiology, Medical School, University of Michigan, Ann Arbor, Michigan 48109-5624
| | - Victor A Cazares
- the Department of Molecular and Integrative Physiology, Medical School, University of Michigan, Ann Arbor, Michigan 48109-5624
| | - Edward L Stuenkel
- From the Neuroscience Graduate Program and .,the Department of Molecular and Integrative Physiology, Medical School, University of Michigan, Ann Arbor, Michigan 48109-5624
| |
Collapse
|
40
|
Genome-wide DNA methylation changes associated with olfactory learning and memory in Apis mellifera. Sci Rep 2017; 7:17017. [PMID: 29208987 PMCID: PMC5717273 DOI: 10.1038/s41598-017-17046-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022] Open
Abstract
The honeybee is a model organism for studying learning and memory formation and its underlying molecular mechanisms. While DNA methylation is well studied in caste differentiation, its role in learning and memory is not clear in honeybees. Here, we analyzed genome-wide DNA methylation changes during olfactory learning and memory process in A. mellifera using whole genome bisulfite sequencing (WGBS) method. A total of 853 significantly differentially methylated regions (DMRs) and 963 differentially methylated genes (DMGs) were identified. We discovered that 440 DMRs of 648 genes were hypermethylated and 274 DMRs of 336 genes were hypomethylated in trained group compared to untrained group. Of these DMGs, many are critical genes involved in learning and memory, such as Creb, GABABR and Ip3k, indicating extensive involvement of DNA methylation in honeybee olfactory learning and memory process. Furthermore, key enzymes for histone methylation, RNA editing and miRNA processing also showed methylation changes during this process, implying that DNA methylation can affect learning and memory of honeybees by regulating other epigenetic modification processes.
Collapse
|
41
|
Tyson T, Senchuk M, Cooper JF, George S, Van Raamsdonk JM, Brundin P. Novel animal model defines genetic contributions for neuron-to-neuron transfer of α-synuclein. Sci Rep 2017; 7:7506. [PMID: 28790319 PMCID: PMC5548897 DOI: 10.1038/s41598-017-07383-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 06/22/2017] [Indexed: 12/27/2022] Open
Abstract
Cell-to-cell spreading of misfolded α-synuclein (α-syn) is suggested to contribute to the progression of neuropathology in Parkinson’s disease (PD). Compelling evidence supports the hypothesis that misfolded α-syn transmits from neuron-to-neuron and seeds aggregation of the protein in the recipient cells. Furthermore, α-syn frequently appears to propagate in the brains of PD patients following a stereotypic pattern consistent with progressive spreading along anatomical pathways. We have generated a C. elegans model that mirrors this progression and allows us to monitor α-syn neuron-to-neuron transmission in a live animal over its lifespan. We found that modulation of autophagy or exo/endocytosis, affects α-syn transfer. Furthermore, we demonstrate that silencing C. elegans orthologs of PD-related genes also increases the accumulation of α-syn. This novel worm model is ideal for screening molecules and genes to identify those that modulate prion-like spreading of α-syn in order to target novel strategies for disease modification in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Trevor Tyson
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA.
| | - Megan Senchuk
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Jason F Cooper
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Sonia George
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Jeremy M Van Raamsdonk
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
42
|
UNC-18 and Tomosyn Antagonistically Control Synaptic Vesicle Priming Downstream of UNC-13 in Caenorhabditis elegans. J Neurosci 2017; 37:8797-8815. [PMID: 28821673 DOI: 10.1523/jneurosci.0338-17.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/21/2017] [Accepted: 08/03/2017] [Indexed: 11/21/2022] Open
Abstract
Munc18-1/UNC-18 is believed to prime SNARE-mediated membrane fusion, yet the underlying mechanisms remain enigmatic. Here, we examine how potential gain-of-function mutations of Munc18-1/UNC-18 affect locomotory behavior and synaptic transmission, and how Munc18-1-mediated priming is related to Munc13-1/UNC-13 and Tomosyn/TOM-1, positive and negative SNARE regulators, respectively. We show that a Munc18-1(P335A)/UNC-18(P334A) mutation leads to significantly increased locomotory activity and acetylcholine release in Caenorhabditis elegans, as well as enhanced synaptic neurotransmission in cultured mammalian neurons. Importantly, similar to tom-1 null mutants, unc-18(P334A) mutants partially bypass the requirement of UNC-13. Moreover, unc-18(P334A) and tom-1 null mutations confer a strong synergy in suppressing the phenotypes of unc-13 mutants. Through biochemical experiments, we demonstrate that Munc18-1(P335A) exhibits enhanced activity in SNARE complex formation as well as in binding to the preformed SNARE complex, and partially bypasses the Munc13-1 requirement in liposome fusion assays. Our results indicate that Munc18-1/UNC-18 primes vesicle fusion downstream of Munc13-1/UNC-13 by templating SNARE complex assembly and acts antagonistically with Tomosyn/TOM-1.SIGNIFICANCE STATEMENT At presynaptic sites, SNARE-mediated membrane fusion is tightly regulated by several key proteins including Munc18/UNC-18, Munc13/UNC-13, and Tomosyn/TOM-1. However, how these proteins interact with each other to achieve the precise regulation of neurotransmitter release remains largely unclear. Using Caenorhabditis elegans as an in vivo model, we found that a gain-of-function mutant of UNC-18 increases locomotory activity and synaptic acetylcholine release, that it partially bypasses the requirement of UNC-13 for release, and that this bypass is synergistically augmented by the lack of TOM-1. We also elucidated the biochemical basis for the gain-of-function caused by this mutation. Thus, our study provides novel mechanistic insights into how Munc18/UNC-18 primes synaptic vesicle release and how this protein interacts functionally with Munc13/UNC-13 and Tomosyn/TOM-1.
Collapse
|
43
|
Geerts CJ, Mancini R, Chen N, Koopmans FTW, Li KW, Smit AB, van Weering JRT, Verhage M, Groffen AJA. Tomosyn associates with secretory vesicles in neurons through its N- and C-terminal domains. PLoS One 2017; 12:e0180912. [PMID: 28746398 PMCID: PMC5529015 DOI: 10.1371/journal.pone.0180912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/22/2017] [Indexed: 02/03/2023] Open
Abstract
The secretory pathway in neurons requires efficient targeting of cargos and regulatory proteins to their release sites. Tomosyn contributes to synapse function by regulating synaptic vesicle (SV) and dense-core vesicle (DCV) secretion. While there is large support for the presynaptic accumulation of tomosyn in fixed preparations, alternative subcellular locations have been suggested. Here we studied the dynamic distribution of tomosyn-1 (Stxbp5) and tomosyn-2 (Stxbp5l) in mouse hippocampal neurons and observed a mixed diffuse and punctate localization pattern of both isoforms. Tomosyn-1 accumulations were present in axons and dendrites. As expected, tomosyn-1 was expressed in about 75% of the presynaptic terminals. Interestingly, also bidirectional moving tomosyn-1 and -2 puncta were observed. Despite the lack of a membrane anchor these puncta co-migrated with synapsin and neuropeptide Y, markers for respectively SVs and DCVs. Genetic blockade of two known tomosyn interactions with synaptotagmin-1 and its cognate SNAREs did not abolish its vesicular co-migration, suggesting an interplay of protein interactions mediated by the WD40 and SNARE domains. We hypothesize that the vesicle-binding properties of tomosyns may control the delivery, pan-synaptic sharing and secretion of neuronal signaling molecules, exceeding its canonical role at the plasma membrane.
Collapse
Affiliation(s)
- Cornelia J. Geerts
- Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Roberta Mancini
- Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Ning Chen
- Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Frank T. W. Koopmans
- Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Ka Wan Li
- Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - August B. Smit
- Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | | | - Matthijs Verhage
- Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
- Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands
| | - Alexander J. A. Groffen
- Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
- Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Dynamic Partitioning of Synaptic Vesicle Pools by the SNARE-Binding Protein Tomosyn. J Neurosci 2017; 36:11208-11222. [PMID: 27807164 DOI: 10.1523/jneurosci.1297-16.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022] Open
Abstract
Neural networks engaged in high-frequency activity rely on sustained synaptic vesicle recycling and coordinated recruitment from functionally distinct synaptic vesicle (SV) pools. However, the molecular pathways matching neural activity to SV dynamics and release requirements remain unclear. Here we identify unique roles of SNARE-binding Tomosyn1 (Tomo1) proteins as activity-dependent substrates that regulate dynamics of SV pool partitioning at rat hippocampal synapses. Our analysis is based on monitoring changes in distinct functionally defined SV pools via V-Glut1-pHluorin fluorescence in cultured hippocampal neurons in response to alterations in presynaptic protein expression. Specifically, we find knockdown of Tomo1 facilitates release efficacy from the Readily Releasable Pool (RRP), and regulates SV distribution to the Total Recycling Pool (TRP), which is matched by a decrease in the SV Resting Pool. Notably, these effects were reversed by Tomo1 rescue and overexpression. Further, we identify that these actions of Tomo1 are regulated via activity-dependent phosphorylation by cyclin-dependent kinase 5 (Cdk5). Assessment of molecular interactions that may contribute to these actions identified Tomo1 interaction with the GTP-bound state of Rab3A, an SV GTPase involved in SV targeting and presynaptic membrane tethering. In addition, Tomo1 via Rab3A-GTP was also observed to interact with Synapsin 1a/b cytoskeletal interacting proteins. Finally, our data indicate that Tomo1 regulation of SV pool sizes serves to adapt presynaptic neurotransmitter release to chronic silencing of network activity. Overall, the results establish Tomo1 proteins as central mediators in neural activity-dependent changes in SV distribution among SV pools. SIGNIFICANCE STATEMENT Although information transfer at central synapses via sustained high-frequency neural activity requires coordinated synaptic vesicle (SV) recycling, the mechanism(s) by which synapses sense and dynamically modify SV pools to match network demands remains poorly defined. To advance understanding, we quantified SV pool sizes and their sensitivity to neural activity while altering Tomo1 expression, a putative regulator of the presynaptic Readily Releasable Pool. Remarkably, we find Tomo1 actions to extend beyond the Readily Releasable Pool to mediate the Total Recycling Pool and SV Resting Pool distribution, and this action is sensitive to neural activity through Cdk5 phosphorylation of Tomo1. Moreover, Tomo1 appears to exert these actions through interaction with Rab3A-GTP and synapsin proteins. Together, our results argue that Tomo1 is a central mediator of SV availability for neurotransmission.
Collapse
|
45
|
Kautu BB, Phillips J, Steele K, Mengarelli MS, Nord EA. A Behavioral Survey of the Effects of Kavalactones on Caenorhabditis elegans Neuromuscular Transmission. J Exp Neurosci 2017; 11:1179069517705384. [PMID: 28615969 PMCID: PMC5462554 DOI: 10.1177/1179069517705384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/23/2017] [Indexed: 12/16/2022] Open
Abstract
Kava is a plant root extract that is widely consumed by Pacific Islanders. Kava contains a class of lactone compounds called kavalactones. The sedative and anxiolytic effects of kava are likely attributed to the efficacies of kavalactones on the nervous system. Although some studies have implicated the potencies of certain kavalactone species on γ-aminobutyric acid transmission, evidence supporting the action of kavalactones on the eukaryotic neuromuscular junction (NMJ) and acetylcholine (ACh) transmission is scant. Here, we used behavioral assays to demonstrate the effects of kavalactones at the Caenorhabditis elegans NMJ. Our results suggest that kavalactones disrupt the inhibitory-excitatory balance at the NMJ. Such perturbation of NMJ activity is likely due to excess or prolonged ACh transmission. In addition, we found that kavain, a major constituent of kava, induced worm paralysis but not convulsions. Hence, the modulatory action of kavain could be distinct from the other kavalactone species.
Collapse
Affiliation(s)
| | | | - Kellie Steele
- Department of Biology, Greenville College, Greenville, IL, USA
| | | | - Eric A Nord
- Department of Biology, Greenville College, Greenville, IL, USA
| |
Collapse
|
46
|
Camacho M, Basu J, Trimbuch T, Chang S, Pulido-Lozano C, Chang SS, Duluvova I, Abo-Rady M, Rizo J, Rosenmund C. Heterodimerization of Munc13 C 2A domain with RIM regulates synaptic vesicle docking and priming. Nat Commun 2017; 8:15293. [PMID: 28489077 PMCID: PMC5436228 DOI: 10.1038/ncomms15293] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 03/13/2017] [Indexed: 11/28/2022] Open
Abstract
The presynaptic active zone protein Munc13 is essential for neurotransmitter release, playing key roles in vesicle docking and priming. Mechanistically, it is thought that the C2A domain of Munc13 inhibits the priming function by homodimerization, and that RIM disrupts the autoinhibitory homodimerization forming monomeric priming-competent Munc13. However, it is unclear whether the C2A domain mediates other Munc13 functions in addition to this inactivation–activation switch. Here, we utilize mutations that modulate the homodimerization and heterodimerization states to define additional roles of the Munc13 C2A domain. Using electron microscopy and electrophysiology in hippocampal cultures, we show that the C2A domain is critical for additional steps of vesicular release, including vesicle docking. Optimal vesicle docking and priming is only possible when Munc13 heterodimerizes with RIM via its C2A domain. Beyond being a switching module, our data suggest that the Munc13-RIM heterodimer is an active component of the vesicle docking, priming and release complex. The interaction between RIM and the C2A domain of Munc13 is known to be required for synaptic vesicle priming. Here the authors show new implications of the C2A domain of Munc13, through its dynamic interaction with RIM, in orchestrating a wide range of modulatory operations that shape vesicle docking, priming and neurotransmitter release.
Collapse
Affiliation(s)
- Marcial Camacho
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jayeeta Basu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Thorsten Trimbuch
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Shuwen Chang
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Cristina Pulido-Lozano
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Shwu-Shin Chang
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Irina Duluvova
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Masin Abo-Rady
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Josep Rizo
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
47
|
Steuer Costa W, Yu SC, Liewald JF, Gottschalk A. Fast cAMP Modulation of Neurotransmission via Neuropeptide Signals and Vesicle Loading. Curr Biol 2017; 27:495-507. [PMID: 28162892 DOI: 10.1016/j.cub.2016.12.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/06/2016] [Accepted: 12/27/2016] [Indexed: 02/02/2023]
Abstract
Cyclic AMP (cAMP) signaling augments synaptic transmission, but because many targets of cAMP and protein kinase A (PKA) may be involved, mechanisms underlying this pathway remain unclear. To probe this mechanism, we used optogenetic stimulation of cAMP signaling by Beggiatoa-photoactivated adenylyl cyclase (bPAC) in Caenorhabditis elegans motor neurons. Behavioral, electron microscopy (EM), and electrophysiology analyses revealed cAMP effects on both the rate and on quantal size of transmitter release and led to the identification of a neuropeptidergic pathway affecting quantal size. cAMP enhanced synaptic vesicle (SV) fusion by increasing mobilization and docking/priming. cAMP further evoked dense core vesicle (DCV) release of neuropeptides, in contrast to channelrhodopsin (ChR2) stimulation. cAMP-evoked DCV release required UNC-31/Ca2+-dependent activator protein for secretion (CAPS). Thus, DCVs accumulated in unc-31 mutant synapses. bPAC-induced neuropeptide signaling acts presynaptically to enhance vAChT-dependent SV loading with acetylcholine, thus causing increased miniature postsynaptic current amplitudes (mPSCs) and significantly enlarged SVs.
Collapse
Affiliation(s)
- Wagner Steuer Costa
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Szi-Chieh Yu
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Jana F Liewald
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany.
| |
Collapse
|
48
|
Miller-Fleming TW, Petersen SC, Manning L, Matthewman C, Gornet M, Beers A, Hori S, Mitani S, Bianchi L, Richmond J, Miller DM. The DEG/ENaC cation channel protein UNC-8 drives activity-dependent synapse removal in remodeling GABAergic neurons. eLife 2016; 5. [PMID: 27403890 PMCID: PMC4980115 DOI: 10.7554/elife.14599] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
Genetic programming and neural activity drive synaptic remodeling in developing neural circuits, but the molecular components that link these pathways are poorly understood. Here we show that the C. elegans Degenerin/Epithelial Sodium Channel (DEG/ENaC) protein, UNC-8, is transcriptionally controlled to function as a trigger in an activity-dependent mechanism that removes synapses in remodeling GABAergic neurons. UNC-8 cation channel activity promotes disassembly of presynaptic domains in DD type GABA neurons, but not in VD class GABA neurons where unc-8 expression is blocked by the COUP/TF transcription factor, UNC-55. We propose that the depolarizing effect of UNC-8-dependent sodium import elevates intracellular calcium in a positive feedback loop involving the voltage-gated calcium channel UNC-2 and the calcium-activated phosphatase TAX-6/calcineurin to initiate a caspase-dependent mechanism that disassembles the presynaptic apparatus. Thus, UNC-8 serves as a link between genetic and activity-dependent pathways that function together to promote the elimination of GABA synapses in remodeling neurons. DOI:http://dx.doi.org/10.7554/eLife.14599.001 The brain contains billions of nerve cells, or neurons, that communicate with one another through connections called synapses. As the brain develops, these circuits are extensively modified as new synapses are created and others are removed. Neurological disorders may emerge if these processes are not regulated correctly. Identifying the biological pathways that control the addition and removal of synapses could therefore provide new insights into how to treat human brain diseases. To communicate across a synapse, the signaling neuron releases chemicals called neurotransmitters that alter the activity of the receiving neuron. Some neurotransmitters, such as GABA, inhibit the activity of the receiving neuron. The activity of a neuron – and hence how often it releases neurotransmitters – depends on different ions moving into and out of the neuron through proteins called ion channels that are embedded in the cell membrane. For example, the movement of calcium ions into the neuron can trigger the release of neurotransmitters. The roundworm Caenorhabditis elegans is often used as a model organism to study how the brain develops. During development, the worm nervous system eliminates synapses that release GABA and reassembles them at new locations. However, the nervous system does not eliminate these synapses at random. Miller-Fleming, Petersen et al. now show that a C. elegans protein called UNC-8 is responsible for this effect. UNC-8 forms part of an ion channel that allows sodium ions to enter the neuron and is selectively produced in GABA neurons that are destined for remodeling. Miller-Fleming, Petersen et al. found that inside GABA-releasing neurons, calcium ions stimulate an enzyme called calcineurin that may in turn activate UNC-8. Sodium ions then enter the neuron through UNC-8 channels. This boosts the activity of the calcium ion channels, which further increases how many calcium ions enter the cell. Ultimately, the amount of calcium inside the neuron becomes high enough to activate an additional pathway that eliminates the synapse. This downstream pathway involves components of a cell-killing (or “apoptotic”) mechanism that is repurposed in this case to remove the GABA release apparatus at the synapse. Other proteins are likely to help UNC-8 sense the activity of neurons and destroy synapses in response. Further work is required to investigate these additional components and to determine how they work with UNC-8 to remove synapses in the nervous system during development. DOI:http://dx.doi.org/10.7554/eLife.14599.002
Collapse
Affiliation(s)
| | - Sarah C Petersen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Laura Manning
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
| | - Cristina Matthewman
- Department of Physiology and Biophysics, University of Miami, Miami, United States
| | - Megan Gornet
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Allison Beers
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Sayaka Hori
- Department of Physiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Laura Bianchi
- Department of Physiology and Biophysics, University of Miami, Miami, United States
| | - Janet Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
| | - David M Miller
- Neuroscience Program, Vanderbilt University, Nashville, United States.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| |
Collapse
|
49
|
Wragg RT, Gouzer G, Bai J, Arianna G, Ryan TA, Dittman JS. Synaptic activity regulates the abundance and binding of complexin. Biophys J 2016; 108:1318-1329. [PMID: 25809246 DOI: 10.1016/j.bpj.2014.12.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/16/2014] [Accepted: 12/29/2014] [Indexed: 02/03/2023] Open
Abstract
Nervous system function relies on precise chemical communication between neurons at specialized junctions known as synapses. Complexin (CPX) is one of a small number of cytoplasmic proteins that are indispensable in controlling neurotransmitter release through SNARE and synaptic vesicle interactions. However, the mechanisms that recruit and stabilize CPX are poorly understood. The mobility of CPX tagged with photoactivatable green fluorescent protein (pGFP) was quantified in vivo using Caenorhabditis elegans. Although pGFP escaped the synapse within seconds, CPX-pGFP displayed both fast and slow decay components, requiring minutes for complete exchange of the synaptic pool. The longer synaptic residence time of CPX arose from both synaptic vesicle and SNARE interactions, and surprisingly, CPX mobility depended on synaptic activity. Moreover, mouse CPX-GFP reversibly dispersed out of hippocampal presynaptic terminals during stimulation, and blockade of vesicle fusion prevented CPX dispersion. Hence, synaptic CPX can rapidly redistribute and this exchange is influenced by neuronal activity, potentially contributing to use-dependent plasticity.
Collapse
Affiliation(s)
- Rachel T Wragg
- Department of Biochemistry, Weill Cornell Medical College, New York, New York
| | - Géraldine Gouzer
- Department of Biochemistry, Weill Cornell Medical College, New York, New York
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Gianluca Arianna
- Department of Biochemistry, Weill Cornell Medical College, New York, New York
| | - Timothy A Ryan
- Department of Biochemistry, Weill Cornell Medical College, New York, New York
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
50
|
Buckmaster PS, Yamawaki R, Thind K. More Docked Vesicles and Larger Active Zones at Basket Cell-to-Granule Cell Synapses in a Rat Model of Temporal Lobe Epilepsy. J Neurosci 2016; 36:3295-308. [PMID: 26985038 PMCID: PMC4792940 DOI: 10.1523/jneurosci.4049-15.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 02/04/2016] [Indexed: 11/21/2022] Open
Abstract
Temporal lobe epilepsy is a common and challenging clinical problem, and its pathophysiological mechanisms remain unclear. One possibility is insufficient inhibition in the hippocampal formation where seizures tend to initiate. Normally, hippocampal basket cells provide strong and reliable synaptic inhibition at principal cell somata. In a rat model of temporal lobe epilepsy, basket cell-to-granule cell (BC→GC) synaptic transmission is more likely to fail, but the underlying cause is unknown. At some synapses, probability of release correlates with bouton size, active zone area, and number of docked vesicles. The present study tested the hypothesis that impaired GABAergic transmission at BC→GC synapses is attributable to ultrastructural changes. Boutons making axosomatic symmetric synapses in the granule cell layer were reconstructed from serial electron micrographs. BC→GC boutons were predicted to be smaller in volume, have fewer and smaller active zones, and contain fewer vesicles, including fewer docked vesicles. Results revealed the opposite. Compared with controls, epileptic pilocarpine-treated rats displayed boutons with over twice the average volume, active zone area, total vesicles, and docked vesicles and with more vesicles closer to active zones. Larger active zones in epileptic rats are consistent with previous reports of larger amplitude miniature IPSCs and larger BC→GC quantal size. Results of this study indicate that transmission failures at BC→GC synapses in epileptic pilocarpine-treated rats are not attributable to smaller boutons or fewer docked vesicles. Instead, processes following vesicle docking, including priming, Ca(2+) entry, or Ca(2+) coupling with exocytosis, might be responsible. SIGNIFICANCE STATEMENT One in 26 people develops epilepsy, and temporal lobe epilepsy is a common form. Up to one-third of patients are resistant to currently available treatments. This study tested a potential underlying mechanism for previously reported impaired inhibition in epileptic animals at basket cell-to-granule cell (BC→GC) synapses, which normally are reliable and strong. Electron microscopy was used to evaluate 3D ultrastructure of BC→GC synapses in a rat model of temporal lobe epilepsy. The hypothesis was that impaired synaptic transmission is attributable to smaller boutons, smaller synapses, and abnormally low numbers of synaptic vesicles. Results revealed the opposite. These findings suggest that impaired transmission at BC→GC synapses in epileptic rats is attributable to later steps in exocytosis following vesicle docking.
Collapse
Affiliation(s)
- Paul S Buckmaster
- Departments of Comparative Medicine and Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| | | | | |
Collapse
|