1
|
VanKuren NW, Kronforst MR. Hidden in plain sight: (Re)definition of a key lepidopteran color patterning gene. Proc Natl Acad Sci U S A 2024; 121:e2419749121. [PMID: 39585997 PMCID: PMC11626153 DOI: 10.1073/pnas.2419749121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Affiliation(s)
- Nicholas W. VanKuren
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL60637
| | - Marcus R. Kronforst
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL60637
| |
Collapse
|
2
|
Obrial GG, Agbas DJD, Medina MND, Cabras AA. Three New Mimetic Weevils (Coleoptera, Curculionidae, Entiminae) from Mt. Candalaga, Davao de Oro, Mindanao Island, Philippines. Zootaxa 2024; 5541:438-454. [PMID: 39646134 DOI: 10.11646/zootaxa.5541.4.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Three new species of Metapocyrtus: Metapocyrtus inangsabong Cabras, Obrial & Agbas sp. nov., Metapocyrtus lumad Cabras, Obrial & Agbas sp. nov., and Metapocyrtus (Trachycyrtus) uphagpula Cabras, Obrial & Agbas sp. nov. are described and illustrated. Short ecological notes on the species' habitat, mimicry with other weevils and beetles, and the association between Nepenthes candalaga and Pachyrhynchini in the Philippines are also presented.
Collapse
Affiliation(s)
- Graden G Obrial
- Faculty of Agriculture and Life Sciences; Biology Program; Davao Oriental State University; Dahican; Mati City 8200 Philippines.
| | - Daven Jayson D Agbas
- Faculty of Computing; Data Sciences; Engineering; and Technology; Information Technology Program; Davao Oriental State University; Dahican; Mati City 8200 Philippines.
| | - Milton Norman D Medina
- Tropical Genomics Laboratory; URESCOM; Davao Oriental State University; Dahican; City of Mati; 8200; Philippines.
| | - Analyn A Cabras
- Terrestrial Invertebrate Research Laboratory; URESCOM; Davao Oriental State University; Dahican; City of Mati; 8200; Philippines.
| |
Collapse
|
3
|
Schmid S, Bachmann Salvy M, Garcia Jimenez A, Bertrand JAM, Cortesi F, Heim S, Huyghe F, Litsios G, Marcionetti A, O'Donnell JL, Riginos C, Tettamanti V, Salamin N. Gene flow throughout the evolutionary history of a colour polymorphic and generalist clownfish. Mol Ecol 2024; 33:e17436. [PMID: 38872589 DOI: 10.1111/mec.17436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Even seemingly homogeneous on the surface, the oceans display high environmental heterogeneity across space and time. Indeed, different soft barriers structure the marine environment, which offers an appealing opportunity to study various evolutionary processes such as population differentiation and speciation. Here, we focus on Amphiprion clarkii (Actinopterygii; Perciformes), the most widespread of clownfishes that exhibits the highest colour polymorphism. Clownfishes can only disperse during a short pelagic larval phase before their sedentary adult lifestyle, which might limit connectivity among populations, thus facilitating speciation events. Consequently, the taxonomic status of A. clarkii has been under debate. We used whole-genome resequencing data of 67 A. clarkii specimens spread across the Indian and Pacific Oceans to characterize the species' population structure, demographic history and colour polymorphism. We found that A. clarkii spread from the Indo-Pacific Ocean to the Pacific and Indian Oceans following a stepping-stone dispersal and that gene flow was pervasive throughout its demographic history. Interestingly, colour patterns differed noticeably among the Indonesian populations and the two populations at the extreme of the sampling distribution (i.e. Maldives and New Caledonia), which exhibited more comparable colour patterns despite their geographic and genetic distances. Our study emphasizes how whole-genome studies can uncover the intricate evolutionary past of wide-ranging species with diverse phenotypes, shedding light on the complex nature of the species concept paradigm.
Collapse
Affiliation(s)
- Sarah Schmid
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | | | | | - Joris A M Bertrand
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Fabio Cortesi
- Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Sara Heim
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Filip Huyghe
- Marine Biology Laboratory, Department of Ecology and Biodiversity, Vrije Universiteit Brussel, Brussel, Belgium
| | - Glenn Litsios
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Anna Marcionetti
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - James L O'Donnell
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Cynthia Riginos
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Valerio Tettamanti
- Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Sihvonen P, Murillo-Ramos L, Wahlberg N, Hausmann A, Zilli A, Ochse M, Staude HS. Insect taxonomy can be difficult: a noctuid moth (Agaristinae: Aletopus imperialis) and a geometrid moth (Sterrhinae: Cartaletis dargei) combined into a cryptic species complex in eastern Africa (Lepidoptera). PeerJ 2021; 9:e11613. [PMID: 34277147 PMCID: PMC8272464 DOI: 10.7717/peerj.11613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022] Open
Abstract
The systematic position of a large and strikingly coloured reddish-black moth, Cartaletis dargei Herbulot, 2003 (Geometridae: Sterrhinae) from Tanzania, has remained questionable since its description. Here we present molecular and morphological evidence showing that Cartaletis dargei only superficially resembles true Cartaletis Warren, 1894 (the relative name currently considered a junior synonym of Aletis Hübner, 1820), which are unpalatable diurnal moths superficially resembling butterflies, and that it is misplaced in the family Geometridae. We transfer it to Noctuidae: Agaristinae, and combine it with the genus Aletopus Jordan, 1926, from Tanzania, as Aletopus dargei (Herbulot, 2003) (new combination). We revise the genus Aletopus to contain three species, but find that it is a cryptic species complex that needs to be revised with more extensive taxon sampling. Our results demonstrate the difficulties in interpreting and classifying biological diversity. We discuss the problems in species delimitation and the potential drivers of evolution in eastern Africa that led to phenotypic similarity in unrelated lepidopteran lineages.
Collapse
Affiliation(s)
- Pasi Sihvonen
- Finnish Museum of Natural History “Luomus”, University of Helsinki, Helsinki, Finland
| | - Leidys Murillo-Ramos
- Departamento de Biologia, Universidad de Sucre, Sincelejo, Sucre, Colombia
- Department of Biology, Lund University, Lund, Sweden
| | | | - Axel Hausmann
- SNSB Zoologische Staatssammlung München, Munich, Germany
| | - Alberto Zilli
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | | | - Hermann S. Staude
- Caterpillar Rearing Group (CRG), LepSoc Africa, Magaliesburg, South Africa
| |
Collapse
|
5
|
Cabras AA, Medina MN, Bollino M. Two new species of the genus Metapocyrtus Heller, 1912 (Coleoptera, Curculionidae, Entiminae, Pachyrhynchini), subgenus Orthocyrtus Heller, 1912, from Mindanao Island, Philippines. Zookeys 2021; 1029:139-154. [PMID: 33935553 PMCID: PMC8050020 DOI: 10.3897/zookeys.1029.63023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022] Open
Abstract
Two new species of Metapocyrtus Heller, 1912, subgenus Orthocyrtus Heller, 1912 (Coleoptera, Curculionidae, Entiminae, Pachyrhynchini) are described and illustrated from Mindanao Island, Philippines. The species are Metapocyrtus (Orthocyrtus) davaoensissp. nov. and Metapocyrtus (Orthocyrtus) hirakuisp. nov. from Davao City and Bukidnon, respectively. Brief bionomical notes and phenotypic characters compared to their sympatric Entiminae counterparts are also reported. The discovery of M. (O.) davaoensissp. nov. in Davao City confirms how understudied Coleoptera are in Mindanao and underlines the potential for the discovery of new species even in highly urbanized areas.
Collapse
Affiliation(s)
- Analyn A Cabras
- Coleoptera Research Center, Institute of Biodiversity and Environment, University of Mindanao, Davao City, 8000, Philippines University of Mindanao Davao City Philippines
| | - Milton Norman Medina
- Coleoptera Research Center, Institute of Biodiversity and Environment, University of Mindanao, Davao City, 8000, Philippines University of Mindanao Davao City Philippines
| | - Maurizio Bollino
- Museo di Storia naturale del Salento, 73021 Calimera, Lecce, Italy Museo di Storia naturale del Salento Calimera Italy
| |
Collapse
|
6
|
Habitat generalist species constrain the diversity of mimicry rings in heterogeneous habitats. Sci Rep 2021; 11:5072. [PMID: 33658554 PMCID: PMC7930205 DOI: 10.1038/s41598-021-83867-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/05/2021] [Indexed: 11/08/2022] Open
Abstract
How evolution creates and maintains trait patterns in species-rich communities is still an unsolved topic in evolutionary ecology. One classical example of community-level pattern is the unexpected coexistence of different mimicry rings, each of which is a group of mimetic species with the same warning signal. The coexistence of different mimicry rings in a community seems paradoxical because selection among unpalatable species should favor convergence to a single warning pattern. We combined mathematical modeling based on network theory and numerical simulations to explore how different types of selection, such as mimetic and environmental selections, and habitat use by mimetic species influence the formation of coexisting rings. We show that when habitat and mimicry are strong sources of selection, the formation of multiple rings takes longer due to conflicting selective pressures. Moreover, habitat generalist species decrease the distinctiveness of different mimicry rings’ patterns and a few habitat generalist species can generate a “small-world effect”, preventing the formation of multiple mimicry rings. These results may explain why the coexistence of mimicry rings is more common in groups of animals that tend towards habitat specialism, such as butterflies.
Collapse
|
7
|
Hinojosa JC, Koubínová D, Dincă V, Hernández-Roldán J, Munguira ML, García-Barros E, Vila M, Alvarez N, Mutanen M, Vila R. Rapid colour shift by reproductive character displacement in Cupido butterflies. Mol Ecol 2020; 29:4942-4955. [PMID: 33051915 DOI: 10.1111/mec.15682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
Abstract
Reproductive character displacement occurs when competition for successful breeding imposes a divergent selection on the interacting species, causing a divergence of reproductive traits. Here, we show that a disputed butterfly taxon is actually a case of male wing colour shift, apparently produced by reproductive character displacement. Using double digest restriction-site associated DNA sequencing and mitochondrial DNA sequencing we studied four butterfly taxa of the subgenus Cupido (Lepidoptera: Lycaenidae): Cupido minimus and the taxon carswelli, both characterized by brown males and females, plus C. lorquinii and C. osiris, both with blue males and brown females. Unexpectedly, taxa carswelli and C. lorquinii were close to indistinguishable based on our genomic and mitochondrial data, despite displaying strikingly different male coloration. In addition, we report and analysed a brown male within the C. lorquinii range, which demonstrates that the brown morph occurs at very low frequency in C. lorquinii. Such evidence strongly suggests that carswelli is conspecific with C. lorquinii and represents populations with a fixed male brown colour morph. Considering that these brown populations occur in sympatry with or very close to the blue C. osiris, and that the blue C. lorquinii populations never do, we propose that the taxon carswelli could have lost the blue colour due to reproductive character displacement with C. osiris. Since male colour is important for conspecific recognition during courtship, we hypothesize that the observed colour shift may eventually trigger incipient speciation between blue and brown populations. Male colour seems to be an evolutionarily labile character in the Polyommatinae, and the mechanism described here might be at work in the wide diversification of this subfamily of butterflies.
Collapse
Affiliation(s)
| | | | - Vlad Dincă
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Juan Hernández-Roldán
- Departamento de Biología - Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel L Munguira
- Departamento de Biología - Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Enrique García-Barros
- Departamento de Biología - Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Vila
- GIBE Research Group, Universidade da Coruña, A Coruña, Spain
| | | | - Marko Mutanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| |
Collapse
|
8
|
Weller HI, Westneat MW. Quantitative color profiling of digital images with earth mover's distance using the R package colordistance. PeerJ 2019; 7:e6398. [PMID: 30775177 PMCID: PMC6371918 DOI: 10.7717/peerj.6398] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022] Open
Abstract
Biological color may be adaptive or incidental, seasonal or permanent, species- or population-specific, or modified for breeding, defense or camouflage. Although color is a hugely informative aspect of biology, quantitative color comparisons are notoriously difficult. Color comparison is limited by categorization methods, with available tools requiring either subjective classifications, or expensive equipment, software, and expertise. We present an R package for processing images of organisms (or other objects) in order to quantify color profiles, gather color trait data, and compare color palettes on the basis of color similarity and amount. The package treats image pixels as 3D coordinates in a "color space," producing a multidimensional color histogram for each image. Pairwise distances between histograms are computed using earth mover's distance, a technique borrowed from computer vision, that compares histograms using transportation costs. Users choose a color space, parameters for generating color histograms, and a pairwise comparison method to produce a color distance matrix for a set of images. The package is intended as a more rigorous alternative to subjective, manual digital image analyses, not as a replacement for more advanced techniques that rely on detailed spectrophotometry methods unavailable to many users. Here, we outline the basic functions of colordistance, provide guidelines for the available color spaces and quantification methods, and compare this toolkit with other available methods. The tools presented for quantitative color analysis may be applied to a broad range of questions in biology and other disciplines.
Collapse
Affiliation(s)
- Hannah I. Weller
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Mark W. Westneat
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
|
10
|
Duftner N, Sefc KM, Koblmüller S, Salzburger W, Taborsky M, Sturmbauer C. Parallel evolution of facial stripe patterns in the Neolamprologus brichardi/pulcher species complex endemic to Lake Tanganyika. Mol Phylogenet Evol 2007; 45:706-15. [PMID: 17881250 DOI: 10.1016/j.ympev.2007.08.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 08/02/2007] [Accepted: 08/07/2007] [Indexed: 11/22/2022]
Abstract
Colour pattern diversity can be due to random processes or to natural or sexual selection. Consequently, similarities in colour patterns are not always correlated with common ancestry, but may result from convergent evolution under shared selection pressures or drift. Neolamprologus brichardi and Neolamprologus pulcher have been described as two distinct species based on differences in the arrangement of two dark bars on the operculum. Our study uses DNA sequences of the mitochondrial control region to show that relatedness of haplotypes disagrees with species assignment based on head colour pattern. This suggests repeated parallel evolution of particular stripe patterns. The complete lack of shared haplotypes between populations of the same or different phenotypes reflects strong philopatric behaviour, possibly induced by the cooperative breeding mode in which offspring remain in their natal territory and serve as helpers until they disperse to nearby territories or take over a breeding position. Concordant phylogeographic patterns between N. brichardi/N. pulcher populations and other rock-dwelling cichlids suggest that the same colonization routes have been taken by sympatric species and that these routes were affected by lake level fluctuations in the past.
Collapse
Affiliation(s)
- Nina Duftner
- Department of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|