1
|
Wang N, Li H, Huang S. Rational Redomestication for Future Agriculture. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:637-662. [PMID: 39899852 DOI: 10.1146/annurev-arplant-083123-064726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Modern agricultural practices rely on high-input, intensive cultivation of a few crop varieties with limited diversity, increasing the vulnerability of our agricultural systems to biotic and abiotic stresses and the effects of climate changes. This necessitates a paradigm shift toward a more sustainable agricultural model to ensure a stable and dependable food supply for the burgeoning global population. Leveraging knowledge from crop biology, genetics, and genomics, alongside state-of-the-art biotechnologies, rational redomestication has emerged as a targeted and knowledge-driven approach to crop innovation. This strategy aims to broaden the range of species available for agriculture, restore lost genetic diversity, and further improve existing domesticated crops. We summarize how diverse plants can be exploited in rational redomestication endeavors, including wild species, underutilized plants, and domesticated crops. Equipped with rational redomestication approaches, we propose different strategies to empower the fast and slow breeding systems distinguished by plant reproduction systems.
Collapse
Affiliation(s)
- Nan Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China; ,
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Hongbo Li
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China; ,
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China;
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China; ,
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
2
|
Yun C, Ma W, Feng J, Li L. Branching angles in the modulation of plant architecture: Molecular mechanisms, dynamic regulation, and evolution. PLANT COMMUNICATIONS 2025; 6:101292. [PMID: 40007121 PMCID: PMC12010374 DOI: 10.1016/j.xplc.2025.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Plants develop branches to expand areas for assimilation and reproduction. Branching angles coordinate with branching types, creating diverse plant shapes that are adapted to various environments. Two types of branching angle-the angle between shoots and the angle in relation to gravity or the gravitropic set-point angle (GSA) along shoots-determine the spacing between shoots and the shape of the aboveground plant parts. However, it remains unclear how these branching angles are modulated throughout shoot development and how they interact with other factors that contribute to plant architecture. In this review, we systematically focus on the molecular mechanisms that regulate branching angles across various species, including gravitropism, anti-gravitropic offset, phototropism, and other regulatory factors, which collectively highlight comprehensive mechanisms centered on auxin. We also discuss the dynamics of branching angles during development and their relationships with branching number, stress resistance, and crop yield. Finally, we provide an evolutionary perspective on the conserved role of auxin in the regulation of branching angles.
Collapse
Affiliation(s)
- Chen Yun
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China; Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Wanzhuang Ma
- College of Biological Science and Technology, Taiyuan Normal University, Jinzhong, China
| | - Jun Feng
- College of Biological Science and Technology, Taiyuan Normal University, Jinzhong, China
| | - Lanxin Li
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China; Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Knapp S, Gouvêa YF, Giacomin LL. A revision of the endemic Brazilian Solanumhexandrum group (Leptostemonum, Solanum, Solanaceae). PHYTOKEYS 2025; 253:199-259. [PMID: 40115195 PMCID: PMC11923794 DOI: 10.3897/phytokeys.253.138216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/09/2025] [Indexed: 03/23/2025]
Abstract
The Leptostemonum Clade, or the 'spiny solanums', represents half of the species diversity of the large cosmopolitan genus Solanum (Solanaceae). Brazil is a centre of both species and lineage diversity in 'spiny solanums' with a number of lineages occurring mostly only there. Here, we treat the Solanumhexandrum group, a monophyletic species group that is part of the larger and unresolved Erythrotrichum clade sensu lato. The six species treated here are all robust very prickly shrubs with amongst the largest and showiest flowers in Solanum and accrescent calyces in fruit that often completely cover the mature berry. All six species are endemic to the coastal Atlantic forests of south-eastern and north-eastern Brazil. We describe one new species, S.phrixothrix Gouvêa & S.Knapp, sp. nov., known only from two collections made 200 years apart. Many of the species in the group occur in very small populations around isolated gneissic/granitic inselbergs, a highly threatened habitat in the region. We provide complete nomenclatural details for all recognised species and their synonyms, complete descriptions, distributions including maps, illustrations, common names and uses and preliminary conservation assessments.
Collapse
Affiliation(s)
- Sandra Knapp
- Natural History Museum, Cromwell Road, London SW7 5BD, UK Natural History Museum London United Kingdom
| | - Yuri F Gouvêa
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Leandro L Giacomin
- Departamento de Sistemática & Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, PB, 58051-0900, Brazil Universidade Federal da Paraíba João Pessoa Brazil
| |
Collapse
|
4
|
Du M, Sun C, Deng L, Zhou M, Li J, Du Y, Ye Z, Huang S, Li T, Yu J, Li C, Li C. Molecular breeding of tomato: Advances and challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:669-721. [PMID: 40098531 PMCID: PMC11951411 DOI: 10.1111/jipb.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
The modern cultivated tomato (Solanum lycopersicum) was domesticated from Solanum pimpinellifolium native to the Andes Mountains of South America through a "two-step domestication" process. It was introduced to Europe in the 16th century and later widely cultivated worldwide. Since the late 19th century, breeders, guided by modern genetics, breeding science, and statistical theory, have improved tomatoes into an important fruit and vegetable crop that serves both fresh consumption and processing needs, satisfying diverse consumer demands. Over the past three decades, advancements in modern crop molecular breeding technologies, represented by molecular marker technology, genome sequencing, and genome editing, have significantly transformed tomato breeding paradigms. This article reviews the research progress in the field of tomato molecular breeding, encompassing genome sequencing of germplasm resources, the identification of functional genes for agronomic traits, and the development of key molecular breeding technologies. Based on these advancements, we also discuss the major challenges and perspectives in this field.
Collapse
Affiliation(s)
- Minmin Du
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of HorticultureChina Agricultural UniversityBeijing100193China
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- Sanya Institute of China Agricultural UniversitySanya572025China
| | - Chuanlong Sun
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'an271018China
| | - Lei Deng
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
| | - Ming Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Junming Li
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Yongchen Du
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Sanwen Huang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120China
- State Key Laboratory of Tropical Crop BreedingChinese Academy of Tropical Agricultural SciencesHaikou571101China
| | - Tianlai Li
- College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Jingquan Yu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Chang‐Bao Li
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Chuanyou Li
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
| |
Collapse
|
5
|
Lanctot A, Hendelman A, Udilovich P, Robitaille GM, Lippman ZB. Antagonizing cis-regulatory elements of a conserved flowering gene mediate developmental robustness. Proc Natl Acad Sci U S A 2025; 122:e2421990122. [PMID: 39964724 PMCID: PMC11874208 DOI: 10.1073/pnas.2421990122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Developmental transitions require precise temporal and spatial control of gene expression. In plants, such regulation is critical for flower formation, which involves the progressive maturation of stem cell populations within shoot meristems to floral meristems, followed by rapid sequential differentiation into floral organs. Across plant taxa, these transitions are orchestrated by the F-box transcriptional cofactor gene UNUSUAL FLORAL ORGANS (UFO). The conserved and pleiotropic functions of UFO offer a useful framework for investigating how evolutionary processes have shaped the intricate cis-regulation of key developmental genes. By pinpointing a conserved promoter sequence in an accessible chromatin region of the tomato ortholog of UFO, we engineered in vivo a series of cis-regulatory alleles that caused both loss- and gain-of-function floral defects. These mutant phenotypes were linked to disruptions in predicted transcription factor binding sites for known transcriptional activators and repressors. Allelic combinations revealed dosage-dependent interactions between opposing alleles, influencing the penetrance and expressivity of gain-of-function phenotypes. These phenotypic differences support that robustness in tomato flower development requires precise temporal control of UFO expression dosage. Bridging our analysis to Arabidopsis, we found that although homologous sequences to the tomato regulatory region are dispersed within the UFO promoter, they maintain similar control over floral development. However, phenotypes from disrupting these sequences differ due to the differing expression patterns of UFO. Our study underscores the complex cis-regulatory control of dynamic developmental genes and demonstrates that critical short stretches of regulatory sequences that recruit both activating and repressing machinery are conserved to maintain developmental robustness.
Collapse
Affiliation(s)
- Amy Lanctot
- HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- Plant Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Anat Hendelman
- HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- Plant Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Peter Udilovich
- Plant Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Gina M. Robitaille
- HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- Plant Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Zachary B. Lippman
- HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- Plant Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| |
Collapse
|
6
|
Siqueira JA, Martins AO, Wakin T, Silva MF, Batista-Silva W, Brito FAL, Zsögön A, Fernie AR, Nunes-Nesi A, Araújo WL. The Modulation of Growth and Metabolism in Solanum lycopersicum Contrast With the Leaf-Specific Regulation of Wild Tomato Species. PLANT, CELL & ENVIRONMENT 2025; 48:1201-1214. [PMID: 39420666 DOI: 10.1111/pce.15214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Plant organs harbour diverse components that connect their physiology to the whole organism. The turnover of metabolites may be higher in some organs than in others, triggering differential growth patterns throughout the organism. We revealed that Solanum lycopersicum exhibits more coordinated growth and physiology across the entire plant compared to wild tomato species. Specifically, young leaves of S. lycopersicum develop more slowly than mature leaves, whereas wild species do not exhibit this pattern. Wild tomato Solanum pennellii displays young leaves with higher photosynthetic rates than mature leaves. Consequently, sucrose metabolism in S. pennellii is quite similar between young and mature leaves, while expression patterns of circadian clock genes differ significantly between leaves of different ages. Additionally, we demonstrated that introducing alleles related to tomato domestication into the wild tomato Solanum pimpinellifolium promotes coordinated growth between young and mature leaves, resulting in similar patterns to those observed in S. lycopersicum. Collectively, S. lycopersicum appears to exhibit more coordinated regulation of growth and metabolism, and understanding this process is likely fundamental to explaining its elevated harvest index.
Collapse
Affiliation(s)
- João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Auxiliadora O Martins
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Thiago Wakin
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Marcelle F Silva
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Willian Batista-Silva
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Fred A L Brito
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Agustin Zsögön
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
7
|
Jiang X, López-Martín MJ, Gómez-Mena C, Ferrándiz C, Bemer M. Optimization of Tomato Shoot Architecture by Combined Mutations in the Floral Activators FUL2/MBP20 and the Repressor SP. Int J Mol Sci 2025; 26:1161. [PMID: 39940929 PMCID: PMC11817714 DOI: 10.3390/ijms26031161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Shoot determinacy is a key trait affecting productivity in tomato, quantitatively governed by genes within the flowering pathway. Achieving an optimal balance of flowering signals is essential for shaping plant architecture and maximizing yield potential. However, the genetic resources and allelic diversity available for fine-tuning this balance remain limited. In this work, we demonstrate the potential for directly manipulating shoot architecture by simultaneously targeting the flowering activating FRUITFULL(FUL)-like genes, FUL2 and MADS-BOX PROTEIN 20 (MBP20), and the flowering-repressing gene SELFPRUNING (SP). Loss of MBP20 in the sp background leads to additional inflorescences, while determinacy is largely maintained. However, additional mutation of FUL2 results in mainly indeterminate plants, which have faster sympodial cycling, leading to more compact growth and increased flower production. Our results provide a path to quantitative tuning of the flowering signals with a direct impact on shoot architecture and productivity.
Collapse
Affiliation(s)
- Xiaobing Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomic Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
- Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - María Jesús López-Martín
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain; (M.J.L.-M.); (C.G.-M.); (C.F.)
| | - Concepción Gómez-Mena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain; (M.J.L.-M.); (C.G.-M.); (C.F.)
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain; (M.J.L.-M.); (C.G.-M.); (C.F.)
| | - Marian Bemer
- Business Unit Bioscience, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
8
|
Zhang Y, Chen X, Wei G, Tian W, Ling Y, Wang N, Zhang T, Sang X, Zhu X, He G, Li Y. The WOX9-WUS modules are indispensable for the maintenance of stem cell homeostasis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:910-927. [PMID: 39269929 DOI: 10.1111/tpj.17024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/13/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The dynamic balance between the self-renewal and differentiation of stem cells in plants is precisely regulated by a series of developmental regulated genes that exhibit spatiotemporal-specific expression patterns. Several studies have demonstrated that the WOX family transcription factors play critical roles in maintaining the identity of stem cells in Arabidopsis thaliana. In this study, we obtained amiR-WOX9 transgenic plants, which displayed terminating prematurely of shoot apical meristem (SAM) development, along with alterations in inflorescence meristem and flower development. The phenotype of amiR-WOX9 plants exhibited similarities to that of wus-101 mutant, characterized by a stop-and-go growth pattern. It was also found that the expression of WUS in amiR-WOX9 lines was decreased significantly, while in UBQ10::WOX9-GFP transgenic plants, the WUS expression was increased significantly despite no substantial alteration in meristem size compared to Col. Therefore, these data substantiated the indispensable role of WOX9 in maintaining the proper expression of WUS. Further investigations unveiled the direct binding of WOX9 to the WUS promoter via the TAAT motif, thereby activating its expression. It was also found that WUS recognized identical the same TAAT motif cis-elements in its own promoter, thereby repress self-expression. Next, we successfully identified a physical interaction between WOX9 and WUS, and verified that it was harmful to the expression of WUS. Finally, our experimental findings demonstrate that WOX9 was responsible for the direct activating of WUS, which however was interfered by the ways of WUS binding its own promoter and the interaction of WUS and WOX9, thereby ensuring the appropriate expression pattern of WUS and then the stem cell stability. This study contributes to an enhanced comprehension of the regulatory network of the WOX9-WUS module in maintaining the equilibrium of the SAM.
Collapse
Affiliation(s)
- Yingying Zhang
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xinlong Chen
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Gang Wei
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Weijiang Tian
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yinghua Ling
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Nan Wang
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xianchun Sang
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xiaoyan Zhu
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Guanghua He
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yunfeng Li
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| |
Collapse
|
9
|
Li J, Yao X, Lai H, Zhang X, Zhong J. The diversification of the shoot branching system: A quantitative and comparative perspective in meristem determinacy. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102574. [PMID: 38917775 DOI: 10.1016/j.pbi.2024.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Reiterative shoot branching largely defines important yield components of crops and is essentially controlled by programs that direct the initiation, dormancy release, and differentiation of meristems in the axils of leaves. Here, we focus on meristem determinacy, defining the number of reiterations that shape the shoot architectures and exhibit enormous diversity in a wide range of species. The meristem determinacy per se is hierarchically complex and context-dependent for the successively emerged meristems, representing a crucial mechanism in shaping the complexity of the shoot branching. In addition, we have highlighted that two key components of axillary meristem developmental programs may have been co-opted in controlling flower/ear number of an axillary inflorescence in legumes/maize, hinting at the diversification of axillary-meristem-patterning programs in different lineages. This begs the question how axillary meristem patterning programs may have diversified during plant evolution and hence helped shape the rich variation in shoot branching systems.
Collapse
Affiliation(s)
- Jiajia Li
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xiani Yao
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huan Lai
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xuelian Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jinshun Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Laboratory of the Developmental Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou 510642, Guangdong, China; South China Institute for Soybean Innovation Research, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
10
|
Tang J, Huang X, Sun M, Liang W. DWARF TILLER1 regulates apical-basal pattern formation and proper orientation of rice embryos. PLANT PHYSIOLOGY 2024; 196:309-322. [PMID: 38905146 DOI: 10.1093/plphys/kiae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 06/23/2024]
Abstract
Body axis establishment is one of the earliest patterning events in plant embryogenesis. Asymmetric zygote division is critical for apical-basal axis formation in Arabidopsis (Arabidopsis thaliana). However, how the orientation of the cell division plane is regulated and its relation to apical-basal axis establishment and proper position of embryos in grasses remain poorly understood. By characterizing mutants of 3 rice (Oryza sativa) WUSCHEL HOMEOBOX9 (WOX9) genes, whose paralogs in Arabidopsis play essential roles in zygotic asymmetric cell division and cell fate determination, we found 2 kinds of independent embryonic defects: topsy-turvy embryos, in which apical-basal axis twists from being parallel to the longitudinal axis of the seed to being perpendicular; and organ-less embryos. In contrast to their Arabidopsis orthologs, OsWOX9s displayed dynamic distribution during embryo development. Both DWT1/OsWOX9A and DWL2/WOX9C play major roles in the apical-basal axis formation and initiation of stem cells. In addition, DWT1 has a distinct function in regulating the first few embryonic cell divisions to ensure the correct orientation of the embryo in the ovary. In summary, DWT1 acts in 2 steps during rice embryo pattern formation: the initial zygotic division, and with DWL2 to establish the main body axes and stem cell fate 2 to 3 d after pollination.
Collapse
Affiliation(s)
- Jingyao Tang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaorong Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572024, China
| |
Collapse
|
11
|
Davoudi M, Kalantzis S, Petridis A. Adaptive responses to elevated CO 2 in fruit species with different phloem loading mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1356272. [PMID: 39148612 PMCID: PMC11324461 DOI: 10.3389/fpls.2024.1356272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Introduction It has been suggested that the mechanism of phloem loading, that is apoplastic or symplastic loading, may affect a plant's ability to adapt to elevated CO2 levels. Strawberry (Fragaria × ananassa) and tomato (Solanum lycopersicum) are two fruit crops that use different mechanisms to load sugars into the phloem - the former symplastically and the latter apoplastically - yet both species can increase their yields when grown in a CO2-enriched environment. In this study, we subjected strawberry and tomato plants to long-term CO2 enrichment to determine the morphological and physiological adaptations that enable them to increase their yields in response to higher CO2 levels. Methods Transplanted tomato and strawberry plants were subjected to ambient (400 ppm) and elevated (800 ppm) CO2 for three months. We examined various parameters associated with growth, yield, photosynthesis, and carbon allocation by means of phenotyping, gas exchange analysis, and 13C labelling combined with isotope ratio mass spectrometry. Results We found that CO2 enrichment promoted growth and reproductive development in both species, resulting in more flowers per plant (tomato and strawberry), larger crown (strawberry), and, eventually, higher yields. Gas exchange analysis and A/c i curves revealed that elevated CO2 increased carbon assimilation rate in strawberry, but not in tomato - the latter being limited by Rubisco's carboxylation efficiency. Finally, whereas both species prioritized fruit development over the development of other sink organs, they were both limited by carbon export at elevated CO2, since new photoassimilates were equally distributed to various sinks between CO2 treatments. Discussion The findings suggest that both species will benefit from future increases in CO2 levels and support current glasshouse practices entailing CO2 enrichment. Those benefits probably stem from an enhanced performance of both species at early developmental stages, as differences in carbon assimilation rate (tomato) and carbon allocation between treatments at late developmental stages were absent. Moreover, crop adaptation to elevated CO2 seems to depend on the ability of each species to respond to elevated CO2, rather than on the phloem loading mechanism per se.
Collapse
Affiliation(s)
- Marzieh Davoudi
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
12
|
Huerga-Fernández S, Detry N, Orman-Ligeza B, Bouché F, Hanikenne M, Périlleux C. JOINTLESS Maintains Inflorescence Meristem Identity in Tomato. PLANT & CELL PHYSIOLOGY 2024; 65:1197-1211. [PMID: 38635460 PMCID: PMC11287206 DOI: 10.1093/pcp/pcae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
JOINTLESS (J) was isolated in tomato (Solanum lycopersicum) from mutants lacking a flower pedicel abscission zone (AZ) and encodes a MADS-box protein of the SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 subfamily. The loss of J function also causes the return to leaf initiation in the inflorescences, indicating a pivotal role in inflorescence meristem identity. Here, we compared jointless (j) mutants in different accessions that exhibit either an indeterminate shoot growth, producing regular sympodial segments, or a determinate shoot growth, due to the reduction of sympodial segments and causal mutation of the SELF-PRUNING (SP) gene. We observed that the inflorescence phenotype of j mutants is stronger in indeterminate (SP) accessions such as Ailsa Craig (AC), than in determinate (sp) ones, such as Heinz (Hz). Moreover, RNA-seq analysis revealed that the return to vegetative fate in j mutants is accompanied by expression of SP, which supports conversion of the inflorescence meristem to sympodial shoot meristem in j inflorescences. Other markers of vegetative meristems such as APETALA2c and branching genes such as BRANCHED 1 (BRC1a/b) were differentially expressed in the inflorescences of j(AC) mutant. We also found in the indeterminate AC accession that J represses homeotic genes of B- and C-classes and that its overexpression causes an oversized leafy calyx phenotype and has a dominant negative effect on AZ formation. A model is therefore proposed where J, by repressing shoot fate and influencing reproductive organ formation, acts as a key determinant of inflorescence meristems.
Collapse
Affiliation(s)
- Samuel Huerga-Fernández
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Nathalie Detry
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Beata Orman-Ligeza
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Frédéric Bouché
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
- Laboratory of Plant Translational Biology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Marc Hanikenne
- Laboratory of Plant Translational Biology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Claire Périlleux
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| |
Collapse
|
13
|
Li D, Fan L, Shu Q, Guo F. Ectopic expression of OsWOX9A alters leaf anatomy and plant architecture in rice. PLANTA 2024; 260:30. [PMID: 38879830 DOI: 10.1007/s00425-024-04463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Ectopic expression of OsWOX9A induces narrow adaxially rolled rice leaves with larger bulliform cells and fewer large veins, probably through regulating the expression of auxin-related and expansin genes. The WUSCHEL-related homeobox (WOX) family plays a pivotal role in plant development by regulating genes involved in various aspects of growth and differentiation. OsWOX9A (DWT1) has been linked to tiller growth, uniform plant growth, and flower meristem activity. However, its impact on leaf growth and development in rice has not been studied. In this study, we investigated the biological role of OsWOX9A in rice growth and development using transgenic plants. Overexpression of OsWOX9A conferred narrow adaxially rolled rice leaves and altered plant architecture. These plants exhibited larger bulliform cells and fewer larger veins compared to wild-type plants. OsWOX9A overexpression also reduced plant height, tiller number, and seed-setting rate. Comparative transcriptome analysis revealed several differentially expressed auxin-related and expansin genes in OsWOX9A overexpressing plants, consistent with their roles in leaf and plant development. These results indicate that the ectopic expression of OsWOX9A may have multiple effects on the development and growth of rice, providing a more comprehensive picture of how the WOX9 subfamily contributes to leaf development and plant architecture.
Collapse
Affiliation(s)
- Dandan Li
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, 572025, China
| | - Longjiang Fan
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, 572025, China
| | - Qingyao Shu
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, 572025, China
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fu Guo
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, 572025, China.
- Hainan Seed Industry Laboratory, Yazhou Bay Science and Technology City, Sanya, 572025, China.
| |
Collapse
|
14
|
Zhang J, Dong T, Hu Z, Li J, Zhu M, Chen G. A SEPALLATA MADS-Box Transcription Factor, SlMBP21, Functions as a Negative Regulator of Flower Number and Fruit Yields in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:1421. [PMID: 38794491 PMCID: PMC11125064 DOI: 10.3390/plants13101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
MADS-box transcription factors act as the crucial regulators in plant organ differentiation. Crop yields are highly influenced by the flower number and fruit growth. However, flower identification is a very complex biological process, which involves many cascade regulations. The molecular mechanisms underlying the genetic regulation of flower identification in cultivated plants, such as tomato, are intricate and require further exploration. In this study, we investigated the vital function of a SEPALLATA (SEP) MADS-box gene, SlMBP21, in tomato sympodial inflorescence meristem (SIM) development for the conversion from SIMs to floral meristems (FMs). SlMBP21 transcripts were primarily accumulated in young inflorescence meristem, flowers, sepals, and abscission zones. The Ailsa Craig (AC++) tomato plants with suppressed SlMBP21 mRNA levels using RNAi exhibited a large increase in flower number and fruit yields in addition to enlarged sepals and inhibited abscission zone development. Scanning electron microscopy (SEM) revealed that the maturation of inflorescence meristems (IMs) was repressed in SlMBP21-RNAi lines. RNA-seq and qRT-PCR analyses showed that numerous genes related to the flower development, plant hormone signal transduction, cell cycle, and cell proliferation et al. were dramatically changed in SlMBP21-RNAi lines. Yeast two-hybrid assay exhibited that SlMBP21 can respectively interact with SlCMB1, SFT, JOINTLESS, and MC, which play key roles in inflorescence meristems or FM development. In summary, our data demonstrate that SlMBP21 functions as a key regulator in SIM development and the conversion from SIMs to FMs, through interacting with other regulatory proteins to control the expression of related genes.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Plant Germplasm Resources Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221008, China; (T.D.); (M.Z.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.H.); (J.L.)
| | - Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.H.); (J.L.)
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221008, China; (T.D.); (M.Z.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.H.); (J.L.)
| |
Collapse
|
15
|
Luo X, Zheng Q, He X, Zhao X, Zhang M, Huang Y, Cai B, Liu Z. The Evolution of the WUSCHEL-Related Homeobox Gene Family in Dendrobium Species and Its Role in Sex Organ Development in D. chrysotoxum. Int J Mol Sci 2024; 25:5352. [PMID: 38791390 PMCID: PMC11121392 DOI: 10.3390/ijms25105352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The WUSCHEL-related homeobox (WOX) transcription factor plays a vital role in stem cell maintenance and organ morphogenesis, which are essential processes for plant growth and development. Dendrobium chrysotoxum, D. huoshanense, and D. nobile are valued for their ornamental and medicinal properties. However, the specific functions of the WOX gene family in Dendrobium species are not well understood. In our study, a total of 30 WOX genes were present in the genomes of the three Dendrobium species (nine DchWOXs, 11 DhuWOXs, and ten DnoWOXs). These 30 WOXs were clustered into ancient clades, intermediate clades, and WUS/modern clades. All 30 WOXs contained a conserved homeodomain, and the conserved motifs and gene structures were similar among WOXs belonging to the same branch. D. chrysotoxum and D. huoshanense had one pair of fragment duplication genes and one pair of tandem duplication genes, respectively; D. nobile had two pairs of fragment duplication genes. The cis-acting regulatory elements (CREs) in the WOX promoter region were mainly enriched in the light response, stress response, and plant growth and development regulation. The expression pattern and RT-qPCR analysis revealed that the WOXs were involved in regulating the floral organ development of D. chrysotoxum. Among them, the high expression of DchWOX3 suggests that it might be involved in controlling lip development, whereas DchWOX5 might be involved in controlling ovary development. In conclusion, this work lays the groundwork for an in-depth investigation into the functions of WOX genes and their regulatory role in Dendrobium species' floral organ development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bangping Cai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Q.Z.); (X.H.); (X.Z.); (M.Z.); (Y.H.)
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Q.Z.); (X.H.); (X.Z.); (M.Z.); (Y.H.)
| |
Collapse
|
16
|
Yao WJ, Wang YP, Peng J, Yin PP, Gao H, Xu L, Laux T, Zhang XS, Su YH. The RPT2a-MET1 axis regulates TERMINAL FLOWER1 to control inflorescence meristem indeterminacy in Arabidopsis. THE PLANT CELL 2024; 36:1718-1735. [PMID: 37795677 PMCID: PMC11062425 DOI: 10.1093/plcell/koad249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Plant inflorescence architecture is determined by inflorescence meristem (IM) activity and controlled by genetic mechanisms associated with environmental factors. In Arabidopsis (Arabidopsis thaliana), TERMINAL FLOWER1 (TFL1) is expressed in the IM and is required to maintain indeterminate growth, whereas LEAFY (LFY) is expressed in the floral meristems (FMs) formed at the periphery of the IM and is required to activate determinate floral development. Here, we address how Arabidopsis indeterminate inflorescence growth is determined. We show that the 26S proteasome subunit REGULATORY PARTICLE AAA-ATPASE 2a (RPT2a) is required to maintain the indeterminate inflorescence architecture in Arabidopsis. rpt2a mutants display reduced TFL1 expression levels and ectopic LFY expression in the IM and develop a determinate zigzag-shaped inflorescence. We further found that RPT2a promotes DNA METHYLTRANSFERASE1 degradation, leading to DNA hypomethylation upstream of TFL1 and high TFL1 expression levels in the wild-type IM. Overall, our work reveals that proteolytic input into the epigenetic regulation of TFL1 expression directs inflorescence architecture in Arabidopsis, adding an additional layer to stem cell regulation.
Collapse
Affiliation(s)
- Wang Jinsong Yao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yi Peng Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jing Peng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Pei Pei Yin
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hengbin Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Li Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Thomas Laux
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai’an, Shandong 271018, China
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ying Hua Su
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
17
|
Shang L, Tao J, Song J, Wang Y, Zhang X, Ge P, Li F, Dong H, Gai W, Grierson D, Ye Z, Zhang Y. CRISPR/Cas9-mediated mutations of FANTASTIC FOUR gene family for creating early flowering mutants in tomato. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:774-784. [PMID: 37942846 PMCID: PMC10893942 DOI: 10.1111/pbi.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Flowering time is of great agricultural importance and the timing and extent of flowering usually determines yield and availability of flowers, fruits and seeds. Identification of genes determining flowering has important practical applications for tomato breeding. Here we demonstrate the roles of the FANTASTIC FOUR (FAF) gene family in regulating tomato flowering time. In this plant-specific gene family, SlFAF1/2a shows a constitutive expression pattern during the transition of the shoot apical meristem (SAM) from vegetative to reproductive growth and significantly influences flowering time. Overexpressing SlFAF1/2a causes earlier flowering compared with the transformations of other genes in the FAF family. SlFAF1/2c also positively regulates tomato flowering, although to a lesser extent. The other members of the SlFAF gene family, SlFAF1/2b, SlFAF3/4a and SlFAF3/4b, are negative regulators of tomato flowering and faf1/2b, faf3/4a and faf3/4b single mutants all display early flowering. We generated a series of early flowering mutants using the CRISPR/Cas9 editing system, and the faf1/2b faf3/4a faf3/4b triple mutant flowering earliest compared with other mutants. More importantly, these mutants show no adverse effect on yield. Our results have uncovered the role of the FAF gene family in regulating tomato flowering time and generated early flowering germplasms for molecular breeding.
Collapse
Affiliation(s)
- Lele Shang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Jinbao Tao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Jianwen Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Yaru Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Xingyu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Pingfei Ge
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Fangman Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Haiqiang Dong
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Wenxian Gai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Donald Grierson
- Plant Sciences Division, School of BiosciencesUniversity of NottinghamLoughboroughLE12 5RDUK
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Yuyang Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518000China
| |
Collapse
|
18
|
Rogo U, Simoni S, Fambrini M, Giordani T, Pugliesi C, Mascagni F. Future-Proofing Agriculture: De Novo Domestication for Sustainable and Resilient Crops. Int J Mol Sci 2024; 25:2374. [PMID: 38397047 PMCID: PMC10888583 DOI: 10.3390/ijms25042374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The worldwide agricultural system confronts a significant challenge represented by the increasing demand for food in the face of a growing global population. This challenge is exacerbated by a reduction in cultivable land and the adverse effects of climate change on crop yield quantity and quality. Breeders actively embrace cutting-edge omics technologies to pursue resilient genotypes in response to these pressing issues. In this global context, new breeding techniques (NBTs) are emerging as the future of agriculture, offering a solution to introduce resilient crops that can ensure food security, particularly against challenging climate events. Indeed, the search for domestication genes as well as the genetic modification of these loci in wild species using genome editing tools are crucial steps in carrying out de novo domestication of wild plants without compromising their genetic background. Current knowledge allows us to take different paths from those taken by early Neolithic farmers, where crop domestication has opposed natural selection. In this process traits and alleles negatively correlated with high resource environment performance are probably eradicated through artificial selection, while others may have been lost randomly due to domestication and genetic bottlenecks. Thus, domestication led to highly productive plants with little genetic diversity, owing to the loss of valuable alleles that had evolved to tolerate biotic and abiotic stresses. Recent technological advances have increased the feasibility of de novo domestication of wild plants as a promising approach for crafting optimal crops while ensuring food security and using a more sustainable, low-input agriculture. Here, we explore what crucial domestication genes are, coupled with the advancement of technologies enabling the precise manipulation of target sequences, pointing out de novo domestication as a promising application for future crop development.
Collapse
Affiliation(s)
| | | | | | | | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy; (U.R.); (S.S.); (M.F.); (T.G.); (F.M.)
| | | |
Collapse
|
19
|
Sun S, Liu Z, Wang X, Song J, Fang S, Kong J, Li R, Wang H, Cui X. Genetic control of thermomorphogenesis in tomato inflorescences. Nat Commun 2024; 15:1472. [PMID: 38368437 PMCID: PMC10874430 DOI: 10.1038/s41467-024-45722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/02/2024] [Indexed: 02/19/2024] Open
Abstract
Understanding how plants alter their development and architecture in response to ambient temperature is crucial for breeding resilient crops. Here, we identify the quantitative trait locus qMULTIPLE INFLORESCENCE BRANCH 2 (qMIB2), which modulates inflorescence branching in response to high ambient temperature in tomato (Solanum lycopersicum). The non-functional mib2 allele may have been selected in large-fruited varieties to ensure larger and more uniform fruits under varying temperatures. MIB2 gene encodes a homolog of the Arabidopsis thaliana transcription factor SPATULA; its expression is induced in meristems at high temperature. MIB2 directly binds to the promoter of its downstream gene CONSTANS-Like1 (SlCOL1) by recognizing the conserved G-box motif to activate SlCOL1 expression in reproductive meristems. Overexpressing SlCOL1 rescue the reduced inflorescence branching of mib2, suggesting how the MIB2-SlCOL1 module helps tomato inflorescences adapt to high temperature. Our findings reveal the molecular mechanism underlying inflorescence thermomorphogenesis and provide a target for breeding climate-resilient crops.
Collapse
Affiliation(s)
- Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiqiang Liu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaotian Wang
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jia Song
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Siyu Fang
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jisheng Kong
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Xia Cui
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
20
|
Baranov D, Dolgov S, Timerbaev V. New Advances in the Study of Regulation of Tomato Flowering-Related Genes Using Biotechnological Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:359. [PMID: 38337892 PMCID: PMC10856997 DOI: 10.3390/plants13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Dolgov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
21
|
Lindsay P, Swentowsky KW, Jackson D. Cultivating potential: Harnessing plant stem cells for agricultural crop improvement. MOLECULAR PLANT 2024; 17:50-74. [PMID: 38130059 DOI: 10.1016/j.molp.2023.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
Collapse
Affiliation(s)
- Penelope Lindsay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
22
|
Lee ES, Heo J, Bang WY, Chougule KM, Waminal NE, Hong NT, Kim MJ, Beak HK, Kim YJ, Priatama RA, Jang JI, Cha KI, Son SH, Rajendran S, Choo Y, Bae JH, Kim CM, Lee YK, Bae S, Jones JDG, Sohn KH, Lee J, Kim HH, Hong JC, Ware D, Kim K, Park SJ. Engineering homoeologs provide a fine scale for quantitative traits in polyploid. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2458-2472. [PMID: 37530518 PMCID: PMC10651150 DOI: 10.1111/pbi.14141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
Numerous staple crops exhibit polyploidy and are difficult to genetically modify. However, recent advances in genome sequencing and editing have enabled polyploid genome engineering. The hexaploid black nightshade species Solanum nigrum has immense potential as a beneficial food supplement. We assembled its genome at the scaffold level. After functional annotations, we identified homoeologous gene sets, with similar sequence and expression profiles, based on comparative analyses of orthologous genes with close diploid relatives Solanum americanum and S. lycopersicum. Using CRISPR-Cas9-mediated mutagenesis, we generated various mutation combinations in homoeologous genes. Multiple mutants showed quantitative phenotypic changes based on the genotype, resulting in a broad-spectrum effect on the quantitative traits of hexaploid S. nigrum. Furthermore, we successfully improved the fruit productivity of Boranong, an orphan cultivar of S. nigrum suggesting that engineering homoeologous genes could be useful for agricultural improvement of polyploid crops.
Collapse
Affiliation(s)
- Eun Song Lee
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Jung Heo
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| | - Woo Young Bang
- Biological and Genetic Resources Assessment DivisionNational Institute of Biological ResourcesIncheonKorea
| | | | - Nomar Espinosa Waminal
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
- BioScience Institute, Department of Chemistry & Life ScienceSahmyook UniversitySeoulKorea
| | - Nguyen Thi Hong
- BioScience Institute, Department of Chemistry & Life ScienceSahmyook UniversitySeoulKorea
| | - Min Ji Kim
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Hong Kwan Beak
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Yong Jun Kim
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Ryza A. Priatama
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Institute of Plasma TechnologyKorea Institute of Fusion EnergyGunsan‐siKorea
| | - Ji In Jang
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| | - Kang Il Cha
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Seung Han Son
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | | | - Young‐Kug Choo
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Jong Hyang Bae
- Division of Horticulture IndustryWonkwang UniversityIksanKorea
| | - Chul Min Kim
- Division of Horticulture IndustryWonkwang UniversityIksanKorea
| | - Young Koung Lee
- Institute of Plasma TechnologyKorea Institute of Fusion EnergyGunsan‐siKorea
| | - Sangsu Bae
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulSouth Korea
| | - Jonathan D. G. Jones
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Kee Hoon Sohn
- Department of Agricultural Biotechnology, Plant Immunity Research Center, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Jiyoung Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource CenterKorea Research Institute of Bioscience and BiotechnologyJeongeupKorea
| | - Hyun Hee Kim
- BioScience Institute, Department of Chemistry & Life ScienceSahmyook UniversitySeoulKorea
| | - Jong Chan Hong
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| | - Doreen Ware
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
- U.S. Department of Agriculture‐Agricultural Research ServiceNEA Robert W. Holley Center for Agriculture and HealthIthacaNYUSA
| | - Keunhwa Kim
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| | - Soon Ju Park
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| |
Collapse
|
23
|
Rieu P, Arnoux-Courseaux M, Tichtinsky G, Parcy F. Thinking outside the F-box: how UFO controls angiosperm development. THE NEW PHYTOLOGIST 2023; 240:945-959. [PMID: 37664990 DOI: 10.1111/nph.19234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 09/05/2023]
Abstract
The formation of inflorescences and flowers is essential for the successful reproduction of angiosperms. In the past few decades, genetic studies have identified the LEAFY transcription factor and the UNUSUAL FLORAL ORGANS (UFO) F-box protein as two major regulators of flower development in a broad range of angiosperm species. Recent research has revealed that UFO acts as a transcriptional cofactor, redirecting the LEAFY floral regulator to novel cis-elements. In this review, we summarize the various roles of UFO across species, analyze past results in light of new discoveries and highlight the key questions that remain to be solved.
Collapse
Affiliation(s)
- Philippe Rieu
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| | - Moïra Arnoux-Courseaux
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| | - Gabrielle Tichtinsky
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| | - François Parcy
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| |
Collapse
|
24
|
Paull RE, Ksouri N, Kantar M, Zerpa‐Catanho D, Chen NJ, Uruu G, Yue J, Guo S, Zheng Y, Wai CMJ, Ming R. Differential gene expression during floral transition in pineapple. PLANT DIRECT 2023; 7:e541. [PMID: 38028646 PMCID: PMC10644199 DOI: 10.1002/pld3.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Pineapple (Ananas comosus var. comosus) and ornamental bromeliads are commercially induced to flower by treatment with ethylene or its analogs. The apex is transformed from a vegetative to a floral meristem and shows morphological changes in 8 to 10 days, with flowers developing 8 to 10 weeks later. During eight sampling stages ranging from 6 h to 8 days after treatment, 7961 genes were found to exhibit differential expression (DE) after the application of ethylene. In the first 3 days after treatment, there was little change in ethylene synthesis or in the early stages of the ethylene response. Subsequently, three ethylene response transcription factors (ERTF) were up-regulated and the potential gene targets were predicted to be the positive flowering regulator CONSTANS-like 3 (CO), a WUSCHEL gene, two APETALA1/FRUITFULL (AP1/FUL) genes, an epidermal patterning gene, and a jasmonic acid synthesis gene. We confirm that pineapple has lost the flowering repressor FLOWERING LOCUS C. At the initial stages, the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was not significantly involved in this transition. Another WUSCHEL gene and a PHD homeobox transcription factor, though not apparent direct targets of ERTF, were up-regulated within a day of treatment, their predicted targets being the up-regulated CO, auxin response factors, SQUAMOSA, and histone H3 genes with suppression of abscisic acid response genes. The FLOWERING LOCUS T (FT), TERMINAL FLOWER (TFL), AGAMOUS-like APETELAR (AP2), and SEPETALA (SEP) increased rapidly within 2 to 3 days after ethylene treatment. Two FT genes were up-regulated at the apex and not at the leaf bases after treatment, suggesting that transport did not occur. These results indicated that the ethylene response in pineapple and possibly most bromeliads act directly to promote the vegetative to flower transition via APETALA1/FRUITFULL (AP1/FUL) and its interaction with SPL, FT, TFL, SEP, and AP2. A model based on AP2/ERTF DE and predicted DE target genes was developed to give focus to future research. The identified candidate genes are potential targets for genetic manipulation to determine their molecular role in flower transition.
Collapse
Affiliation(s)
- Robert E. Paull
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Najla Ksouri
- Laboratory of Genomics, Genetics and Breeding of Fruits and Grapevine, Experimental Aula Dei‐CSICZaragozaSpain
| | - Michael Kantar
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | | | - Nancy Jung Chen
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Gail Uruu
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Jingjing Yue
- Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shiyong Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | | | - Ray Ming
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
25
|
Zemach I, Alseekh S, Tadmor-Levi R, Fisher J, Torgeman S, Trigerman S, Nauen J, Hayut SF, Mann V, Rochsar E, Finkers R, Wendenburg R, Osorio S, Bergmann S, Lunn JE, Semel Y, Hirschberg J, Fernie AR, Zamir D. Multi-year field trials provide a massive repository of trait data on a highly diverse population of tomato and uncover novel determinants of tomato productivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1136-1151. [PMID: 37150955 DOI: 10.1111/tpj.16268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/21/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
Tomato (Solanum lycopersicum) is a prominent fruit with rich genetic resources for crop improvement. By using a phenotype-guided screen of over 7900 tomato accessions from around the world, we identified new associations for complex traits such as fruit weight and total soluble solids (Brix). Here, we present the phenotypic data from several years of trials. To illustrate the power of this dataset we use two case studies. First, evaluation of color revealed allelic variation in phytoene synthase 1 that resulted in differently colored or even bicolored fruit. Secondly, in view of the negative relationship between fruit weight and Brix, we pre-selected a subset of the collection that includes high and low Brix values in each category of fruit size. Genome-wide association analysis allowed us to detect novel loci associated with total soluble solid content and fruit weight. In addition, we developed eight F2 biparental intraspecific populations. Furthermore, by taking a phenotype-guided approach we were able to isolate individuals with high Brix values that were not compromised in terms of yield. In addition, the demonstration of novel results despite the high number of previous genome-wide association studies of these traits in tomato suggests that adoption of a phenotype-guided pre-selection of germplasm may represent a useful strategy for finding target genes for breeding.
Collapse
Affiliation(s)
- Itay Zemach
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Roni Tadmor-Levi
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Josef Fisher
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Torgeman
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Shay Trigerman
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Julia Nauen
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Shdema Filler Hayut
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Varda Mann
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Edan Rochsar
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Richard Finkers
- Plant Breeding, Wageningen Plant Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Regina Wendenburg
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Sonia Osorio
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Department of Molecular Biology and Biochemistry, Instituto de Hortofruticultura Subtropical y Mediterranea "La Mayora", University of Malaga-Consejo Superior de Investigaciones Cientıficas, Malaga, Spain
| | - Susan Bergmann
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - John E Lunn
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Yaniv Semel
- Phenome Networks, 10 Plaut Street, Science Park, 76706, Rehovot, Israel
| | - Joseph Hirschberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Dani Zamir
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
26
|
Chen YH, Lu J, Yang X, Huang LC, Zhang CQ, Liu QQ, Li QF. Gene editing of non-coding regulatory DNA and its application in crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6158-6175. [PMID: 37549968 DOI: 10.1093/jxb/erad313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The development of the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) system has provided precise and efficient strategies to edit target genes and generate transgene-free crops. Significant progress has been made in the editing of protein-coding genes; however, studies on the editing of non-coding DNA with regulatory roles lags far behind. Non-coding regulatory DNAs, including those which can be transcribed into long non-coding RNAs (lncRNAs), and miRNAs, together with cis-regulatory elements (CREs), play crucial roles in regulating plant growth and development. Therefore, the combination of CRISPR/Cas technology and non-coding regulatory DNA has great potential to generate novel alleles that affect various agronomic traits of crops, thus providing valuable genetic resources for crop breeding. Herein, we review recent advances in the roles of non-coding regulatory DNA, attempts to edit non-coding regulatory DNA for crop improvement, and potential application of novel editing tools in modulating non-coding regulatory DNA. Finally, the existing problems, possible solutions, and future applications of gene editing of non-coding regulatory DNA in modern crop breeding practice are also discussed.
Collapse
Affiliation(s)
- Yu-Hao Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jun Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xia Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Li-Chun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
27
|
Rahmati Ishka M, Julkowska M. Tapping into the plasticity of plant architecture for increased stress resilience. F1000Res 2023; 12:1257. [PMID: 38434638 PMCID: PMC10905174 DOI: 10.12688/f1000research.140649.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 03/05/2024] Open
Abstract
Plant architecture develops post-embryonically and emerges from a dialogue between the developmental signals and environmental cues. Length and branching of the vegetative and reproductive tissues were the focus of improvement of plant performance from the early days of plant breeding. Current breeding priorities are changing, as we need to prioritize plant productivity under increasingly challenging environmental conditions. While it has been widely recognized that plant architecture changes in response to the environment, its contribution to plant productivity in the changing climate remains to be fully explored. This review will summarize prior discoveries of genetic control of plant architecture traits and their effect on plant performance under environmental stress. We review new tools in phenotyping that will guide future discoveries of genes contributing to plant architecture, its plasticity, and its contributions to stress resilience. Subsequently, we provide a perspective into how integrating the study of new species, modern phenotyping techniques, and modeling can lead to discovering new genetic targets underlying the plasticity of plant architecture and stress resilience. Altogether, this review provides a new perspective on the plasticity of plant architecture and how it can be harnessed for increased performance under environmental stress.
Collapse
|
28
|
Field S, Jang GJ, Dean C, Strader LC, Rhee SY. Plants use molecular mechanisms mediated by biomolecular condensates to integrate environmental cues with development. THE PLANT CELL 2023; 35:3173-3186. [PMID: 36879427 PMCID: PMC10473230 DOI: 10.1093/plcell/koad062] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This review highlights recent literature on biomolecular condensates in plant development and discusses challenges for fully dissecting their functional roles. Plant developmental biology has been inundated with descriptive examples of biomolecular condensate formation, but it is only recently that mechanistic understanding has been forthcoming. Here, we discuss recent examples of potential roles biomolecular condensates play at different stages of the plant life cycle. We group these examples based on putative molecular functions, including sequestering interacting components, enhancing dwell time, and interacting with cytoplasmic biophysical properties in response to environmental change. We explore how these mechanisms could modulate plant development in response to environmental inputs and discuss challenges and opportunities for further research into deciphering molecular mechanisms to better understand the diverse roles that biomolecular condensates exert on life.
Collapse
Affiliation(s)
- Sterling Field
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Geng-Jen Jang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Knapp S, Särkinen T, Barboza GE. A revision of the South American species of the Morelloid clade ( Solanum L., Solanaceae). PHYTOKEYS 2023; 231:1-342. [PMID: 37680322 PMCID: PMC10481398 DOI: 10.3897/phytokeys.231.100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/13/2023] [Indexed: 09/09/2023]
Abstract
The Morelloid clade, also known as the black nightshades or "Maurella" (Morella), is one of the 10 major clades within the mega-diverse genus Solanum L. The clade is most diverse in the central to southern Andes, but species occur around the tropics and subtropics, some extending well into the temperate zone. Plants of the group vary from herbs to short-lived perennials to perennial shrubs that are distinctly woody at the base, they have small mostly white or purplish white flowers and small juicy berries. Due to the complex morphological variation and weedy nature of these plants, coupled with the large number of published synonyms (especially for European taxa), our understanding of species limits and diversity in the Morelloid clade has lagged behind that of other clades in Solanum. Here we provide the last in a three-part series of monographic treatments of the morelloid solanums (see PhytoKeys Vols. 106, 125), treating the 62 species occurring in South America. This region is by far the most diverse in the clade, both in terms of species number and morphological diversity. We provide complete synonymy, nomenclatural details, including lecto- and neotypifications where needed, common names and uses, morphological descriptions, illustrations to aid identification both in herbaria and in the field, and distribution maps for all native, non-cultivated species. We include a key to all species, a synoptic character list for the species treated here and links to synoptic online keys for all species of the Morelloid clade. Preliminary conservation assessments following IUCN guidelines are also provided for all native species.
Collapse
Affiliation(s)
- Sandra Knapp
- Natural History Museum, Cromwell Road, London SW7 5BD, UKNatural History MuseumLondonUnited Kingdom
| | - Tiina Särkinen
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UKRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Gloria E. Barboza
- Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Casilla de Correo 495, 5000 Córdoba, ArgentinaInstituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba)CordobaArgentina
| |
Collapse
|
30
|
Zahn IE, Roelofsen C, Angenent GC, Bemer M. TM3 and STM3 Promote Flowering Together with FUL2 and MBP20, but Act Antagonistically in Inflorescence Branching in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2754. [PMID: 37570908 PMCID: PMC10420972 DOI: 10.3390/plants12152754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
The moment at which a plant transitions to reproductive development is paramount to its life cycle and is strictly controlled by many genes. The transcription factor SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) plays a central role in this process in Arabidopsis. However, the role of SOC1 in tomato (Solanum lycopersicum) has been sparsely studied. Here, we investigated the function of four tomato SOC1 homologs in the floral transition and inflorescence development. We thoroughly characterized the SOC1-like clade throughout the Solanaceae and selected four tomato homologs that are dynamically expressed upon the floral transition. We show that of these homologs, TOMATO MADS 3 (TM3) and SISTER OF TM3 (STM3) promote the primary and sympodial transition to flowering, while MADS-BOX PROTEIN 23 (MBP23) and MBP18 hardly contribute to flowering initiation in the indeterminate cultivar Moneyberg. Protein-protein interaction assays and whole-transcriptome analysis during reproductive meristem development revealed that TM3 and STM3 interact and share many targets with FRUITFULL (FUL) homologs, including cytokinin regulators. Furthermore, we observed that mutating TM3/STM3 affects inflorescence development, but counteracts the inflorescence-branching phenotype of ful2 mbp20. Collectively, this indicates that TM3/STM3 promote the floral transition together with FUL2/MBP20, while these transcription factors have opposite functions in inflorescence development.
Collapse
Affiliation(s)
- Iris E. Zahn
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (I.E.Z.); (G.C.A.)
| | - Chris Roelofsen
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (I.E.Z.); (G.C.A.)
| | - Gerco C. Angenent
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (I.E.Z.); (G.C.A.)
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Marian Bemer
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
31
|
Lembinen S, Cieslak M, Zhang T, Mackenzie K, Elomaa P, Prusinkiewicz P, Hytönen T. Diversity of woodland strawberry inflorescences arises from heterochrony regulated by TERMINAL FLOWER 1 and FLOWERING LOCUS T. THE PLANT CELL 2023; 35:2079-2094. [PMID: 36943776 DOI: 10.1093/plcell/koad086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 05/30/2023]
Abstract
A vast variety of inflorescence architectures have evolved in angiosperms. Here, we analyze the diversity and development of the woodland strawberry (Fragaria vesca) inflorescence. Contrary to historical classifications, we show that it is a closed thyrse: a compound inflorescence with determinate primary monopodial axis and lateral sympodial branches, thus combining features of racemes and cymes. We demonstrate that this architecture is generated by 2 types of inflorescence meristems differing in their geometry. We further show that woodland strawberry homologs of TERMINAL FLOWER 1 (FvTFL1) and FLOWERING LOCUS T (FvFT1) regulate the development of both the racemose and cymose components of the thyrse. Loss of functional FvTFL1 reduces the number of lateral branches of the main axis and iterations in the lateral branches but does not affect their cymose pattern. These changes can be enhanced or compensated by altering FvFT1 expression. We complement our experimental findings with a computational model that captures inflorescence development using a small set of rules. The model highlights the distinct regulation of the fate of the primary and higher-order meristems, and explains the phenotypic diversity among inflorescences in terms of heterochrony resulting from the opposite action of FvTFL1 and FvFT1 within the thyrse framework. Our results represent a detailed analysis of thyrse architecture development at the meristematic and molecular levels.
Collapse
Affiliation(s)
- Sergei Lembinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki FIN-00014, Finland
| | - Mikolaj Cieslak
- Department of Computer Science, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Teng Zhang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki FIN-00014, Finland
| | - Kathryn Mackenzie
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki FIN-00014, Finland
| | - Paula Elomaa
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki FIN-00014, Finland
| | | | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki FIN-00014, Finland
| |
Collapse
|
32
|
Wang X, Liu Z, Bai J, Sun S, Song J, Li R, Cui X. Antagonistic regulation of target genes by the SISTER OF TM3-JOINTLESS2 complex in tomato inflorescence branching. THE PLANT CELL 2023; 35:2062-2078. [PMID: 36881857 PMCID: PMC10226558 DOI: 10.1093/plcell/koad065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 05/30/2023]
Abstract
Inflorescence branch number is a yield-related trait controlled by cell fate determination in meristems. Two MADS-box transcription factors (TFs)-SISTER OF TM3 (STM3) and JOINTLESS 2 (J2)-have opposing regulatory roles in inflorescence branching. However, the mechanisms underlying their regulatory functions in inflorescence determinacy remain unclear. Here, we characterized the functions of these TFs in tomato (Solanum lycopersicum) floral meristem and inflorescence meristem (IM) through chromatin immunoprecipitation and sequencing analysis of their genome-wide occupancy. STM3 and J2 activate or repress the transcription of a set of common putative target genes, respectively, through recognition and binding to CArG box motifs. FRUITFULL1 (FUL1) is a shared putative target of STM3 and J2 and these TFs antagonistically regulate FUL1 in inflorescence branching. Moreover, STM3 physically interacts with J2 to mediate its cytosolic redistribution and restricts J2 repressor activity by reducing its binding to target genes. Conversely, J2 limits STM3 regulation of target genes by transcriptional repression of the STM3 promoter and reducing STM3-binding activity. Our study thus reveals an antagonistic regulatory relationship in which STM3 and J2 control tomato IM determinacy and branch number.
Collapse
Affiliation(s)
- Xiaotian Wang
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqiang Liu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingwei Bai
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Song
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
33
|
Ning Y, Wei K, Li S, Zhang L, Chen Z, Lu F, Yang P, Yang M, Liu X, Liu X, Wang X, Cao X, Wang X, Guo Y, Liu L, Li X, Du Y, Li J, Huang Z. Fine Mapping of fw6.3, a Major-Effect Quantitative Trait Locus That Controls Fruit Weight in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112065. [PMID: 37299049 DOI: 10.3390/plants12112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 06/12/2023]
Abstract
Tomato (Solanum lycopersicum) is a widely consumed vegetable, and the tomato fruit weight is a key yield component. Many quantitative trait loci (QTLs) controlling tomato fruit weight have been identified, and six of them have been fine-mapped and cloned. Here, four loci controlling tomato fruit weight were identified in an F2 population through QTL seq.; fruit weight 6.3 (fw6.3) was a major-effect QTL and its percentage of variation explanation (R2) was 0.118. This QTL was fine-mapped to a 62.6 kb interval on chromosome 6. According to the annotated tomato genome (version SL4.0, annotation ITAG4.0), this interval contained seven genes, including Solyc06g074350 (the SELF-PRUNING gene), which was likely the candidate gene underlying variation in fruit weight. The SELF-PRUNING gene contained a single-nucleotide polymorphism that resulted in an amino acid substitution in the protein sequence. The large-fruit allele of fw6.3 (fw6.3HG) was overdominant to the small-fruit allele fw6.3RG. The soluble solids content was also increased by fw6.3HG. These findings provide valuable information that will aid the cloning of the FW6.3 gene and ongoing efforts to breed tomato plants with higher yield and quality via molecular marker-assisted selection.
Collapse
Affiliation(s)
- Yu Ning
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ziyue Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feifei Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pei Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengxia Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaolin Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaotian Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoxuan Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanmei Guo
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongchen Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junming Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zejun Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
34
|
Sun S, Wang X, Liu Z, Bai J, Song J, Li R, Cui X. Tomato APETALA2 family member SlTOE1 regulates inflorescence branching by repressing SISTER OF TM3. PLANT PHYSIOLOGY 2023; 192:293-306. [PMID: 36747310 PMCID: PMC10152655 DOI: 10.1093/plphys/kiad075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 05/03/2023]
Abstract
Inflorescence architecture directly impacts yield potential in most crops. As a model of sympodial plants, tomato (Solanum lycopersicum) inflorescence exhibits highly structural plasticity. However, the genetic regulatory network of inflorescence architecture in tomato remains unclear. Here, we investigated a modulator of inflorescence branching in tomato, TARGET OF EAT1 (SlTOE1), an APETALA2 (AP2) family member found to be predominantly expressed in the floral meristem (FM) of tomato. sltoe1 knockout mutants displayed highly branched inflorescences and defective floral organs. Transcriptome analysis revealed that SISTER OF TM3 (STM3) and certain floral development-related genes were upregulated in the flower meristem of sltoe1. SlTOE1 could directly bind the promoters of STM3 and Tomato MADS-box gene 3 (TM3) to repress their transcription. Simultaneous mutation of STM3 and TM3 partially restored the inflorescence branching of the sltoe1cr mutants, suggesting that SlTOE1 regulates inflorescence development, at least in part through an SlTOE1STM3/TM3 module. Genetic analysis showed that SlTOE1 and ENHANCER OF JOINTLESS 2 (EJ2) additively regulate tomato inflorescence branching; their double mutants showed more extensive inflorescence branching. Our findings uncover a pathway controlling tomato inflorescence branching and offer deeper insight into the functions of AP2 subfamily members.
Collapse
Affiliation(s)
- Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaotian Wang
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiqiang Liu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingwei Bai
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Song
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
35
|
Hill T, Cassibba V, Joukhadar I, Tonnessen B, Havlik C, Ortega F, Sripolcharoen S, Visser BJ, Stoffel K, Thammapichai P, Garcia-Llanos A, Chen S, Hulse-Kemp A, Walker S, Van Deynze A. Genetics of destemming in pepper: A step towards mechanical harvesting. Front Genet 2023; 14:1114832. [PMID: 37007971 PMCID: PMC10064014 DOI: 10.3389/fgene.2023.1114832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/31/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction: The majority of peppers in the US for fresh market and processing are handpicked, and harvesting can account for 20-50% of production costs. Innovation in mechanical harvesting would increase availability; lower the costs of local, healthy vegetable products; and perhaps improve food safety and expand markets. Most processed peppers require removal of pedicels (stem and calyx) from the fruit, but lack of an efficient mechanical process for this operation has hindered adoption of mechanical harvest. In this paper, we present characterization and advancements in breeding green chile peppers for mechanical harvesting. Specifically, we describe inheritance and expression of an easy-destemming trait derived from the landrace UCD-14 that facilitates machine harvest of green chiles. Methods: A torque gauge was used for measuring bending forces similar to those of a harvester and applied to two biparental populations segregating for destemming force and rate. Genotyping by sequencing was used to generate genetic maps for quantitative trait locus (QTL) analyses. Results: A major destemming QTL was found on chromosome 10 across populations and environments. Eight additional population and/or environment-specific QTL were also identified. Chromosome 10 QTL markers were used to help introgress the destemming trait into jalapeño-type peppers. Low destemming force lines combined with improvements in transplant production enabled mechanical harvest of destemmed fruit at a rate of 41% versus 2% with a commercial jalapeńo hybrid. Staining for the presence of lignin at the pedicel/fruit boundary indicated the presence of an abscission zone and homologs of genes known to affect organ abscission were found under several QTL, suggesting that the easy-destemming trait may be due to the presence and activation of a pedicel/fruit abscission zone. Conclusion: Presented here are tools to measure the easy-destemming trait, its physiological basis, possible molecular pathways, and expression of the trait in various genetic backgrounds. Mechanical harvest of destemmed mature green chile fruits was achieved by combining easy-destemming with transplant management.
Collapse
Affiliation(s)
- Theresa Hill
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Vincenzo Cassibba
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Israel Joukhadar
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Bradley Tonnessen
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Charles Havlik
- Los Lunas Agricultural Science Center, Los Lunas, NM, United States
| | - Franchesca Ortega
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | | | | | - Kevin Stoffel
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Paradee Thammapichai
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Armando Garcia-Llanos
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Shiyu Chen
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Amanda Hulse-Kemp
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Stephanie Walker
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Allen Van Deynze
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
36
|
Vats S, Kumar V, Mandlik R, Patil G, Sonah H, Roy J, Sharma TR, Deshmukh R. Reference Guided De Novo Genome Assembly of Transformation Pliable Solanum lycopersicum cv. Pusa Ruby. Genes (Basel) 2023; 14:570. [PMID: 36980842 PMCID: PMC10047940 DOI: 10.3390/genes14030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Solanum lycopersicum cv. Pusa Ruby (PR) is a superior tomato cultivar routinely used as a model tomato variety. Here, we report a reference-guided genome assembly for PR, covering 97.6% of the total single-copy genes in the solanales order. The PR genome contains 34,075 genes and 423,288 variants, out of which 127,131 are intragenic and 1232 are of high impact. The assembly was packaged according to PanSol guidelines (N50 = 60,396,827) with the largest scaffold measuring 85 megabases. The similarity of the PR genome assembly to Heinz1706, M82, and Fla.8924 was measured and the results suggest PR has the lowest affinity towards the hybrid Fla.8924. We then analyzed the regeneration efficiency of PR in comparison to another variety, Pusa Early Dwarf (PED). PR was found to have a high regeneration rate (45.51%) and therefore, we performed allele mining for genes associated with regeneration and found that only AGAMOUS-LIKE15 has a null mutation. Further, allele mining for fruit quality-related genes was also executed. The PR genome has an Ovate mutation leading to round fruit shape, causing economically undesirable fruit cracking. This genomic data can be potentially used for large scale crop improvement programs as well as functional annotation studies.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Virender Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh 160014, Punjab, India
| | - Gunvant Patil
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79410, USA
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
| | - Tilak Raj Sharma
- Department of Crop Science, Indian Council of Agriculture Research (ICAR), Krishi Bhavan, New Delhi 110001, Delhi, India
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh 123031, Haryana, India
| |
Collapse
|
37
|
Rieu P, Turchi L, Thévenon E, Zarkadas E, Nanao M, Chahtane H, Tichtinsky G, Lucas J, Blanc-Mathieu R, Zubieta C, Schoehn G, Parcy F. The F-box protein UFO controls flower development by redirecting the master transcription factor LEAFY to new cis-elements. NATURE PLANTS 2023; 9:315-329. [PMID: 36732360 DOI: 10.1038/s41477-022-01336-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
In angiosperms, flower development requires the combined action of the transcription factor LEAFY (LFY) and the ubiquitin ligase adaptor F-box protein, UNUSUAL FLORAL ORGANS (UFO), but the molecular mechanism underlying this synergy has remained unknown. Here we show in transient assays and stable transgenic plants that the connection to ubiquitination pathways suggested by the UFO F-box domain is mostly dispensable. On the basis of biochemical and genome-wide studies, we establish that UFO instead acts by forming an active transcriptional complex with LFY at newly discovered regulatory elements. Structural characterization of the LFY-UFO-DNA complex by cryo-electron microscopy further demonstrates that UFO performs this function by directly interacting with both LFY and DNA. Finally, we propose that this complex might have a deep evolutionary origin, largely predating flowering plants. This work reveals a unique mechanism of an F-box protein directly modulating the DNA binding specificity of a master transcription factor.
Collapse
Affiliation(s)
- Philippe Rieu
- Laboratoire Physiologie Cellulaire et Végétale, IRIG-DBSCI-LPCV, Université Grenoble Alpes, CEA, CNRS, INRAE, Grenoble, France
| | - Laura Turchi
- Laboratoire Physiologie Cellulaire et Végétale, IRIG-DBSCI-LPCV, Université Grenoble Alpes, CEA, CNRS, INRAE, Grenoble, France
- Translational Innovation in Medicine and Complexity, Université Grenoble Alpes, CNRS, Grenoble, France
| | - Emmanuel Thévenon
- Laboratoire Physiologie Cellulaire et Végétale, IRIG-DBSCI-LPCV, Université Grenoble Alpes, CEA, CNRS, INRAE, Grenoble, France
| | - Eleftherios Zarkadas
- IBS, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
- EMBL, ISBG, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Max Nanao
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
| | - Hicham Chahtane
- Laboratoire Physiologie Cellulaire et Végétale, IRIG-DBSCI-LPCV, Université Grenoble Alpes, CEA, CNRS, INRAE, Grenoble, France
- Green Mission Pierre Fabre, Conservatoire Botanique Pierre Fabre, Institut de Recherche Pierre Fabre, Soual, France
| | - Gabrielle Tichtinsky
- Laboratoire Physiologie Cellulaire et Végétale, IRIG-DBSCI-LPCV, Université Grenoble Alpes, CEA, CNRS, INRAE, Grenoble, France
| | - Jérémy Lucas
- Laboratoire Physiologie Cellulaire et Végétale, IRIG-DBSCI-LPCV, Université Grenoble Alpes, CEA, CNRS, INRAE, Grenoble, France
| | - Romain Blanc-Mathieu
- Laboratoire Physiologie Cellulaire et Végétale, IRIG-DBSCI-LPCV, Université Grenoble Alpes, CEA, CNRS, INRAE, Grenoble, France
| | - Chloe Zubieta
- Laboratoire Physiologie Cellulaire et Végétale, IRIG-DBSCI-LPCV, Université Grenoble Alpes, CEA, CNRS, INRAE, Grenoble, France
| | - Guy Schoehn
- IBS, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - François Parcy
- Laboratoire Physiologie Cellulaire et Végétale, IRIG-DBSCI-LPCV, Université Grenoble Alpes, CEA, CNRS, INRAE, Grenoble, France.
| |
Collapse
|
38
|
Alonge M, Lebeigle L, Kirsche M, Jenike K, Ou S, Aganezov S, Wang X, Lippman ZB, Schatz MC, Soyk S. Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biol 2022; 23:258. [PMID: 36522651 PMCID: PMC9753292 DOI: 10.1186/s13059-022-02823-7] [Citation(s) in RCA: 314] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Advancing crop genomics requires efficient genetic systems enabled by high-quality personalized genome assemblies. Here, we introduce RagTag, a toolset for automating assembly scaffolding and patching, and we establish chromosome-scale reference genomes for the widely used tomato genotype M82 along with Sweet-100, a new rapid-cycling genotype that we developed to accelerate functional genomics and genome editing in tomato. This work outlines strategies to rapidly expand genetic systems and genomic resources in other plant species.
Collapse
Affiliation(s)
- Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ludivine Lebeigle
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Melanie Kirsche
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Katie Jenike
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Shujun Ou
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sergey Aganezov
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Xingang Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Sebastian Soyk
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
39
|
Vu TV, Nguyen NT, Kim J, Das S, Lee J, Kim JY. The Obstacles and Potential Solution Clues of Prime Editing Applications in Tomato. BIODESIGN RESEARCH 2022; 2022:0001. [PMID: 37905201 PMCID: PMC10593121 DOI: 10.34133/bdr.0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/16/2022] [Indexed: 11/02/2023] Open
Abstract
Precision genome editing is highly desired for crop improvement. The recently emerged CRISPR/Cas technology offers great potential applications in precision plant genome engineering. A prime editing (PE) approach combining a reverse transcriptase (RT) with a Cas9 nickase and a "priming" extended guide RNA (gRNA) has shown a high frequency for precise genome modification in mammalian cells and several plant species. Nevertheless, the applications of the PE approach in dicot plants are still limited and inefficient. We designed and tested prime editors for precision editing of a synthetic sequence in a transient assay and for desirable alleles of 10 loci in tomato by stable transformation. Our data obtained by targeted deep sequencing also revealed only low PE efficiencies in both the tobacco and tomato systems. Further assessment of the activities of the PE components uncovered that the fusion of RT to Cas9 and the structure of PE gRNAs (pegRNAs) negatively affected the cleaving activity of the Cas9 nuclease. The self-complementarity between the primer binding sequences (PBSs) and spacer sequence might pose risks to the activity of the Cas9 complex. However, modifying the pegRNA sequences by shortening or introducing mismatches to the PBSs to reduce their melting temperatures did not enhance the PE efficiency at the MADS-box protein (SlMBP21), alcobaca (SlALC), and acetolactate synthase 1 (SlALS1) loci. Our data show challenges of the PE approach in tomato, indicating that a further improvement of the PE system for successful applications is demanded, such as the use of improved expression systems for enriching active PE complexes.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Km 02, Pham Van Dong Road, Co Nhue 1, Bac Tu Liem, Hanoi 11917, Vietnam
| | - Ngan Thi Nguyen
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Swati Das
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jinsu Lee
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
- Nulla Bio Inc., 501 Jinju-daero, Jinju 660-701, Republic of Korea
| |
Collapse
|
40
|
Fambrini M, Usai G, Pugliesi C. Induction of Somatic Embryogenesis in Plants: Different Players and Focus on WUSCHEL and WUS-RELATED HOMEOBOX (WOX) Transcription Factors. Int J Mol Sci 2022; 23:15950. [PMID: 36555594 PMCID: PMC9781121 DOI: 10.3390/ijms232415950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
In plants, other cells can express totipotency in addition to the zygote, thus resulting in embryo differentiation; this appears evident in apomictic and epiphyllous plants. According to Haberlandt's theory, all plant cells can regenerate a complete plant if the nucleus and the membrane system are intact. In fact, under in vitro conditions, ectopic embryos and adventitious shoots can develop from many organs of the mature plant body. We are beginning to understand how determination processes are regulated and how cell specialization occurs. However, we still need to unravel the mechanisms whereby a cell interprets its position, decides its fate, and communicates it to others. The induction of somatic embryogenesis might be based on a plant growth regulator signal (auxin) to determine an appropriate cellular environment and other factors, including stress and ectopic expression of embryo or meristem identity transcription factors (TFs). Still, we are far from having a complete view of the regulatory genes, their target genes, and their action hierarchy. As in animals, epigenetic reprogramming also plays an essential role in re-establishing the competence of differentiated cells to undergo somatic embryogenesis. Herein, we describe the functions of WUSCHEL-RELATED HOMEOBOX (WOX) transcription factors in regulating the differentiation-dedifferentiation cell process and in the developmental phase of in vitro regenerated adventitious structures.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
41
|
Spitzer-Rimon B, Shafran-Tomer H, Gottlieb GH, Doron-Faigenboim A, Zemach H, Kamenetsky-Goldstein R, Flaishman M. Non-photoperiodic transition of female cannabis seedlings from juvenile to adult reproductive stage. PLANT REPRODUCTION 2022; 35:265-277. [PMID: 36063227 DOI: 10.1007/s00497-022-00449-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Vegetative-to-reproductive phase transition in female cannabis seedlings occurs autonomously with the de novo development of single flowers. To ensure successful sexual reproduction, many plant species originating from seedlings undergo juvenile-to-adult transition. This phase transition precedes and enables the vegetative-to-reproductive shift in plants, upon perception of internal and/or external signals such as temperature, photoperiod, metabolite levels, and phytohormones. This study demonstrates that the juvenile seedlings of cannabis gradually shift to the adult vegetative stage, as confirmed by the formation of lobed leaves, and upregulation of the phase-transition genes. In the tested cultivar, the switch to the reproductive stage occurs with the development of a pair of single flowers in the 7th node. Histological analysis indicated that transition to the reproductive stage is accomplished by the de novo establishment of new flower meristems which are not present in a vegetative stage, or as dormant meristems at nodes 4 and 6. Moreover, there were dramatic changes in the transcriptomic profile of flowering-related genes among nodes 4, 6, and 7. Downregulation of flowering repressors and an intense increase in the transcription of phase transition-related genes occur in parallel with an increase in the transcription of flowering integrators and meristem identity genes. These results support and provide molecular evidence for previous findings that cannabis possesses an autonomous flowering mechanism and the transition to reproductive phase is controlled in this plant mainly by internal signals.
Collapse
Affiliation(s)
- Ben Spitzer-Rimon
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel.
| | - Hadas Shafran-Tomer
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Gilad H Gottlieb
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Hanita Zemach
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Rina Kamenetsky-Goldstein
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Moshe Flaishman
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| |
Collapse
|
42
|
Kumar K, Mandal SN, Pradhan B, Kaur P, Kaur K, Neelam K. From Evolution to Revolution: Accelerating Crop Domestication through Genome Editing. PLANT & CELL PHYSIOLOGY 2022; 63:1607-1623. [PMID: 36018059 DOI: 10.1093/pcp/pcac124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Crop domestication has a tremendous impact on socioeconomic conditions and human civilization. Modern cultivars were domesticated from their wild progenitors thousands of years ago by the selection of natural variation by humans. New cultivars are being developed by crossing two or more compatible individuals. But the limited genetic diversity in the cultivars severely affects the yield and renders the crop susceptible to many biotic and abiotic stresses. Crop wild relatives (CWRs) are the rich reservoir for many valuable agronomic traits. The incorporation of useful genes from CWR is one of the sustainable approaches for enriching the gene pool of cultivated crops. However, CWRs are not suited for urban and intensive cultivation because of several undesirable traits. Researchers have begun to study the domestication traits in the CWRs and modify them using genome-editing tools to make them suitable for extensive cultivation. Growing evidence has shown that modification in these genes is not sufficient to bring the desired change in the neodomesticated crop. However, the other dynamic genetic factors such as microRNAs (miRNAs), transposable elements, cis-regulatory elements and epigenetic changes have reshaped the domesticated crops. The creation of allelic series for many valuable domestication traits through genome editing holds great potential for the accelerated development of neodomesticated crops. The present review describes the current understanding of the genetics of domestication traits that are responsible for the agricultural revolution. The targeted mutagenesis in these domestication genes via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 could be used for the rapid domestication of CWRs.
Collapse
Affiliation(s)
- Kishor Kumar
- Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Swarupa Nanda Mandal
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Extended Campus, Burdwan, West Bengal 713101, India
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79415, USA
| | - Bhubaneswar Pradhan
- Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Pavneet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Karminderbir Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
43
|
Comparative Analysis of Environment-Responsive Alternative Splicing in the Inflorescences of Cultivated and Wild Tomato Species. Int J Mol Sci 2022; 23:ijms231911585. [PMID: 36232886 PMCID: PMC9569760 DOI: 10.3390/ijms231911585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cultivated tomato (Solanum lycopersicum) is bred for fruit production in optimized environments, in contrast to harsh environments where their ancestral relatives thrive. The process of domestication and breeding has profound impacts on the phenotypic plasticity of plant development and the stress response. Notably, the alternative splicing (AS) of precursor message RNA (pre-mRNA), which is one of the major factors contributing to transcriptome complexity, is responsive to developmental cues and environmental change. To determine a possible association between AS events and phenotypic plasticity, we investigated environment-responsive AS events in the inflorescences of cultivated tomato and its ancestral relatives S. pimpinellifolium. Despite that similar AS frequencies were detected in the cultivated tomato variety Moneymaker and two S. pimpinellifolium accessions under the same growth conditions, 528 genes including splicing factors showed differential splicing in the inflorescences of plants grown in open fields and plastic greenhouses in the Moneymaker variety. In contrast, the two S. pimpinellifolium accessions, LA1589 and LA1781, had 298 and 268 genes showing differential splicing, respectively. Moreover, seven heat responsive genes showed opposite expression patterns in response to changing growth conditions between Moneymaker and its ancestral relatives. Accordingly, there were eight differentially expressed splice variants from genes involved in heat response in Moneymaker. Our results reveal distinctive features of AS events in the inflorescences between cultivated tomato and its ancestral relatives, and show that AS regulation in response to environmental changes is genotype dependent.
Collapse
|
44
|
Wang H, Li X, Wolabu T, Wang Z, Liu Y, Tadesse D, Chen N, Xu A, Bi X, Zhang Y, Chen J, Tadege M. WOX family transcriptional regulators modulate cytokinin homeostasis during leaf blade development in Medicago truncatula and Nicotiana sylvestris. THE PLANT CELL 2022; 34:3737-3753. [PMID: 35766878 PMCID: PMC9516142 DOI: 10.1093/plcell/koac188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The plant-specific family of WUSCHEL (WUS)-related homeobox (WOX) transcription factors is key regulators of embryogenesis, meristem maintenance, and lateral organ development in flowering plants. The modern/WUS clade transcriptional repressor STENOFOLIA/LAMINA1(LAM1), and the intermediate/WOX9 clade transcriptional activator MtWOX9/NsWOX9 antagonistically regulate leaf blade expansion, but the molecular mechanism is unknown. Using transcriptome profiling and biochemical methods, we determined that NsCKX3 is the common target of LAM1 and NsWOX9 in Nicotiana sylvestris. LAM1 and NsWOX9 directly recognize and bind to the same cis-elements in the NsCKX3 promoter to repress and activate its expression, respectively, thus controlling the levels of active cytokinins in vivo. Disruption of NsCKX3 in the lam1 background yielded a phenotype similar to the knockdown of NsWOX9 in lam1, while overexpressing NsCKX3 resulted in narrower and shorter lam1 leaf blades reminiscent of NsWOX9 overexpression in the lam1 mutant. Moreover, we established that LAM1 physically interacts with NsWOX9, and this interaction is required to regulate NsCKX3 transcription. Taken together, our results indicate that repressor and activator WOX members oppositely regulate a common downstream target to function in leaf blade outgrowth, offering a novel insight into the role of local cytokinins in balancing cell proliferation and differentiation during lateral organ development.
Collapse
Affiliation(s)
- Hui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Xue Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tezera Wolabu
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Ziyao Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ye Liu
- Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dimiru Tadesse
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Naichong Chen
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Aijiao Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| |
Collapse
|
45
|
Yang Y, Zhao T, Xu X, Jiang J, Li J. Transcriptome Analysis to Explore the Cause of the Formation of Different Inflorescences in Tomato. Int J Mol Sci 2022; 23:ijms23158216. [PMID: 35897806 PMCID: PMC9368726 DOI: 10.3390/ijms23158216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
The number of inflorescence branches is an important agronomic character of tomato. The meristem differentiation and development pattern of tomato inflorescence is complex and its regulation mechanism is very different from those of other model plants. Therefore, in order to explore the cause of tomato inflorescence branching, transcriptome analysis was conducted on two kinds of tomato inflorescences (single racemes and compound inflorescences). According to the transcriptome data analysis, there were many DEGs of tomato inflorescences at early, middle, and late stages. Then, GO and KEGG enrichments of DEGs were performed. DEGs are mainly enriched in metabolic pathways, biohormone signaling, and cell cycle pathways. According to previous studies, DEGs were mainly enriched in metabolic pathways, and FALSIFLORA (FA) and ANANTHA (AN) genes were the most notable of 41 DEGs related to inflorescence branching. This study not only provides a theoretical basis for understanding inflorescence branching, but also provides a new idea for the follow-up study of inflorescence.
Collapse
|
46
|
Tanaka Y, Yokota M, Goto N, Goto T, Yoshida Y, Yasuba KI, Ohno S, Doi M. Morphological and gene expression characterization of maf-1, a floral chili pepper mutant caused by a nonsense mutation in CaLFY. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:32. [PMID: 37313508 PMCID: PMC10248606 DOI: 10.1007/s11032-022-01304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Chili peppers are important as vegetables and ornamental crops, because of the variety of fruit shapes and colors. Understanding of flower and fruit development in Capsicum is limited compared with closely related Solanaceae crops such as tomato. This study reports a novel malformed fruit mutant named malformed fruit-1 (maf-1), which was isolated from an ethyl methanesulfonate-induced mutant population of chili pepper. maf-1 exhibited homeotic changes in the floral bud, which were characterized by conversion of petals and stamens into sepal-like and carpel-like organs, respectively. In addition, the indeterminate formation of carpel-like tissue was observed. Genetic analysis demonstrated that the causative gene in maf-1 is a nonsense mutation in CaLFY. This is the first characterization of an lfy mutant in Capsicum. Unlike tomatoes, the CaLFY mutation did not affect the architecture of sympodial unit or flowering time but mainly affected the formation of flower organs. Gene expression analysis suggested that a nonsense mutation in CaLFY led to decreased expression of multiple class B genes, resulting in homeotic changes in the flower and fruit. This maf-1 mutant may provide new insights at the molecular level in understanding flower organ formation and the genetic manipulation of fruit shape in chili peppers. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01304-w.
Collapse
Affiliation(s)
- Yoshiyuki Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho Sakyo-ku, Kyoto, 606-8502 Japan
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530 Japan
| | - Mizuki Yokota
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho Sakyo-ku, Kyoto, 606-8502 Japan
| | - Naoto Goto
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530 Japan
| | - Tanjuro Goto
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530 Japan
| | - Yuichi Yoshida
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530 Japan
| | - Ken-ichiro Yasuba
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530 Japan
| | - Sho Ohno
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho Sakyo-ku, Kyoto, 606-8502 Japan
| | - Motoaki Doi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
47
|
Aubriot X, Knapp S. A revision of the "spiny solanums" of Tropical Asia ( Solanum, the Leptostemonum Clade, Solanaceae). PHYTOKEYS 2022; 198:1-270. [PMID: 36760991 PMCID: PMC9849010 DOI: 10.3897/phytokeys.198.79514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/20/2022] [Indexed: 06/18/2023]
Abstract
The Leptostemonum Clade, or the "spiny solanums", is the most species-rich monophyletic clade of the large cosmopolitan genus Solanum (Solanaceae) and represents almost half the species diversity of the genus. Species diversity in the clade is highest in the Americas, but significant clusters of endemic taxa occur in the Eastern Hemisphere. We present here a taxonomic revision of the 51 species of spiny solanums occurring in tropical Asia (excluding the island of New Guinea, and the lowlands of Nepal and Bhutan). Three species are described as new: Solanumkachinense X.Aubriot & S.Knapp, sp. nov. from northern Myanmar, S.peikuoense S.S.Ying, sp. nov. from Taiwan, and S.sulawesi X.Aubriot & S.Knapp, sp. nov. from northern Sulawesi, Indonesia. Of the spiny solanums occurring in the region, 38 are native and 13 are introduced from the Americas or Africa, either as adventive weeds or as cultivated plants. Phylogenetic resolution amongst these taxa is still a work in progress, so we have chosen to treat these taxa in a geographical context to aid with identification and further taxon discovery. For the native species we provide complete nomenclatural details for all recognised species and their synonyms, complete descriptions, distributions including maps, common names and uses, and preliminary conservation assessments. For the introduced taxa that have been treated in detail elsewhere we provide details of types, synonyms based on tropical Asian material, general distributions, and common names for the region. We provide lecto- or neotypifications for 67 names; 63 for native and 4 for introduced taxa. All taxa are discussed and compared to similar species; keys are provided for all taxa. We illustrate all native species with herbarium and field photographs and introduced species with field photographs only. All specimens examined for this treatment are included in Suppl. materials 1-3 as searchable files.
Collapse
Affiliation(s)
- Xavier Aubriot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, FranceThe Natural History MuseumLondonUnited Kingdom
- The Natural History Museum, Cromwell Road, London SW7 5BD, UKUniversité Paris-SaclayParisFrance
| | - Sandra Knapp
- The Natural History Museum, Cromwell Road, London SW7 5BD, UKUniversité Paris-SaclayParisFrance
| |
Collapse
|
48
|
Kim Y, Kim GW, Han K, Lee HY, Jo J, Kwon JK, Lemmon Z, Lippman Z, Kang BC. Identification of Genetic Factors Controlling the Formation of Multiple Flowers Per Node in Pepper ( Capsicum spp.). FRONTIERS IN PLANT SCIENCE 2022; 13:884338. [PMID: 35615119 PMCID: PMC9125326 DOI: 10.3389/fpls.2022.884338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Flower production provides the foundation for crop yield and increased profits. Capsicum annuum is a pepper species with a sympodial shoot structure with solitary flowers. By contrast, C. chinense produces multiple flowers per node. C. annuum accounts for 80% of pepper production worldwide. The identification of C. chinense genes that control multiple flowers and their transfer into C. annuum may open the way to increasing fruit yield. In this study, we dissected the genetic factors were dissected controlling the multiple-flower-per-node trait in Capsicum. 85 recombinant inbred lines (RILs) between the contrasting C. annuum 'TF68' and C. chinense 'Habanero' accessions were phenotyped and genotyped. Quantitative Trait Loci (QTL) analysis identified four novel QTLs on chromosomes 1, 2, 7, and 11 that accounted for 65% of the total phenotypic variation. Genome-wide association study was also performed on a panel of 276 genotyped and phenotyped C. annuum accessions, which revealed 28 regions significantly associated with the multiple-flower trait, of which three overlapped the identified QTLs. Five candidate genes involved in the development of the shoot and flower meristems were identified and these genes could cause multiple flowers per node in pepper. These results contribute to our understanding of multiple flower formation in Capsicum and will be useful to develop high-yielding cultivars.
Collapse
Affiliation(s)
- Youngin Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Geon Woo Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Koeun Han
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju, South Korea
| | - Hea-Young Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jinkwan Jo
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Zachary Lippman
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York, NY, United States
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
49
|
Hu G, Wang K, Huang B, Mila I, Frasse P, Maza E, Djari A, Hernould M, Zouine M, Li Z, Bouzayen M. The auxin-responsive transcription factor SlDOF9 regulates inflorescence and flower development in tomato. NATURE PLANTS 2022; 8:419-433. [PMID: 35422080 DOI: 10.1038/s41477-022-01121-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 03/03/2022] [Indexed: 05/04/2023]
Abstract
Understanding the mechanisms underlying differentiation of inflorescence and flower meristems is essential towards enlarging our knowledge of reproductive organ formation and to open new prospects for improving yield traits. Here, we show that SlDOF9 is a new modulator of floral differentiation in tomato. CRISPR/Cas9 knockout strategy uncovered the role of SlDOF9 in controlling inflorescence meristem and floral meristem differentiation via the regulation of cell division genes and inflorescence architecture regulator LIN. Tomato dof9-KO lines have more flowers in both determinate and indeterminate cultivars and produce more fruit upon vibration-assisted fertilization. SlDOF9 regulates inflorescence development through an auxin-dependent ARF5-DOF9 module that seems to operate, at least in part, differently in Arabidopsis and tomato. Our findings add a new actor to the complex mechanisms underlying reproductive organ differentiation in flowering plants and provide leads towards addressing the diversity of factors controlling the transition to reproductive organs.
Collapse
Affiliation(s)
- Guojian Hu
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Keke Wang
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Baowen Huang
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Isabelle Mila
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
| | - Pierre Frasse
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Elie Maza
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Anis Djari
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Michel Hernould
- Biologie du Fruit et Pathologie-UMR 1332, Université Bordeaux, INRAE, Villenave d'Ornon, France
| | - Mohamed Zouine
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Mondher Bouzayen
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France.
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France.
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China.
| |
Collapse
|
50
|
Huang X, Xiao N, Zou Y, Xie Y, Tang L, Zhang Y, Yu Y, Li Y, Xu C. Heterotypic transcriptional condensates formed by prion-like paralogous proteins canalize flowering transition in tomato. Genome Biol 2022; 23:78. [PMID: 35287709 PMCID: PMC8919559 DOI: 10.1186/s13059-022-02646-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/07/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Paralogs that arise from gene duplications during genome evolution enable genetic redundancy and phenotypic robustness. Variation in the coding or regulatory sequence of paralogous transcriptional regulators diversifies their functions and relationships, which provides developmental robustness against genetic or environmental perturbation. The fate transition of plant shoot stem cells for flowering and reproductive success requires a robust transcriptional control. However, how paralogs function and interact to achieve such robustness is unknown. RESULTS Here, we explore the genetic relationship and protein behavior of ALOG family transcriptional factors with diverse transcriptional abundance in shoot meristems. A mutant spectrum covers single and higher-order mutant combinations of five ALOG paralogs and creates a continuum of flowering transition defects, showing gradually enhanced precocious flowering, along with inflorescence simplification from wild-type-like to progressively fewer flowers until solitary flower with sterile floral organs. Therefore, these paralogs play unequal roles and act together to achieve a robust genetic canalization. All five proteins contain prion-like intrinsically disordered regions (IDRs) and undergo phase separation. Accumulated mutations following gene duplications lead to IDR variations among ALOG paralogs, resulting in divergent phase separation and transcriptional regulation capabilities. Remarkably, they retain the ancestral abilities to assemble into a heterotypic condensate that prevents precocious activation of the floral identity gene ANANTHA. CONCLUSIONS Our study reveals a novel genetic canalization mechanism enabled by heterotypic transcriptional condensates formed by paralogous protein interactions and phase separation, uncovering the molecular link between gene duplication caused IDR variation and robust transcriptional control of stem cell fate transition.
Collapse
Affiliation(s)
- Xiaozhen Huang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Nan Xiao
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yupan Zou
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yue Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lingli Tang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yueqin Zhang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,College of Coastal Agricultural Sciences Guangdong Ocean University, Zhanjiang, China
| | - Yuan Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yiting Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cao Xu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China. .,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|