1
|
Stewart D, Albrecht U. Beyond vision: effects of light on the circadian clock and mood-related behaviours. NPJ BIOLOGICAL TIMING AND SLEEP 2025; 2:12. [PMID: 40092590 PMCID: PMC11906358 DOI: 10.1038/s44323-025-00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Light is a crucial environmental factor that influences various aspects of life, including physiological and psychological processes. While light is well-known for its role in enabling humans and other animals to perceive their surroundings, its influence extends beyond vision. Importantly, light affects our internal time-keeping system, the circadian clock, which regulates daily rhythms of biochemical and physiological processes, ultimately impacting mood and behaviour. The 24-h availability of light can have profound effects on our well-being, both physically and mentally, as seen in cases of jet lag and shift work. This review summarizes the intricate relationships between light, the circadian clock, and mood-related behaviours, exploring the underlying mechanisms and its implications for health.
Collapse
Affiliation(s)
- Dean Stewart
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Milligan Armstrong A, O'Brien E, Porter T, Dore V, Bourgeat P, Maruff P, Rowe CC, Villemagne VL, Rainey‐Smith SR, Laws SM, the AIBL Research Group. Exploring the relationship between melanopsin gene variants, sleep, and markers of brain health. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2025; 17:e70056. [PMID: 39822292 PMCID: PMC11736627 DOI: 10.1002/dad2.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 01/19/2025]
Abstract
INTRODUCTION Melanopsin is a photopigment with roles in mediating sleep and circadian-related processes, which are often disrupted in Alzheimer's disease (AD). Melanopsin also impacts cognition and synaptogenesis. This study investigated the associations between melanopsin genetic variants, sleep, and markers of brain health. METHODS Linear regression analyses examined the relationship of single-nucleotide polymorphisms (SNPs) within the melanopsin gene (OPN4), with cortical amyloid beta (Aβ), cognition, brain volumes, and self-reported sleep traits in cognitively unimpaired older adults. Further analyses assessed whether sleep traits x OPN4 SNP interactions were associated with markers of brain health. RESULTS OPN4 SNPs rs2355009 and rs3740334 were associated with attention and processing speed and ventricular volume and language, respectively. Furthermore, rs3740334 and rs1079610 showed significant interactions with sleep traits in association with language. DISCUSSION This study shows associations of OPN4 genetic variants with markers of brain health, and suggests that these variants interact with sleep to exacerbate cognitive effects. Highlights The relationships between melanopsin gene (OPN4) variants and markers of brain health were examined cross-sectionally in cognitively unimpaired older individuals.Variation within OPN4is associated with differences in cognition and ventricular volume.rs2355009 and rs3740334 show small-moderate associations with differences in attention and processing speed. Further to this, rs2355009 and rs3740334 were associated with ventricular volumes and language performance, respectively.The interactions between rs3740334 and rs1079610 and sleep traits also showed small-moderate associations with differences in language performance.
Collapse
Affiliation(s)
- Ayeisha Milligan Armstrong
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Collaborative Genomics and Translation Group, School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Curtin Medical SchoolCurtin University, Kent St.BentleyWestern AustraliaAustralia
| | - Eleanor O'Brien
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Collaborative Genomics and Translation Group, School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - Tenielle Porter
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Collaborative Genomics and Translation Group, School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Curtin Medical SchoolCurtin University, Kent St.BentleyWestern AustraliaAustralia
| | - Vincent Dore
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian E‐Health Research CentreCSIROHerstonQueenslandAustralia
- Department of Molecular Imaging and Therapy and Centre for PETAustin HealthHeidelbergVictoriaAustralia
| | | | - Paul Maruff
- Australian E‐Health Research CentreCSIROParkvilleVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- Cogstate Ltd.MelbourneVictoriaAustralia
| | - Christopher C. Rowe
- Department of Molecular Imaging and Therapy and Centre for PETAustin HealthHeidelbergVictoriaAustralia
- Australian E‐Health Research CentreCSIROParkvilleVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Victor. L. Villemagne
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Department of Molecular Imaging and Therapy and Centre for PETAustin HealthHeidelbergVictoriaAustralia
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Stephanie R. Rainey‐Smith
- Centre for Healthy Ageing, Health Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- Alzheimer's Research AustraliaSarich Neuroscience Research InstituteNedlandsWestern AustraliaAustralia
- School of Psychological ScienceUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - Simon M. Laws
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Collaborative Genomics and Translation Group, School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Curtin Medical SchoolCurtin University, Kent St.BentleyWestern AustraliaAustralia
| | | |
Collapse
|
3
|
Blume C, Münch M. Effects of light on biological functions and human sleep. HANDBOOK OF CLINICAL NEUROLOGY 2025; 206:3-16. [PMID: 39864930 DOI: 10.1016/b978-0-323-90918-1.00008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The nonvisual effects of light in humans are mainly conveyed by a subset of retinal ganglion cells that contain the pigment melanopsin which renders them intrinsically photosensitive (= intrinsically photosensitive retinal ganglion cells, ipRGCs). They have direct connections to the main circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and modulate a variety of physiological processes, pineal melatonin secretion, autonomic functions, cognitive processes such as attention, and behavior, including sleep and wakefulness. This is because efferent projections from the SCN reach other hypothalamic nuclei, the pineal gland, thalamus, basal forebrain, and the brainstem. The ipRGCs also directly impact the prefrontal cortex and the perihabenular nucleus (mood). In particular, light suppresses the secretion of melatonin in a dose-dependent manner, mainly depending on irradiance and spectral composition of light. There is evidence that exposure to light-emitting devices from luminaires and screens before bedtime can impact on sleep onset latency, sleep duration, and sleep quality. Likewise, light exposure during daytime modulates sleep architecture, duration, and sleep quality during the subsequent night. Therefore, the integration of acute, circadian, and long-term effects of light together influence sleep-wake quality and behavior in healthy individuals, as well as in patients with psychiatric or medical disorders.
Collapse
Affiliation(s)
- Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Mirjam Münch
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Ma C, Shen B, Chen L, Yang G. Impacts of circadian disruptions on behavioral rhythms in mice. FASEB J 2024; 38:e70183. [PMID: 39570004 DOI: 10.1096/fj.202401536r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Circadian rhythms are fundamental biological processes that recur approximately every 24 h, with the sleep-wake cycle or circadian behavior being a well-known example. In the field of chronobiology, mice serve as valuable model animals for studying mammalian circadian rhythms due to their genetic similarity to humans and the availability of various genetic tools for manipulation. Monitoring locomotor activity in mice provides valuable insights into the impact of various conditions or disturbances on circadian behavior. In this review, we summarized the effects of disturbance of biological rhythms on circadian behavior in mice. External factors, especially light exert a significant impact on circadian behavior. Additionally, feeding timing, food composition, ambient temperature, and physical exercise contribute to variations in the behavior of the mouse. Internal factors, including gender, age, genetic background, and clock gene mutation or deletion, are effective as well. Understanding the effects of circadian disturbances on murine behavior is essential for gaining insights into the underlying mechanisms of circadian regulation and developing potential therapeutic interventions for circadian-related disorders in humans.
Collapse
Affiliation(s)
- Changxiao Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bingyi Shen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai, China
| | - Guangrui Yang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
5
|
Amiot V, Tomasoni M, Minier A, Gisselbaek S, Kawasaki A, Kostic C. PupilMetrics: a support system for preprocessing of pupillometric data and extraction of outcome measures. Sci Rep 2024; 14:28775. [PMID: 39567634 PMCID: PMC11579351 DOI: 10.1038/s41598-024-79920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
The rapid pupillary constriction to an abrupt light stimulus is signaled through an oligosynaptic neural pathway that dominates over other supranuclear influences on pupillary movement. A pupillometric recording of the pupil light reflex shows the steep change in pupil size from baseline to maximal constriction. However, when the pupil is recorded in darkness in the phase after light stimulation or in response to non-light stimuli like a sudden noise or cognitive activity, pupil size changes are small and slow. In such cases, pre-processing of pupil recordings to reduce the noise due to intrusion of various artifactual and non-evoked pupillary movements is particularly important but may be time-consuming. To address the paucity of automated tools for pupil light reflex analysis in pupillometry, we aimed to develop a software for automated, user-guided pupillometric data analysis. We identified two types of commonly observed artifacts on pupil recordings. We designed a software, called PupilMetrics, which imports and displays raw pupil data, detects and removes these two types of artifacts, and quantifies outcome measures like pupil size, response time, maximal contraction amplitude and PIPR. The right pupil of 29 healthy adults was recorded using a Neurolight pupillometer (IDMed, Marseilles) in response to 9 different light stimuli. Data analysis of the total 261 pupil responses were performed manually or automatically using PupilMetrics. High correlation was observed between PupilMetrics and manual analysis outcome measures across all stimuli (average R2 = 0.9891 and p < 0.0001) with a near 1-to-1 correspondence (Beta = 0.9940). PupilMetrics reduced the total analysis time from 30 h to under 1 h. PupilMetrics offers a time-efficient alternative to manual processing and delivers comparable results. Such software can facilitate standardization of pupillometry for clinical and research uses.
Collapse
Affiliation(s)
- Victor Amiot
- Platform for Research in Ocular Imaging, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Mattia Tomasoni
- Platform for Research in Ocular Imaging, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Astrid Minier
- Pupillography Lab, Neuro-Ophthalmology Unit, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 15 av. de France, 1004, Lausanne, VD, Switzerland
- Retinal Disorder Research Group, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 15 av. de France, 1004, Lausanne, VD, Switzerland
| | - Sara Gisselbaek
- Pupillography Lab, Neuro-Ophthalmology Unit, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 15 av. de France, 1004, Lausanne, VD, Switzerland
| | - Aki Kawasaki
- Pupillography Lab, Neuro-Ophthalmology Unit, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 15 av. de France, 1004, Lausanne, VD, Switzerland.
| | - Corinne Kostic
- Retinal Disorder Research Group, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 15 av. de France, 1004, Lausanne, VD, Switzerland.
| |
Collapse
|
6
|
Haghani M, Abbasi S, Abdoli L, Shams SF, Baha'addini Baigy Zarandi BF, Shokrpour N, Jahromizadeh A, Mortazavi SA, Mortazavi SMJ. Blue Light and Digital Screens Revisited: A New Look at Blue Light from the Vision Quality, Circadian Rhythm and Cognitive Functions Perspective. J Biomed Phys Eng 2024; 14:213-228. [PMID: 39027713 PMCID: PMC11252550 DOI: 10.31661/jbpe.v0i0.2106-1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/29/2021] [Indexed: 07/20/2024]
Abstract
Research conducted over the years has established that artificial light at night (ALAN), particularly short wavelengths in the blue region (~400-500 nm), can disrupt the circadian rhythm, cause sleep disturbances, and lead to metabolic dysregulation. With the increasing number of people spending considerable amounts of time at home or work staring at digital screens such as smartphones, tablets, and laptops, the negative impacts of blue light are becoming more apparent. While blue wavelengths during the day can enhance attention and reaction times, they are disruptive at night and are associated with a wide range of health problems such as poor sleep quality, mental health problems, and increased risk of some cancers. The growing global concern over the detrimental effects of ALAN on human health is supported by epidemiological and experimental studies, which suggest that exposure to ALAN is associated with disorders like type 2 diabetes, obesity, and increased risk of breast and prostate cancer. Moreover, several studies have reported a connection between ALAN, night-shift work, reduced cognitive performance, and a higher likelihood of human errors. The purpose of this paper is to review the biological impacts of blue light exposure on human cognitive functions and vision quality. Additionally, studies indicating a potential link between exposure to blue light from digital screens and increased risk of breast cancer are also reviewed. However, more research is needed to fully comprehend the relationship between blue light exposure and adverse health effects, such as the risk of breast cancer.
Collapse
Affiliation(s)
- Masoud Haghani
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Abbasi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Abdoli
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Fatemeh Shams
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nasrin Shokrpour
- School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Jahromizadeh
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyed Mohammad Javad Mortazavi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Lucas RJ, Allen AE, Brainard GC, Brown TM, Dauchy RT, Didikoglu A, Do MTH, Gaskill BN, Hattar S, Hawkins P, Hut RA, McDowell RJ, Nelson RJ, Prins JB, Schmidt TM, Takahashi JS, Verma V, Voikar V, Wells S, Peirson SN. Recommendations for measuring and standardizing light for laboratory mammals to improve welfare and reproducibility in animal research. PLoS Biol 2024; 22:e3002535. [PMID: 38470868 PMCID: PMC10931507 DOI: 10.1371/journal.pbio.3002535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Light enables vision and exerts widespread effects on physiology and behavior, including regulating circadian rhythms, sleep, hormone synthesis, affective state, and cognitive processes. Appropriate lighting in animal facilities may support welfare and ensure that animals enter experiments in an appropriate physiological and behavioral state. Furthermore, proper consideration of light during experimentation is important both when it is explicitly employed as an independent variable and as a general feature of the environment. This Consensus View discusses metrics to use for the quantification of light appropriate for nonhuman mammals and their application to improve animal welfare and the quality of animal research. It provides methods for measuring these metrics, practical guidance for their implementation in husbandry and experimentation, and quantitative guidance on appropriate light exposure for laboratory mammals. The guidance provided has the potential to improve data quality and contribute to reduction and refinement, helping to ensure more ethical animal use.
Collapse
Affiliation(s)
- Robert J. Lucas
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - George C. Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Timothy M. Brown
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Robert T. Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, United States of America
| | - Altug Didikoglu
- Department of Neuroscience, Izmir Institute of Technology, Gülbahçe, Urla, Izmir, Turkey
| | - Michael Tri H. Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Center for Life Science, Boston, Massachusetts, United States of America
| | - Brianna N. Gaskill
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, John Edward Porter Neuroscience Research Center, Bethesda, Maryland, United States of America
| | | | - Roelof A. Hut
- Chronobiology Unit, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Richard J. McDowell
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Jan-Bas Prins
- The Francis Crick Institute, London, United Kingdom
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Tiffany M. Schmidt
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Joseph S. Takahashi
- Department of Neuroscience, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Vandana Verma
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, California, United States of America
| | - Vootele Voikar
- Laboratory Animal Center and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, United Kingdom
| | - Stuart N. Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Chen R, Yan Y, Cheng X. Circadian light therapy and light dose for depressed young people: a systematic review and meta-analysis. Front Public Health 2024; 11:1257093. [PMID: 38259764 PMCID: PMC10800803 DOI: 10.3389/fpubh.2023.1257093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Background Empirical evidence has shown that light therapy (LT) can reduce depression symptoms by stimulating circadian rhythms. However, there is skepticism and inconclusive results, along with confusion regarding dosing. The purpose of this study is to quantify light as a stimulus for the circadian system and create a dose-response relationship that can help reduce maladies among adolescents and young adults (AYAs). This will provide a reference for light exposure and neural response, which are crucial in the neuropsychological mechanism of light intervention. The study also aims to provide guidance for clinical application. Methods The latest quantitative model of CLA (circadian light) and CSt,f (circadian stimulus) was adopted to quantify light dose for circadian phototransduction in youth depression-related light therapy. Articles published up to 2023 through Web of Science, Cochrane Library, Medline (OVID), CINAHL, APA PsycINFO, Embase, and Scholars were retrieved. A meta-analysis of 31 articles (1,031 subjects) was performed using Stata17.0, CMA3.0 (comprehensive meta-analysis version 3.0) software, and Python 3.9 platform for light therapy efficacy comparison and dose-response quantification. Results Under various circadian stimulus conditions (0.1 < CSt,f < 0.7) of light therapy (LT), malady reductions among AYAs were observed (pooled SMD = -1.59, 95%CI = -1.86 to -1.32; z = -11.654, p = 0.000; I2 = 92.8%), with temporal pattern (p = 0.044) and co-medication (p = 0.000) suggested as main heterogeneity sources. For the efficacy advantage of LT with a higher circadian stimulus that is assumed to be influenced by visualization, co-medication, disease severity, and time pattern, sets of meta-analysis among random-controlled trials (RCTs) found evidence for significant efficacy of circadian-active bright light therapy (BLT) over circadian-inactive dim red light (SMD = -0.65, 95% CI = -0.96 to -0.34; z = -4.101, p = 0.000; I2 = 84.9%) or circadian-active dimmer white light (SMD = -0.37, 95% CI = -0.68 to -0.06; z = -2.318, p = 0.02; I2 = 33.8%), whereas green-blue, circadian-active BLT showed no significant superiority over circadian-inactive red/amber light controls (SMD = -0.21, 95% CI = -0.45 to 0.04; z = -2.318, p = 0.099; I2 = 0%). Overall, circadian-active BLT showed a greater likelihood of clinical response than dim light controls, with increased superiority observed with co-medication. For pre-to-post-treatment amelioration and corresponding dose-response relationship, cumulative duration was found more influential than other categorical (co-medication, severity, study design) or continuous (CSt,f) variables. Dose-response fitting indicated that the therapeutic effect would reach saturation among co-medicated patients at 32-42 days (900-1,000 min) and 58-59 days (1,100-1,500 min) among non-medicated AYAs. When exerting high circadian stimulus of light therapy (0.6 < CSt,f < 0.7), there was a significantly greater effect size in 1,000-1,500 min of accumulative duration than <1,000 or >1,500 min of duration, indicating a threshold for practical guidance. Limitations The results have been based on limited samples and influenced by a small sample effect. The placebo effect could not be ignored. Conclusions Although the superiority of LT with higher circadian stimulus over dimmer light controls remains unproven, greater response potentials of circadian-active BLT have been noticed among AYAs, taking co-medication, disease severity, time pattern, and visual characteristics into consideration. The dose-response relationship with quantified circadian stimulus and temporal pattern had been elaborated under various conditions to support clinical depression treatment and LT device application in the post-pandemic era.
Collapse
Affiliation(s)
- Ranpeng Chen
- School of Architecture and Urban Planning, Chongqing University, Chongqing, China
| | - Yonghong Yan
- School of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing, China
| | - Xiang Cheng
- School of Architecture and Urban Planning, Chongqing University, Chongqing, China
| |
Collapse
|
9
|
Chambe J, Reynaud E, Maruani J, Fraih E, Geoffroy PA, Bourgin P. Light therapy in insomnia disorder: A systematic review and meta-analysis. J Sleep Res 2023; 32:e13895. [PMID: 37002704 DOI: 10.1111/jsr.13895] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023]
Abstract
In the management of insomnia, physicians and patients are seeking alternative therapeutics to sleeping pills, in addition to sleep hygiene and cognitive behavioural therapy. Bright light therapy (LT) has proven its efficacy in circadian and mood disorders. We conducted a systematic literature review and meta-analysis according to Cochrane and PRISMA guidelines and using the databases Medline, Cochrane, and Web of Science, with a special focus on light therapy and insomnia. Twenty-two studies with a total of 685 participants were included, five of which with a high level of proof. Meta-analysis was performed with 13 of them: light therapy for insomnia compared with control conditions significantly improved wake after sleep onset (WASO: SMD = -0.61 [-1.11, -0.11]; p = 0.017; weighted difference of 11.2 min ±11.5 based on actigraphy, and SMD = -1.09 [-1.43, -0.74] (p < 0.001) weighted difference of -36.4 min ±15.05) based on sleep diary, but no other sleep measures such as sleep latency, total sleep time (TST), or sleep efficiency. Qualitative analysis of the review showed some improvement mainly in subjective measures. Morning light exposure advanced sleep-wake rhythms and evening exposure led to a delay. No worsening was observed in objective nor subjective measures, except for TST in one study with evening exposure. A light dose-response may exist but the studies' heterogeneity and publication bias limit the interpretation. To conclude, light therapy shows some effectiveness for sleep maintenance in insomnia disorders, but further research is needed to refine the light parameters to be chosen according to the type of insomnia, in the hope of developing personalised therapeutics.
Collapse
Affiliation(s)
- Juliette Chambe
- General Medicine Department, Faculty of Medicine, University of Strasbourg, Strasbourg, France
- Institute for Cellular and Integrative Neurosciences (INCI), CNRS UPR 3212, Strasbourg, France
| | - Eve Reynaud
- Institute for Cellular and Integrative Neurosciences (INCI), CNRS UPR 3212, Strasbourg, France
| | - Julia Maruani
- Psychiatry and Addictology Department, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat, Paris, France
- GHU Paris - Psychiatry & Neurosciences, Paris, France
- Université de Paris, NeuroDiderot, Inserm, FHU I2-D2, Paris, France
| | - Elise Fraih
- General Medicine Department, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Pierre A Geoffroy
- Institute for Cellular and Integrative Neurosciences (INCI), CNRS UPR 3212, Strasbourg, France
- Psychiatry and Addictology Department, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat, Paris, France
- GHU Paris - Psychiatry & Neurosciences, Paris, France
- Université de Paris, NeuroDiderot, Inserm, FHU I2-D2, Paris, France
| | - Patrice Bourgin
- Institute for Cellular and Integrative Neurosciences (INCI), CNRS UPR 3212, Strasbourg, France
- Sleep Disorders Center - CIRCSom (International Research Center for ChronoSomnology), University Hospital of Strasbourg 1, Strasbourg, France
| |
Collapse
|
10
|
Fuchs F, Robin-Choteau L, Schneider A, Hugueny L, Ciocca D, Serchov T, Bourgin P. Delaying circadian sleep phase under ultradian light cycle causes time-of-day-dependent alteration of cognition and mood. Sci Rep 2023; 13:20313. [PMID: 37985784 PMCID: PMC10662432 DOI: 10.1038/s41598-023-44931-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023] Open
Abstract
Light exerts powerful and pervasive effects on physiology and behaviour. These effects can be indirect, through clock synchronization and phase adjustment of circadian rhythms, or direct, independent of the circadian process. Exposure to light at inappropriate times, as commonly experienced in today's society, leads to increased prevalence of circadian, sleep and mood disorders as well as cognitive impairments. In mice, exposure to an ultradian 3.5 h light/3.5 h dark cycle (T7) for several days has been shown to impair behaviour through direct, non-circadian, photic effects, a claim we challenge here. We first confirmed that T7 cycle induces a lengthening of the circadian period resulting in a day by day phase-delay of both activity and sleep rhythms. Spatial novelty preference test performed at different circadian time points in mice housed under T7 cycle demonstrated that cognitive deficit was restrained to the subjective night. Mice under the same condition also showed a modification of stress-induced despair-like behaviour in the forced swim test. Therefore, our data demonstrate that ultradian light cycles cause time-of-day-dependent alteration of cognition and mood through clock period lengthening delaying circadian sleep phase, and not through a direct photic influence. These results are of critical importance for the clinical applications of light therapy in the medical field and for today's society to establish lighting recommendations for shift work, schools, hospitals and homes.
Collapse
Affiliation(s)
- Fanny Fuchs
- Institute for Cellular and Integrative Neurosciences (INCI)-UPR 3212-CNRS/University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France
- Sleep Disorders Center and CIRCSom (International Research Center for ChronoSomnology), Strasbourg University Hospital, 1 place de l'Hôpital, 67000, Strasbourg, France
| | - Ludivine Robin-Choteau
- Institute for Cellular and Integrative Neurosciences (INCI)-UPR 3212-CNRS/University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France
- European Center for Diabetes Studies (CEED), Strasbourg, France
| | - Aline Schneider
- Institute for Cellular and Integrative Neurosciences (INCI)-UPR 3212-CNRS/University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France
| | - Laurence Hugueny
- Institute for Cellular and Integrative Neurosciences (INCI)-UPR 3212-CNRS/University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France
- Sleep Disorders Center and CIRCSom (International Research Center for ChronoSomnology), Strasbourg University Hospital, 1 place de l'Hôpital, 67000, Strasbourg, France
| | - Dominique Ciocca
- Chronobiotron-UMS3415-CNRS/University of Strasbourg, Strasbourg, France
| | - Tsvetan Serchov
- Institute for Cellular and Integrative Neurosciences (INCI)-UPR 3212-CNRS/University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France
| | - Patrice Bourgin
- Institute for Cellular and Integrative Neurosciences (INCI)-UPR 3212-CNRS/University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France.
- Sleep Disorders Center and CIRCSom (International Research Center for ChronoSomnology), Strasbourg University Hospital, 1 place de l'Hôpital, 67000, Strasbourg, France.
| |
Collapse
|
11
|
Kahan A, Mahe K, Dutta S, Kassraian P, Wang A, Gradinaru V. Immediate responses to ambient light in vivo reveal distinct subpopulations of suprachiasmatic VIP neurons. iScience 2023; 26:107865. [PMID: 37766975 PMCID: PMC10520357 DOI: 10.1016/j.isci.2023.107865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm pacemaker, the suprachiasmatic nucleus (SCN), mediates light entrainment via vasoactive intestinal peptide (VIP) neurons (SCNVIP). Yet, how these neurons uniquely respond and connect to intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing melanopsin (Opn4) has not been determined functionally in freely behaving animals. To address this, we first used monosynaptic tracing from SCNVIP neurons in mice and identified two SCNVIP subpopulations. Second, we recorded calcium changes in response to ambient light, at both bulk and single-cell levels, and found two unique activity patterns in response to high- and low-intensity blue light. The activity patterns of both subpopulations could be manipulated by application of an Opn4 antagonist. These results suggest that the two SCNVIP subpopulations connect to two types of Opn4-expressing ipRGCs, likely M1 and M2, but only one is responsive to red light. These findings have important implications for our basic understanding of non-image-forming circadian light processing.
Collapse
Affiliation(s)
- Anat Kahan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Karan Mahe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sayan Dutta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pegah Kassraian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
12
|
Rach H, Reynaud E, Kilic-Huck U, Ruppert E, Comtet H, Roy de Belleplaine V, Fuchs F, Van Someren EJW, Geoffroy PA, Bourgin P. Pupillometry to differentiate idiopathic hypersomnia from narcolepsy type 1. J Sleep Res 2023; 32:e13885. [PMID: 37002816 DOI: 10.1111/jsr.13885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Idiopathic hypersomnia is poorly diagnosed in the absence of biomarkers to distinguish it from other central hypersomnia subtypes. Given that light plays a main role in the regulation of sleep and wake, we explored the retinal melanopsin-based pupil response in patients with idiopathic hypersomnia and narcolepsy type 1, and healthy subjects. Twenty-seven patients with narcolepsy type 1 (women 59%, 36 ± 11.5 years old), 36 patients with idiopathic hypersomnia (women 83%, 27.2 ± 7.2 years old) with long total sleep time (> 11/24 hr), and 43 controls (women 58%, 30.6 ± 9.3 years old) were included in this study. All underwent a pupillometry protocol to assess pupil diameter, and the relative post-illumination pupil response to assess melanopsin-driven pupil responses in the light non-visual input pathway. Differences between groups were assessed using logistic regressions adjusted on age and sex. We found that patients with narcolepsy type 1 had a smaller baseline pupil diameter as compared with idiopathic hypersomnia and controls (p < 0.05). In addition, both narcolepsy type 1 and idiopathic hypersomnia groups had a smaller relative post-illumination pupil response (respectively, 31.6 ± 13.9% and 33.2 ± 9.9%) as compared with controls (38.7 ± 9.7%), suggesting a reduced melanopsin-mediated pupil response in both types of central hypersomnia (p < 0.01). Both narcolepsy type 1 and idiopathic hypersomnia showed a smaller melanopsin-mediated pupil response, and narcolepsy type 1, unlike idiopathic hypersomnia, also displayed a smaller basal pupil diameter. Importantly, we found that the basal pupil size permitted to well discriminate idiopathic hypersomnia from narcolepsy type 1 with a specificity = 66.67% and a sensitivity = 72.22%. Pupillometry may aid to multi-feature differentiation of central hypersomnia subtypes.
Collapse
Affiliation(s)
- Héloïse Rach
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Eve Reynaud
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Ulker Kilic-Huck
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Elisabeth Ruppert
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Henri Comtet
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Virginie Roy de Belleplaine
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Fanny Fuchs
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam Public Health, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - Pierre A Geoffroy
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, F-75018, Paris, France
- Université de Paris, NeuroDiderot, Inserm, FHU I2-D2, F-75019, Paris, France
| | - Patrice Bourgin
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| |
Collapse
|
13
|
Liu WJ, Chen JY, Niu SR, Zheng YS, Lin S, Hong Y. Recent advances in the study of circadian rhythm disorders that induce diabetic retinopathy. Biomed Pharmacother 2023; 166:115368. [PMID: 37647688 DOI: 10.1016/j.biopha.2023.115368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
Diabetic retinopathy (DR) is a severe microvascular complication of diabetes mellitus and a major cause of blindness in young adults. Multiple potential factors influence DR; however, the exact mechanisms are poorly understood. Advanced treatments for DR, including laser therapy, vitrectomy, and intraocular drug injections, slow the disease's progression but fail to cure or reverse visual impairment. Therefore, additional effective methods to prevent and treat DR are required. The biological clock plays a crucial role in maintaining balance in the circadian rhythm of the body. Poor lifestyle habits, such as irregular routines and high-fat diets, may disrupt central and limbic circadian rhythms. Disrupted circadian rhythms can result in altered glucose metabolism and obesity. Misaligned central and peripheral clocks lead to a disorder of the rhythm of glucose metabolism, and chronically high sugar levels lead to the development of DR. We observed a disturbance in clock function in patients with diabetes, and a misaligned clock could accelerate the development of DR. In the current study, we examine the relationship between circadian rhythm disorders, diabetes, and DR. We conclude that: 1) abnormal function of the central clock and peripheral clock leads to abnormal glucose metabolism, further causing DR and 2) diabetes causes abnormal circadian rhythms, further exacerbating DR. Thus, our study presents new insights into the prevention and treatment of DR.
Collapse
Affiliation(s)
- Wen-Jing Liu
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Jie-Yu Chen
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Si-Ru Niu
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Yi-Sha Zheng
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Yu Hong
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China.
| |
Collapse
|
14
|
Cao M, Xu T, Zhang H, Wei S, Wang H, Song Y, Guo X, Chen D, Yin D. BDE-47 Causes Depression-like Effects in Zebrafish Larvae via a Non-Image-Forming Visual Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37354122 DOI: 10.1021/acs.est.3c01716] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Depression is a high-incidence mood disorder that is frequently accompanied by sleep disturbances, which can be triggered by the non-image-forming (NIF) visual system. Therefore, we hypothesize that polybrominated diphenyl ethers are known to induce visual impairment that could promote depression by disrupting the NIF visual pathway. In this study, zebrafish larvae were exposed to BDE-47 at environmentally relevant concentrations (2.5 and 25 μg/L). BDE-47 caused melanopsin genes that dominate the NIF visual system that fell at night (p < 0.05) but rose in the morning (p < 0.05). Such bidirectional difference transmitted to clock genes and neuropeptides in the suprachiasmatic nucleus and impacted the adjacent serotonin system. However, indicative factors of depression, including serta, htr1aa, and aanat2, were unidirectionally increased 1.3- to 1.6-fold (p < 0.05). They were consistent with the increase in nighttime thigmotaxis (p < 0.05) and circadian hypoactivity (p < 0.05). The results of melanopsin antagonism also indicated that these consequences were possibly due to the combination of direct photoentrainment by melanopsin and circadian disruption originating from melanopsin. Collectively, our findings revealed that BDE-47 exposure disrupted the NIF visual pathway and resulted in depression-like effects, which may further exert profound health effects like mood disorders.
Collapse
Affiliation(s)
- Miao Cao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hongchang Zhang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huan Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yiqun Song
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
15
|
Wang G, Liu YF, Yang Z, Yu CX, Tong Q, Tang YL, Shao YQ, Wang LQ, Xu X, Cao H, Zhang YQ, Zhong YM, Weng SJ, Yang XL. Short-term acute bright light exposure induces a prolonged anxiogenic effect in mice via a retinal ipRGC-CeA circuit. SCIENCE ADVANCES 2023; 9:eadf4651. [PMID: 36947616 PMCID: PMC10032603 DOI: 10.1126/sciadv.adf4651] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Light modulates mood through various retina-brain pathways. We showed that mice treated with short-term acute bright light exposure displayed anxiety-related phenotypes in a prolonged manner even after the termination of the exposure. Such a postexposure anxiogenic effect depended upon melanopsin-based intrinsically photosensitive retinal ganglion cell (ipRGC) activities rather than rod/cone photoreceptor inputs. Chemogenetic manipulation of specific central nuclei demonstrated that the ipRGC-central amygdala (CeA) visual circuit played a key role in this effect. The corticosterone system was likely to be involved in this effect, as evidenced by enhanced expression of the glucocorticoid receptor (GR) protein in the CeA and the bed nucleus of the stria terminalis and by the absence of this effect in animals treated with the GR antagonist. Together, our findings reveal a non-image forming visual circuit specifically designed for "the delayed" extinction of anxiety against potential threats, thus conferring a survival advantage.
Collapse
Affiliation(s)
- Ge Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yun-Feng Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhe Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chen-Xi Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qiuping Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Long Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Qi Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Li-Qin Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Hong Cao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yong-Mei Zhong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming Brain Functions—Positive and Negative Impacts of Increasing Light Availability. Clocks Sleep 2023; 5:116-140. [PMID: 36975552 PMCID: PMC10047820 DOI: 10.3390/clockssleep5010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Light use is rising steeply, mainly because of the advent of light-emitting diode (LED) devices. LEDs are frequently blue-enriched light sources and may have different impacts on the non-image forming (NIF) system, which is maximally sensitive to blue-wavelength light. Most importantly, the timing of LED device use is widespread, leading to novel light exposure patterns on the NIF system. The goal of this narrative review is to discuss the multiple aspects that we think should be accounted for when attempting to predict how this situation will affect the NIF impact of light on brain functions. We first cover both the image-forming and NIF pathways of the brain. We then detail our current understanding of the impact of light on human cognition, sleep, alertness, and mood. Finally, we discuss questions concerning the adoption of LED lighting and screens, which offer new opportunities to improve well-being, but also raise concerns about increasing light exposure, which may be detrimental to health, particularly in the evening.
Collapse
|
17
|
Schöllhorn I, Stefani O, Lucas RJ, Spitschan M, Slawik HC, Cajochen C. Melanopic irradiance defines the impact of evening display light on sleep latency, melatonin and alertness. Commun Biol 2023; 6:228. [PMID: 36854795 PMCID: PMC9974389 DOI: 10.1038/s42003-023-04598-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Evening light-emitting visual displays may disrupt sleep, suppress melatonin and increase alertness. Here, we control melanopic irradiance independent of display luminance and colour, in 72 healthy males 4 h before habitual bedtime and expose each of them to one of four luminance levels (i.e., dim light, smartphone, tablet or computer screen illuminance) at a low and a high melanopic irradiance setting. Low melanopic light shortens the time to fall asleep, attenuates evening melatonin suppression, reduces morning melatonin, advances evening melatonin onset and decreases alertness compared to high melanopic light. In addition, we observe dose-dependent increases in sleep latency, reductions in melatonin concentration and delays in melatonin onset as a function of melanopic irradiance-not so for subjective alertness. We identify melanopic irradiance as an appropriate parameter to mitigate the unwanted effects of screen use at night. Our results may help the many people who sit in front of screens in the evening or at night to fall asleep faster, feel sleepier, and have a more stable melatonin phase by spectrally tuning the visual display light without compromising the visual appearance.
Collapse
Affiliation(s)
- Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Robert J Lucas
- Centre for Biological Timing, Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Manuel Spitschan
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Chronobiology & Health, TUM Department of Sport and Health Sciences (TUM SG), Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
| | - Helen C Slawik
- Clinical Sleep Laboratory, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.
- Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland.
| |
Collapse
|
18
|
Duhart JM, Inami S, Koh K. Many faces of sleep regulation: beyond the time of day and prior wake time. FEBS J 2023; 290:931-950. [PMID: 34908236 PMCID: PMC9198110 DOI: 10.1111/febs.16320] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
The two-process model of sleep regulation posits two main processes regulating sleep: the circadian process controlled by the circadian clock and the homeostatic process that depends on the history of sleep and wakefulness. The model has provided a dominant conceptual framework for sleep research since its publication ~ 40 years ago. The time of day and prior wake time are the primary factors affecting the circadian and homeostatic processes, respectively. However, it is critical to consider other factors influencing sleep. Since sleep is incompatible with other behaviors, it is affected by the need for essential behaviors such as eating, foraging, mating, caring for offspring, and avoiding predators. Sleep is also affected by sensory inputs, sickness, increased need for memory consolidation after learning, and other factors. Here, we review multiple factors influencing sleep and discuss recent insights into the mechanisms balancing competing needs.
Collapse
Affiliation(s)
- José Manuel Duhart
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
- These authors contributed equally
- Present address: Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Sho Inami
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
- These authors contributed equally
| | - Kyunghee Koh
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
| |
Collapse
|
19
|
Fifel K, Yanagisawa M, Deboer T. Mechanisms of Sleep/Wake Regulation under Hypodopaminergic State: Insights from MitoPark Mouse Model of Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203170. [PMID: 36515271 PMCID: PMC9929135 DOI: 10.1002/advs.202203170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Sleep/wake alterations are predominant in neurological and neuropsychiatric disorders involving dopamine dysfunction. Unfortunately, specific, mechanisms-based therapies for these debilitating sleep problems are currently lacking. The pathophysiological mechanisms of sleep/wake alterations within a hypodopaminergic MitoPark mouse model of Parkinson's disease (PD) are investigated. MitoPark mice replicate most PD-related sleep alterations, including sleep fragmentation, hypersomnia, and daytime sleepiness. Surprisingly, these alterations are not accounted for by a dysfunction in the circadian or homeostatic regulatory processes of sleep, nor by acute masking effects of light or darkness. Rather, the sleep phenotype is linked with the impairment of instrumental arousal and sleep modulation by behavioral valence. These alterations correlate with changes in high-theta (8-11.5 Hz) electroencephalogram power density during motivationally-charged wakefulness. These results demonstrate that sleep/wake alterations induced by dopamine dysfunction are mediated by impaired modulation of sleep by motivational valence and provide translational insights into sleep problems associated with disorders linked to dopamine dysfunction.
Collapse
Affiliation(s)
- Karim Fifel
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8575Japan
- Department of Cell and Chemical BiologyLaboratory of NeurophysiologyLeiden University Medical CenterP.O. Box 9600Leiden2300 RCThe Netherlands
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8575Japan
| | - Tom Deboer
- Department of Cell and Chemical BiologyLaboratory of NeurophysiologyLeiden University Medical CenterP.O. Box 9600Leiden2300 RCThe Netherlands
| |
Collapse
|
20
|
Brock O, Gelegen C, Sully P, Salgarella I, Jager P, Menage L, Mehta I, Jęczmień-Łazur J, Djama D, Strother L, Coculla A, Vernon AC, Brickley S, Holland P, Cooke SF, Delogu A. A Role for Thalamic Projection GABAergic Neurons in Circadian Responses to Light. J Neurosci 2022; 42:9158-9179. [PMID: 36280260 PMCID: PMC9761691 DOI: 10.1523/jneurosci.0112-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022] Open
Abstract
The thalamus is an important hub for sensory information and participates in sensory perception, regulation of attention, arousal and sleep. These functions are executed primarily by glutamatergic thalamocortical neurons that extend axons to the cortex and initiate cortico-thalamocortical connectional loops. However, the thalamus also contains projection GABAergic neurons that do not extend axons toward the cortex. Here, we have harnessed recent insight into the development of the intergeniculate leaflet (IGL) and the ventral lateral geniculate nucleus (LGv) to specifically target and manipulate thalamic projection GABAergic neurons in female and male mice. Our results show that thalamic GABAergic neurons of the IGL and LGv receive retinal input from diverse classes of retinal ganglion cells (RGCs) but not from the M1 intrinsically photosensitive retinal ganglion cell (ipRGC) type. We describe the synergistic role of the photoreceptor melanopsin and the thalamic neurons of the IGL/LGv in circadian entrainment to dim light. We identify a requirement for the thalamic IGL/LGv neurons in the rapid changes in vigilance states associated with circadian light transitions.SIGNIFICANCE STATEMENT The intergeniculate leaflet (IGL) and ventral lateral geniculate nucleus (LGv) are part of the extended circadian system and mediate some nonimage-forming visual functions. Here, we show that each of these structures has a thalamic (dorsal) as well as prethalamic (ventral) developmental origin. We map the retinal input to thalamus-derived cells in the IGL/LGv complex and discover that while RGC input is dominant, this is not likely to originate from M1ipRGCs. We implicate thalamic cells in the IGL/LGv in vigilance state transitions at circadian light changes and in overt behavioral entrainment to dim light, the latter exacerbated by concomitant loss of melanopsin expression.
Collapse
Affiliation(s)
- Olivier Brock
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Cigdem Gelegen
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Peter Sully
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Irene Salgarella
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Polona Jager
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Lucy Menage
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Ishita Mehta
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Jagoda Jęczmień-Łazur
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Deyl Djama
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- Department of Life Sciences and Centre for Neurotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Lauren Strother
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Angelica Coculla
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Stephen Brickley
- Department of Life Sciences and Centre for Neurotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Philip Holland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- Wolfson Centre for Age Related Disease, King's College London, London SE1 1UL, United Kingdom
| | - Samuel F Cooke
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| |
Collapse
|
21
|
Milićević N, Bergen AA, Felder-Schmittbuhl MP. Per1 mutation enhances masking responses in mice. Chronobiol Int 2022; 39:1533-1538. [PMID: 36189750 DOI: 10.1080/07420528.2022.2126321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Light can restrict the activity of an animal to a diurnal or nocturnal niche by synchronizing its endogenous clock (entrainment) which controls the sleep wake cycle. Light can also directly change an animal's activity level (masking). In mice, high illumination levels decrease activity, i.e. negative masking occurs. To investigate the role of core circadian clock genes Per1 and Per2 in masking, we used a 5-day behavioral masking protocol consisting of 3 h pulses of light given in the night at various illuminances (4-5 lux, 20 lux and 200 lux). Mice lacking the Per1 gene had decreased locomotion in the presence of a light pulse compared to wild-type, Per2 and Per1 Per2 double mutant mice. Per2 single mutant and Per1 Per2 double mutant mice did not show significantly different masking responses compared to wild-type controls. This suggests that Per1 suppresses negative masking responses in mice.
Collapse
Affiliation(s)
- Nemanja Milićević
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Ophthalmology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Queen Emma Centre for Personalized Medicine, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
22
|
Gall AJ, Shuboni-Mulligan DD. Keep Your Mask On: The Benefits of Masking for Behavior and the Contributions of Aging and Disease on Dysfunctional Masking Pathways. Front Neurosci 2022; 16:911153. [PMID: 36017187 PMCID: PMC9395722 DOI: 10.3389/fnins.2022.911153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental cues (e.g., light-dark cycle) have an immediate and direct effect on behavior, but these cues are also capable of “masking” the expression of the circadian pacemaker, depending on the type of cue presented, the time-of-day when they are presented, and the temporal niche of the organism. Masking is capable of complementing entrainment, the process by which an organism is synchronized to environmental cues, if the cues are presented at an expected or predictable time-of-day, but masking can also disrupt entrainment if the cues are presented at an inappropriate time-of-day. Therefore, masking is independent of but complementary to the biological circadian pacemaker that resides within the brain (i.e., suprachiasmatic nucleus) when exogenous stimuli are presented at predictable times of day. Importantly, environmental cues are capable of either inducing sleep or wakefulness depending on the organism’s temporal niche; therefore, the same presentation of a stimulus can affect behavior quite differently in diurnal vs. nocturnal organisms. There is a growing literature examining the neural mechanisms underlying masking behavior based on the temporal niche of the organism. However, the importance of these mechanisms in governing the daily behaviors of mammals and the possible implications on human health have been gravely overlooked even as modern society enables the manipulation of these environmental cues. Recent publications have demonstrated that the effects of masking weakens significantly with old age resulting in deleterious effects on many behaviors, including sleep and wakefulness. This review will clearly outline the history, definition, and importance of masking, the environmental cues that induce the behavior, the neural mechanisms that drive them, and the possible implications for human health and medicine. New insights about how masking is affected by intrinsically photosensitive retinal ganglion cells, temporal niche, and age will be discussed as each relates to human health. The overarching goals of this review include highlighting the importance of masking in the expression of daily rhythms, elucidating the impact of aging, discussing the relationship between dysfunctional masking behavior and the development of sleep-related disorders, and considering the use of masking as a non-invasive treatment to help treat humans suffering from sleep-related disorders.
Collapse
Affiliation(s)
- Andrew J. Gall
- Department of Psychology and Neuroscience Program, Hope College, Holland, MI, United States
- *Correspondence: Andrew J. Gall,
| | - Dorela D. Shuboni-Mulligan
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
23
|
Bergum N, Berezin CT, Vigh J. A retinal contribution to opioid-induced sleep disorders? Front Neurosci 2022; 16:981939. [PMID: 35992901 PMCID: PMC9388851 DOI: 10.3389/fnins.2022.981939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic opioid use is linked to persistent and severe sleep/wake disturbances in patients. These opioid-related sleep problems increase risk for developing opioid dependence, mood disorders and in turn overdose in chronic pain patients receiving opioid therapy. Despite the well-established link between long-term opioid use and sleep disorders, the mechanism by which opioids perturb sleep remains unclear. Interestingly, animal studies indicate that opioids disrupt sleep/wake behaviors by altering an animal’s ability to synchronize their circadian rhythms to environmental light cycles (i.e., photoentrainment). A specific subset of retinal cells known as intrinsically photosensitive retinal ganglion cells (ipRGCs) that express μ-opioid receptors are exclusively responsible for transmitting environmental light information to sleep/circadian centers in the brain. Thus, this review will focus on the effect of opioids on ipRGCs and their projection regions that are involved in the photoentrainment of sleep/wake behaviors. Lastly, we discuss the viability of ipRGCs as a potential therapeutic target for treating opioid-related sleep/wake problems.
Collapse
Affiliation(s)
- Nikolas Bergum
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Casey-Tyler Berezin
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Jozsef Vigh
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- *Correspondence: Jozsef Vigh,
| |
Collapse
|
24
|
Fifel K, El Farissi A, Cherasse Y, Yanagisawa M. Motivational and Valence-Related Modulation of Sleep/Wake Behavior are Mediated by Midbrain Dopamine and Uncoupled from the Homeostatic and Circadian Processes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200640. [PMID: 35794435 PMCID: PMC9403635 DOI: 10.1002/advs.202200640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Motivation and its hedonic valence are powerful modulators of sleep/wake behavior, yet its underlying mechanism is still poorly understood. Given the well-established role of midbrain dopamine (mDA) neurons in encoding motivation and emotional valence, here, neuronal mechanisms mediating sleep/wake regulation are systematically investigated by DA neurotransmission. It is discovered that mDA mediates the strong modulation of sleep/wake states by motivational valence. Surprisingly, this modulation can be uncoupled from the classically employed measures of circadian and homeostatic processes of sleep regulation. These results establish the experimental foundation for an additional new factor of sleep regulation. Furthermore, an electroencephalographic marker during wakefulness at the theta range is identified that can be used to reliably track valence-related modulation of sleep. Taken together, this study identifies mDA signaling as an important neural substrate mediating sleep modulation by motivational valence.
Collapse
Affiliation(s)
- Karim Fifel
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Amina El Farissi
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| |
Collapse
|
25
|
Lok R, Woelders T, Gordijn MCM, van Koningsveld MJ, Oberman K, Fuhler SG, Beersma DGM, Hut RA. Bright Light During Wakefulness Improves Sleep Quality in Healthy Men: A Forced Desynchrony Study Under Dim and Bright Light (III). J Biol Rhythms 2022; 37:429-441. [PMID: 35730553 PMCID: PMC9326793 DOI: 10.1177/07487304221096910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Under real-life conditions, increased light exposure during wakefulness seems associated with improved sleep quality, quantified as reduced time awake during bed time, increased time spent in non-rapid eye movement (NREM) sleep, or increased power of the electroencephalogram delta band (0.5-4 Hz). The causality of these important relationships and their dependency on circadian phase and/or time awake has not been studied in depth. To disentangle possible circadian and homeostatic interactions, we employed a forced desynchrony protocol under dim light (6 lux) and under bright light (1300 lux) during wakefulness. Our protocol consisted of a fast cycling sleep-wake schedule (13 h wakefulness—5 h sleep; 4 cycles), followed by 3 h recovery sleep in a within-subject cross-over design. Individuals (8 men) were equipped with 10 polysomnography electrodes. Subjective sleep quality was measured immediately after wakening with a questionnaire. Results indicated that circadian variation in delta power was only detected under dim light. Circadian variation in time in rapid eye movement (REM) sleep and wakefulness were uninfluenced by light. Prior light exposure increased accumulation of delta power and time in NREM sleep, while it decreased wakefulness, especially during the circadian wake phase (biological day). Subjective sleep quality scores showed that participants rated their sleep quality better after bright light exposure while sleeping when the circadian system promoted wakefulness. These results suggest that high environmental light intensity either increases sleep pressure buildup during wakefulness or prevents the occurrence of micro-sleep, leading to improved quality of subsequent sleep.
Collapse
Affiliation(s)
- R Lok
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.,University of Groningen, Leeuwarden, the Netherlands.,Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - T Woelders
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - M C M Gordijn
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.,Chrono@Work B.V., Groningen, the Netherlands
| | - M J van Koningsveld
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - K Oberman
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - S G Fuhler
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - D G M Beersma
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - R A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
26
|
Kim T, Kim S, Kang J, Kwon M, Lee SH. The Common Effects of Sleep Deprivation on Human Long-Term Memory and Cognitive Control Processes. Front Neurosci 2022; 16:883848. [PMID: 35720688 PMCID: PMC9201256 DOI: 10.3389/fnins.2022.883848] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep deprivation is known to have adverse effects on various cognitive abilities. In particular, a lack of sleep has been reported to disrupt memory consolidation and cognitive control functions. Here, focusing on long-term memory and cognitive control processes, we review the consistency and reliability of the results of previous studies of sleep deprivation effects on behavioral performance with variations in the types of stimuli and tasks. Moreover, we examine neural response changes related to these behavioral changes induced by sleep deprivation based on human fMRI studies to determine the brain regions in which neural responses increase or decrease as a consequence of sleep deprivation. Additionally, we discuss about the possibility that light as an environmentally influential factor affects our sleep cycles and related cognitive processes.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sejin Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Joonyoung Kang
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Minjae Kwon
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sue-Hyun Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Sue-Hyun Lee,
| |
Collapse
|
27
|
Rach H, Kilic-Huck U, Reynaud E, Hugueny L, Peiffer E, Roy de Belleplaine V, Fuchs F, Bourgin P, Geoffroy PA. The melanopsin-mediated pupil response is reduced in idiopathic hypersomnia with long sleep time. Sci Rep 2022; 12:9018. [PMID: 35637236 PMCID: PMC9151765 DOI: 10.1038/s41598-022-13041-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Idiopathic hypersomnia (IH), characterized by an excessive day-time sleepiness, a prolonged total sleep time on 24 h and/or a reduced sleep latency, affects 1 in 2000 individuals from the general population. However, IH remains underdiagnosed and inaccurately treated despite colossal social, professional and personal impacts. The pathogenesis of IH is poorly known, but recent works have suggested possible alterations of phototransduction. In this context, to identify biomarkers of IH, we studied the Post-Illumination Pupil Response (PIPR) using a specific pupillometry protocol reflecting the melanopsin-mediated pupil response in IH patients with prolonged total sleep time (TST > 660 min) and in healthy subjects. Twenty-eight patients with IH (women 86%, 25.4 year-old ± 4.9) and 29 controls (women 52%, 27.1 year-old ± 3.9) were included. After correction on baseline pupil diameter, the PIPR was compared between groups and correlated to sociodemographic and sleep parameters. We found that patients with IH had a lower relative PIPR compared to controls (32.6 ± 9.9% vs 38.5 ± 10.2%, p = 0.037) suggesting a reduced melanopsin response. In addition, the PIPR was not correlated to age, chronotype, TST, nor depressive symptoms. The melanopsin-specific PIPR may be an innovative trait marker of IH and the pupillometry might be a promising tool to better characterize hypersomnia.
Collapse
|
28
|
Eveningness is associated with sedentary behavior and increased 10-year risk of cardiovascular disease: the SCAPIS pilot cohort. Sci Rep 2022; 12:8203. [PMID: 35581309 PMCID: PMC9113987 DOI: 10.1038/s41598-022-12267-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/19/2022] [Indexed: 12/18/2022] Open
Abstract
Chronotype reflects individual preferences for timing activities throughout the day, determined by the circadian system, environment and behavior. The relationship between chronotype, physical activity, and cardiovascular health has not been established. We studied the association between chronotype, physical activity patterns, and an estimated 10-year risk of first-onset cardiovascular disease (CVD) in the Swedish CArdioPulmonary bioImage Study (SCAPIS) pilot cohort. A cross-sectional analysis was performed in a middle-aged population (n = 812, 48% male). Self-assessed chronotype was classified as extreme morning, moderate morning, intermediate, moderate evening, or extreme evening. Time spent sedentary (SED) and in moderate to vigorous physical activity (MVPA) were derived from hip accelerometer. The newly introduced Systematic COronary Risk Evaluation 2 (SCORE2) model was used to estimate CVD risk based on gender, age, smoking status, systolic blood pressure, and non-HDL cholesterol. Extreme evening chronotypes exhibited the most sedentary lifestyle and least MVPA (55.3 ± 10.2 and 5.3 ± 2.9% of wear-time, respectively), with a dose-dependent relationship between chronotype and SED/MVPA (p < 0.001 and p = 0.001, respectively). In a multivariate generalized linear regression model, extreme evening chronotype was associated with increased SCORE2 risk compared to extreme morning type independent of confounders (β = 0.45, SE = 0.21, p = 0.031). Mediation analysis indicated SED was a significant mediator of the relationship between chronotype and SCORE2. Evening chronotype is associated with unhealthier physical activity patterns and poorer cardiovascular health compared to morning chronotype. Chronotype should be considered in lifestyle counseling and primary prevention programs as a potential modifiable risk factor.
Collapse
|
29
|
Dekens MPS, Fontinha BM, Gallach M, Pflügler S, Tessmar‐Raible K. Melanopsin elevates locomotor activity during the wake state of the diurnal zebrafish. EMBO Rep 2022; 23:e51528. [PMID: 35233929 PMCID: PMC9066073 DOI: 10.15252/embr.202051528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Mammalian and fish pineals play a key role in adapting behaviour to the ambient light conditions through the release of melatonin. In mice, light inhibits nocturnal locomotor activity via the non‐visual photoreceptor Melanopsin. In contrast to the extensively studied function of Melanopsin in the indirect regulation of the rodent pineal, its role in the intrinsically photosensitive zebrafish pineal has not been elucidated. Therefore, it is not evident if the light signalling mechanism is conserved between distant vertebrates, and how Melanopsin could affect diurnal behaviour. A double knockout of melanopsins (opn4.1‐opn4xb) was generated in the diurnal zebrafish, which manifests attenuated locomotor activity during the wake state. Transcriptome sequencing gave insight into pathways downstream of Melanopsin, implying that sustained repression of the melatonin pathway is required to elevate locomotor activity during the diurnal wake state. Moreover, we show that light induces locomotor activity during the diurnal wake state in an intensity‐dependent manner. These observations suggest a common Melanopsin‐driven mechanism between zebrafish and mammals, while the diurnal and nocturnal chronotypes are inversely regulated downstream of melatonin.
Collapse
Affiliation(s)
- Marcus P S Dekens
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Bruno M Fontinha
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Miguel Gallach
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Max Perutz Laboratory Centre for Integrative Bioinformatics University of Vienna and Medical University of Vienna Vienna Austria
| | - Sandra Pflügler
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Kristin Tessmar‐Raible
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Research Platform “Marine Rhythms of Life” University of Vienna Vienna Austria
| |
Collapse
|
30
|
Direct Effects of Light on Sleep under Ultradian Light-Dark Cycles Depend on Circadian Time and Pulses Duration. Clocks Sleep 2022; 4:208-218. [PMID: 35466270 PMCID: PMC9036312 DOI: 10.3390/clockssleep4020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
Ultradian light–dark cycles in rodents are a precious tool to study the direct effects of repeated light exposures on sleep, in order to better understand the underlying mechanisms. This study aims to precisely evaluate the effects of light and dark exposures, according to circadian time, on sleep and waking distribution and quality, and to determine if these effects depend on the duration of light and dark pulses. To do this, mice were exposed to 24 h-long ultradian light–dark cycles with different durations of pulses: T2 cycle (1 h of light/1 h of dark) and T7 cycle (3.5 h of light/3.5 h of dark). Exposure to light not only promotes NREM and REM sleep and inhibits wake, but also drastically alters alertness and modifies sleep depth. These effects are modulated by circadian time, appearing especially during early subjective night, and their kinetics is highly dependent on the duration of pulses, suggesting that in the case of pulses of longer duration, the homeostatic process could overtake light direct influence for shaping sleep and waking distribution.
Collapse
|
31
|
Influence of External Natural Environment Including Sunshine Exposure on Public Mental Health: A Systematic Review. PSYCHIATRY INTERNATIONAL 2022. [DOI: 10.3390/psychiatryint3010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The COVID-19 pandemic has been raging around the world and public health measures such as lockdowns have forced people to go out less often, reducing sunlight exposure time, green space use, and physical activity. It is well known that exercise has a positive impact on mental health, but the impact of external environmental factors such as sunlight exposure and green space use on mental health has not been systematically reviewed. In this review, we categorized the major factors that may affect people’s mental health into (1) external environmental factors such as exposure to sunlight and green spaces, (2) internal life factors such as physical activity and lifestyle, and (3) mixed external and internal factors, and systematically examined the relationship between each factor and people’s mental health. The results showed that exposure to sunlight, spending leisure time in green spaces, and physical activity each had a positive impact on people’s mental health, including depression, anxiety, and stress states. Specifically, moderate physical activity in an external environment with sunlight exposure or green space was found to be an important factor. The study found that exposure to the natural environment through sunbathing and exercise is important for people’s mental health.
Collapse
|
32
|
Wang Y, Yang W, Zhang P, Ding Z, Wang L, Cheng J. Effects of light on the sleep-wakefulness cycle of mice mediated by intrinsically photosensitive retinal ganglion cells. Biochem Biophys Res Commun 2022; 592:93-98. [PMID: 35033872 DOI: 10.1016/j.bbrc.2022.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/02/2022] [Accepted: 01/08/2022] [Indexed: 11/21/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are able to synthesize the photosensitive protein melanopsin, which is involved in the regulation of circadian rhythms, the papillary light reflex and other nonimaging visual functions. To investigate whether ipRGCs are involved in mediating the light modulation of sleep-wakefulness in rodents, melanopsin knockout mice (MKO), melanopsin-only mice (MO) and coneless, rodless, melanopsin knockout mice (TKO) were used in this study to record electroencephalogram and electromyography variations in the normal 12:12 h light:dark cycle, and 1 h and 3 h light pulses were administered at 1 h after the light was turned off. In the normal 12:12 h light-dark cycle, the WT, MKO and MO mice had a regular day-night rhythm and no significant difference in wakefulness, rapid eye movement (REM) or nonrapid eye movement (NREM) sleep. However, TKO mice could not be entrained according to the light-dark cycle and exhibited a free-running rhythm. Extending the light pulse durations significantly changed the sleep and wakefulness activities of the WT and MO mice but did not have an effect on the MKO mice. These results indicate that melanopsin significantly affects REM and NREM sleep and that ipRGCs play an important role in light-induced sleep in mice.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China; Department of Physiology and Pathology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Wenzhi Yang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Pingping Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zhengxia Ding
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Liecheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Juan Cheng
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
33
|
Maruani J, Geoffroy PA. Multi-Level Processes and Retina-Brain Pathways of Photic Regulation of Mood. J Clin Med 2022; 11:jcm11020448. [PMID: 35054142 PMCID: PMC8781294 DOI: 10.3390/jcm11020448] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Light exerts powerful biological effects on mood regulation. Whereas the source of photic information affecting mood is well established at least via intrinsically photosensitive retinal ganglion cells (ipRGCs) secreting the melanopsin photopigment, the precise circuits that mediate the impact of light on depressive behaviors are not well understood. This review proposes two distinct retina–brain pathways of light effects on mood: (i) a suprachiasmatic nucleus (SCN)-dependent pathway with light effect on mood via the synchronization of biological rhythms, and (ii) a SCN-independent pathway with light effects on mood through modulation of the homeostatic process of sleep, alertness and emotion regulation: (1) light directly inhibits brain areas promoting sleep such as the ventrolateral preoptic nucleus (VLPO), and activates numerous brain areas involved in alertness such as, monoaminergic areas, thalamic regions and hypothalamic regions including orexin areas; (2) moreover, light seems to modulate mood through orexin-, serotonin- and dopamine-dependent pathways; (3) in addition, light activates brain emotional processing areas including the amygdala, the nucleus accumbens, the perihabenular nucleus, the left hippocampus and pathways such as the retina–ventral lateral geniculate nucleus and intergeniculate leaflet–lateral habenula pathway. This work synthetizes new insights into the neural basis required for light influence mood
Collapse
Affiliation(s)
- Julia Maruani
- Département de Psychiatrie et d’Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat—Claude Bernard, F-75018 Paris, France
- NeuroDiderot, INSERM U1141, Université de Paris, F-75019 Paris, France
- Correspondence: (J.M.); (P.A.G.); Tel.: +33-(0)1-40-25-82-62 (J.M. & P.A.G.)
| | - Pierre A. Geoffroy
- Département de Psychiatrie et d’Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat—Claude Bernard, F-75018 Paris, France
- NeuroDiderot, INSERM U1141, Université de Paris, F-75019 Paris, France
- CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, 5 rue Blaise Pascal, F-67000 Strasbourg, France
- GHU Paris—Psychiatry & Neurosciences, 1 Rue Cabanis, F-75014 Paris, France
- Correspondence: (J.M.); (P.A.G.); Tel.: +33-(0)1-40-25-82-62 (J.M. & P.A.G.)
| |
Collapse
|
34
|
Tir S, Steel LCE, Tam SKE, Semo M, Pothecary CA, Vyazovskiy VV, Foster RG, Peirson SN. Rodent models in translational circadian photobiology. PROGRESS IN BRAIN RESEARCH 2022; 273:97-116. [PMID: 35940726 DOI: 10.1016/bs.pbr.2022.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the last decades remarkable advances have been made in the understanding of the photobiology of circadian rhythms. The identification of a third photoreceptive system in the mammalian eye, in addition to the rods and cones that mediate vision, has transformed our appreciation of the role of light in regulating physiology and behavior. These photosensitive retinal ganglion cells (pRGCs) express the blue-light sensitive photopigment melanopsin and project to the suprachiasmatic nuclei (SCN)-the master circadian pacemaker-as well as many other brain regions. Much of our understanding of the fundamental mechanisms of the pRGCs, and the processes that they regulate, comes from mouse and other rodent models. Here we describe the contribution of rodent models to circadian photobiology, including both their strengths and limitations. In addition, we discuss how an appreciation of both rodent and human data is important for translational circadian photobiology. Such an approach enables a bi-directional flow of information whereby an understanding of basic mechanisms derived from mice can be integrated with studies from humans. Progress in this field is being driven forward at several levels of analysis, not least by the use of personalized light measurements and photoreceptor specific stimuli in human studies, and by studying the impact of environmental, rather than laboratory, lighting on different rodent models.
Collapse
Affiliation(s)
- Selma Tir
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Laura C E Steel
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - S K E Tam
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ma'ayan Semo
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Carina A Pothecary
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Vladyslav V Vyazovskiy
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Russell G Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Stuart N Peirson
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
35
|
Slow vision: Measuring melanopsin-mediated light effects in animal models. PROGRESS IN BRAIN RESEARCH 2022; 273:117-143. [DOI: 10.1016/bs.pbr.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Fasick JI, Algrain H, Samuels C, Mahadevan P, Schweikert LE, Naffaa ZJ, Robinson PR. Spectral tuning and deactivation kinetics of marine mammal melanopsins. PLoS One 2021; 16:e0257436. [PMID: 34653198 PMCID: PMC8519484 DOI: 10.1371/journal.pone.0257436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
In mammals, the photopigment melanopsin (Opn4) is found in a subset of retinal ganglion cells that serve light detection for circadian photoentrainment and pupil constriction (i.e., mydriasis). For a given species, the efficiency of photoentrainment and length of time that mydriasis occurs is determined by the spectral sensitivity and deactivation kinetics of melanopsin, respectively, and to date, neither of these properties have been described in marine mammals. Previous work has indicated that the absorbance maxima (λmax) of marine mammal rhodopsins (Rh1) have diversified to match the available light spectra at foraging depths. However, similar to the melanopsin λmax of terrestrial mammals (~480 nm), the melanopsins of marine mammals may be conserved, with λmax values tuned to the spectrum of solar irradiance at the water's surface. Here, we investigated the Opn4 pigments of 17 marine mammal species inhabiting diverse photic environments including the Infraorder Cetacea, as well as the Orders Sirenia and Carnivora. Both genomic and cDNA sequences were used to deduce amino acid sequences to identify substitutions most likely involved in spectral tuning and deactivation kinetics of the Opn4 pigments. Our results show that there appears to be no amino acid substitutions in marine mammal Opn4 opsins that would result in any significant change in λmax values relative to their terrestrial counterparts. We also found some marine mammal species to lack several phosphorylation sites in the carboxyl terminal domain of their Opn4 pigments that result in significantly slower deactivation kinetics, and thus longer mydriasis, compared to terrestrial controls. This finding was restricted to cetacean species previously found to lack cone photoreceptor opsins, a condition known as rod monochromacy. These results suggest that the rod monochromat whales rely on extended pupillary constriction to prevent photobleaching of the highly photosensitive all-rod retina when moving between photopic and scotopic conditions.
Collapse
Affiliation(s)
- Jeffry I. Fasick
- Department of Biological Sciences, The University of Tampa, Tampa, Florida, United States of America
| | - Haya Algrain
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Courtland Samuels
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Padmanabhan Mahadevan
- Department of Biological Sciences, The University of Tampa, Tampa, Florida, United States of America
| | - Lorian E. Schweikert
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, United States of America
| | - Zaid J. Naffaa
- Department of Biological Sciences, Kean University, Union, New Jersey, United States of America
| | - Phyllis R. Robinson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
37
|
Restoring the Molecular Clockwork within the Suprachiasmatic Hypothalamus of an Otherwise Clockless Mouse Enables Circadian Phasing and Stabilization of Sleep-Wake Cycles and Reverses Memory Deficits. J Neurosci 2021; 41:8562-8576. [PMID: 34446572 PMCID: PMC8513698 DOI: 10.1523/jneurosci.3141-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022] Open
Abstract
The timing and quality of sleep-wake cycles are regulated by interacting circadian and homeostatic mechanisms. Although the suprachiasmatic nucleus (SCN) is the principal clock, circadian clocks are active across the brain and the respective sleep-regulatory roles of SCN and local clocks are unclear. To determine the specific contribution(s) of the SCN, we used virally mediated genetic complementation, expressing Cryptochrome1 (Cry1) to establish circadian molecular competence in the suprachiasmatic hypothalamus of globally clockless, arrhythmic male Cry1/Cry2-null mice. Under free-running conditions, the rest/activity behavior of Cry1/Cry2-null controls expressing EGFP (SCNCon) was arrhythmic, whereas Cry1-complemented mice (SCNCry1) had coherent circadian behavior, comparable to that of Cry1,2-competent wild types (WTs). In SCNCon mice, sleep-wakefulness, assessed by electroencephalography (EEG)/electromyography (EMG), lacked circadian organization. In SCNCry1 mice, however, it matched WTs, with consolidated vigilance states [wake, rapid eye movement sleep (REMS) and non-REMS (NREMS)] and rhythms in NREMS δ power and expression of REMS within total sleep (TS). Wakefulness in SCNCon mice was more fragmented than in WTs, with more wake-NREMS-wake transitions. This disruption was reversed in SCNCry1 mice. Following sleep deprivation (SD), all mice showed a homeostatic increase in NREMS δ power, although the SCNCon mice had reduced NREMS during the inactive (light) phase of recovery. In contrast, the dynamics of homeostatic responses in the SCNCry1 mice were comparable to WTs. Finally, SCNCon mice exhibited poor sleep-dependent memory but this was corrected in SCNCry1mice. In clockless mice, circadian molecular competence focused solely on the SCN rescued the architecture and consolidation of sleep-wake and sleep-dependent memory, highlighting its dominant role in timing sleep. SIGNIFICANCE STATEMENT The circadian timing system regulates sleep-wake cycles. The hypothalamic suprachiasmatic nucleus (SCN) is the principal circadian clock, but the presence of multiple local brain and peripheral clocks mean the respective roles of SCN and other clocks in regulating sleep are unclear. We therefore used virally mediated genetic complementation to restore molecular circadian functions in the suprachiasmatic hypothalamus, focusing on the SCN, in otherwise genetically clockless, arrhythmic mice. This initiated circadian activity-rest cycles, and circadian sleep-wake cycles, circadian patterning to the intensity of non-rapid eye movement sleep (NREMS) and circadian control of REMS as a proportion of total sleep (TS). Consolidation of sleep-wake established normal dynamics of sleep homeostasis and enhanced sleep-dependent memory. Thus, the suprachiasmatic hypothalamus, alone, can direct circadian regulation of sleep-wake.
Collapse
|
38
|
The retinal ipRGC-preoptic circuit mediates the acute effect of light on sleep. Nat Commun 2021; 12:5115. [PMID: 34433830 PMCID: PMC8387462 DOI: 10.1038/s41467-021-25378-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 07/29/2021] [Indexed: 11/08/2022] Open
Abstract
Light regulates daily sleep rhythms by a neural circuit that connects intrinsically photosensitive retinal ganglion cells (ipRGCs) to the circadian pacemaker, the suprachiasmatic nucleus. Light, however, also acutely affects sleep in a circadian-independent manner. The neural circuits involving the acute effect of light on sleep remain unknown. Here we uncovered a neural circuit that drives this acute light response, independent of the suprachiasmatic nucleus, but still through ipRGCs. We show that ipRGCs substantially innervate the preoptic area (POA) to mediate the acute light effect on sleep in mice. Consistently, activation of either the POA projecting ipRGCs or the light-responsive POA neurons increased non-rapid eye movement (NREM) sleep without influencing REM sleep. In addition, inhibition of the light-responsive POA neurons blocked the acute light effects on NREM sleep. The predominant light-responsive POA neurons that receive ipRGC input belong to the corticotropin-releasing hormone subpopulation. Remarkably, the light-responsive POA neurons are inhibitory and project to well-known wakefulness-promoting brain regions, such as the tuberomammillary nucleus and the lateral hypothalamus. Therefore, activation of the ipRGC-POA circuit inhibits arousal brain regions to drive light-induced NREM sleep. Our findings reveal a functional retina-brain circuit that is both necessary and sufficient for the acute effect of light on sleep. The preoptic area (POA) is critical for sleep regulation but its role in acute, non-circadian, light effects on sleep are unclear. The authors show that intrinsically photosensitive retinal ganglion cells provide substantial input into the POA and through these modulate the amount of non-rapid eye movement (NREM) sleep.
Collapse
|
39
|
Hubbard J, Kobayashi Frisk M, Ruppert E, Tsai JW, Fuchs F, Robin-Choteau L, Husse J, Calvel L, Eichele G, Franken P, Bourgin P. Dissecting and modeling photic and melanopsin effects to predict sleep disturbances induced by irregular light exposure in mice. Proc Natl Acad Sci U S A 2021; 118:e2017364118. [PMID: 34155139 PMCID: PMC8237663 DOI: 10.1073/pnas.2017364118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Artificial lighting, day-length changes, shift work, and transmeridian travel all lead to sleep-wake disturbances. The nychthemeral sleep-wake cycle (SWc) is known to be controlled by output from the central circadian clock in the suprachiasmatic nuclei (SCN), which is entrained to the light-dark cycle. Additionally, via intrinsically photosensitive retinal ganglion cells containing the photopigment melanopsin (Opn4), short-term light-dark alternations exert direct and acute influences on sleep and waking. However, the extent to which longer exposures typically experienced across the 24-h day exert such an effect has never been clarified or quantified, as disentangling sustained direct light effects (SDLE) from circadian effects is difficult. Recording sleep in mice lacking a circadian pacemaker, either through transgenesis (Syt10cre/creBmal1fl/- ) or SCN lesioning and/or melanopsin-based phototransduction (Opn4-/- ), we uncovered, contrary to prevailing assumptions, that the contribution of SDLE is as important as circadian-driven input in determining SWc amplitude. Specifically, SDLE were primarily mediated (>80%) through melanopsin, of which half were then relayed through the SCN, revealing an ancillary purpose for this structure, independent of its clock function in organizing SWc. Based on these findings, we designed a model to estimate the effect of atypical light-dark cycles on SWc. This model predicted SWc amplitude in mice exposed to simulated transequatorial or transmeridian paradigms. Taken together, we demonstrate this SDLE is a crucial mechanism influencing behavior on par with the circadian system. In a broader context, these findings mandate considering SDLE, in addition to circadian drive, for coping with health consequences of atypical light exposure in our society.
Collapse
Affiliation(s)
- Jeffrey Hubbard
- CNRS-Unité Propre de Recherche (UPR) 3212, Institute of Cellular and Integrative Neurosciences, 67084 Strasbourg, France
- International Research Center for ChronoSomnology, Translational Medicine Federation Strasbourg, Sleep Disorders Center, Strasbourg University Hospital, University of Strasbourg, 67000 Strasbourg, France
| | - Mio Kobayashi Frisk
- CNRS-Unité Propre de Recherche (UPR) 3212, Institute of Cellular and Integrative Neurosciences, 67084 Strasbourg, France
- International Research Center for ChronoSomnology, Translational Medicine Federation Strasbourg, Sleep Disorders Center, Strasbourg University Hospital, University of Strasbourg, 67000 Strasbourg, France
| | - Elisabeth Ruppert
- CNRS-Unité Propre de Recherche (UPR) 3212, Institute of Cellular and Integrative Neurosciences, 67084 Strasbourg, France
- International Research Center for ChronoSomnology, Translational Medicine Federation Strasbourg, Sleep Disorders Center, Strasbourg University Hospital, University of Strasbourg, 67000 Strasbourg, France
| | - Jessica W Tsai
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Fanny Fuchs
- CNRS-Unité Propre de Recherche (UPR) 3212, Institute of Cellular and Integrative Neurosciences, 67084 Strasbourg, France
- International Research Center for ChronoSomnology, Translational Medicine Federation Strasbourg, Sleep Disorders Center, Strasbourg University Hospital, University of Strasbourg, 67000 Strasbourg, France
| | - Ludivine Robin-Choteau
- CNRS-Unité Propre de Recherche (UPR) 3212, Institute of Cellular and Integrative Neurosciences, 67084 Strasbourg, France
- European Center for Diabetes Studies, 67200 Strasbourg, France
| | - Jana Husse
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Laurent Calvel
- CNRS-Unité Propre de Recherche (UPR) 3212, Institute of Cellular and Integrative Neurosciences, 67084 Strasbourg, France
- International Research Center for ChronoSomnology, Translational Medicine Federation Strasbourg, Sleep Disorders Center, Strasbourg University Hospital, University of Strasbourg, 67000 Strasbourg, France
| | - Gregor Eichele
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Patrice Bourgin
- CNRS-Unité Propre de Recherche (UPR) 3212, Institute of Cellular and Integrative Neurosciences, 67084 Strasbourg, France;
- International Research Center for ChronoSomnology, Translational Medicine Federation Strasbourg, Sleep Disorders Center, Strasbourg University Hospital, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
40
|
Validity and Usage of the Seasonal Pattern Assessment Questionnaire (SPAQ) in a French Population of Patients with Depression, Bipolar Disorders and Controls. J Clin Med 2021; 10:jcm10091897. [PMID: 33925578 PMCID: PMC8123881 DOI: 10.3390/jcm10091897] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/04/2022] Open
Abstract
The Seasonal Pattern Assessment Questionnaire (SPAQ), by Rosenthal et al. (1984), is by far the most used questionnaire to evaluate seasonal effects on mood and behavior. It includes a general seasonality score (GSS), composed of 6 items, from which cutoffs have been established to screen for seasonal affective disorder (SAD). However, it has never been validated in French and associations with circadian rhythm and symptoms of depression and bipolarity remain unclear. In this study, including 165 subjects (95 controls and 70 patients with depression or bipolar disorder), we confirmed the validity of the French version of the SPAQ, with a two-factor structure (a psychological factor: energy, mood, social activity and sleep length; and a food factor: weight and appetite) and a good fit was observed by all indicators. Mood and social activity dimensions were significantly affected by seasons in the depressed/bipolar group and a stronger global seasonality score (GSS) was associated with more severe phenotypes of depression and mania. Subjects meeting SAD and subsyndromal-SAD criteria also showed a delayed circadian rhythm compared to controls. Simple tools, such as the SPAQ, can aid the identification of significant seasonal changes and have direct implications on therapeutics including the use of bright light therapy in order to enhance personalized treatments, but also to prevent adverse seasonal effects.
Collapse
|
41
|
Shi HY, Xu W, Guo H, Dong H, Qu WM, Huang ZL. Lesion of intergeniculate leaflet GABAergic neurons attenuates sleep in mice exposed to light. Sleep 2021; 43:5573593. [PMID: 31552427 DOI: 10.1093/sleep/zsz212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/16/2019] [Indexed: 11/12/2022] Open
Abstract
Light has immediate effects on sleep in rodents, but the neural pathways underlying the effect remain to be elucidated. The intergeniculate leaflet (IGL) containing GABAergic neurons receives direct retinal inputs. We hypothesized that IGL GABAergic neurons may mediate light-induced sleep. EEG/electromyogram recording, immunohistochemistry, electrophysiology, optogenetics, fiber photometry, behavioral tests, and cell-specific destruction were employed to investigate the role of IGL GABAergic neurons in the regulation of acute light-induced sleep. Here, EEG/electromyogram recordings revealed that acute light exposure during the nocturnal active phase in mice induced a significant increase in non-rapid eye movement and rapid eye movement sleep compared with controls. Immunohistochemistry showed that acute light exposure for 2 hours in the active phase induced an increase in c-Fos expression in the IGL, whereas lights-off in the rest phase inhibited it. Patch clamp coupled with optogenetics demonstrated that retinal ganglion cells had monosynaptic functional connections to IGL GABAergic neurons. Calcium activity by fiber photometry in freely behaving mice showed that light exposure increased the activity of IGL GABAergic neurons. Furthermore, lesion of IGL GABAergic neurons by caspase-3 virus significantly attenuated the sleep-promoting effect of light exposure during active phases. Collectively, these results clearly indicated that the IGL is one of key nuclei mediating light-induced sleep in mice.
Collapse
Affiliation(s)
- Huan-Ying Shi
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wei Xu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Han Guo
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hui Dong
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Geoffroy PA, Palagini L. Biological rhythms and chronotherapeutics in depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110158. [PMID: 33152388 DOI: 10.1016/j.pnpbp.2020.110158] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022]
Abstract
Depressive syndromes are frequent and heterogeneous brain conditions with more than 90% of patients suffering from sleep complaints. Better characterizing this "sleep" domain may allow to both better treat acute episodes with existing chronotherapeutics, but also to prevent the manifestation or recurrences of mood disorders. This work aims to i) review theoretical and fundamental data of chronotherapeutics, and ii) provide practical recommendations. Light therapy (LT) can be used as a first-line monotherapy of moderate to severe depression of all subtypes. LT can be also used as a combination with antidepressant to maximize patients' response rates, which has a clear superiority to antidepressant alone. Sleep deprivation (SD) is a rapid and powerful chronotherapeutic with antidepressant responses within hours in 45-60% of patients with unipolar or bipolar depression. Different strategies should be combined to stabilize the SD antidepressant effect, including concomitant medications, repeated SD, combination with sleep phase advance and/or LT (triple chronotherapy). Melatonin treatment is of interest in remitted patients with mood disorder to prevent relapses or recurrences, if a complaint of insomnia, poor sleep quality or phase delay syndrome is associated. During the acute phase, melatonin could be used as an adjuvant treatment for symptoms of insomnia associated with depression. The cognitive behavioral therapy for insomnia (CBT-I) can be recommend to treat insomnia during euthymic phases. The Interpersonal and social rhythm therapy (IPSRT) is indicated for the acute treatment of bipolar depression and for the prevention of mood episodes. Chronotherapeutics should always be associated with behavioral measures for healthy sleep.
Collapse
Affiliation(s)
- Pierre A Geoffroy
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, F-75018 Paris, France; GHU Paris - Psychiatry & Neurosciences, 1 rue Cabanis, 75014 Paris, France; Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.
| | - Laura Palagini
- Department of Clinical and Experimental Medicine, Psychiatric Section, University of Pisa; Azienda Ospedaliera Universitaria Pisana (AUOP), Pisa, Italy
| |
Collapse
|
43
|
Abstract
Melanopsin retinal ganglion cells (mRGCs) are the third class of retinal photoreceptors with unique anatomical, electrophysiological, and biological features. There are different mRGC subtypes with differential projections to the brain. These cells contribute to many nonimage-forming functions of the eye, the most relevant being the photoentrainment of circadian rhythms through the projections to the suprachiasmatic nucleus of the hypothalamus. Other relevant biological functions include the regulation of the pupillary light reflex, mood, alertness, and sleep, as well as a possible role in formed vision. The relevance of the mRGC-related pathways in the brain is highlighted by the role that the dysfunction and/or loss of these cells may play in affecting circadian rhythms and sleep in many neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease and in aging. Moreover, the occurrence of circadian dysfunction is a known risk factor for dementia. In this chapter, the anatomy, physiology, and functions of these cells as well as their resistance to neurodegeneration in mitochondrial optic neuropathies or their predilection to be lost in other neurodegenerative disorders will be discussed.
Collapse
|
44
|
Abstract
One way to study the specific response of the non-visual melanopsin photoreceptors of the human eye is to silence the response of cones and rods. Melanopsin photoreceptors (ipRGC), highlighted in the early 2000s, are intimately linked to the circadian rhythm and therefore to our sleep and wakefulness. Rest and sleep regulation, health and cognitive functions are all linked to ipRGC and play an important role in work and human relationships. Thus, we believe that the study of ipRGC responses is important.We searched and reviewed scientific articles describing instrumentation dedicated to these studies. PubMed lists more than 90,000 articles created since the year 2000 that contain the word circadian but only 252 with silent substitution. In relation to melanopsin, we found 39 relevant articles from which only 11 give a device description for humans, which is incomplete in most cases. We did not find any consensus for light intensity description, melanopsin contrast, sequences of melanopsin light stimulation and optical setup to expose the retina to the light.
Collapse
|
45
|
Stangerup I, Hannibal J. Localization of Vasoactive Intestinal Polypeptide Receptor 1 (VPAC1) in Hypothalamic Neuroendocrine Oxytocin Neurons; A Potential Role in Circadian Prolactin Secretion. Front Neuroanat 2020; 14:579466. [PMID: 33192343 PMCID: PMC7658414 DOI: 10.3389/fnana.2020.579466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Prolactin (PRL) is a versatile hormone and serves a broad variety of physiological functions besides lactation. The release of PRL from lactotrophs in the pituitary has in rodents been shown to be released with a circadian pattern depending on the physiological state of the animal. The circadian release of PRL seems to be complex involving tonic inhibition by dopamine (DA) neurons on lactotrophs and one or even several releasing factors. Because of the circadian releasing pattern of PRL, neurons in the suprachiasmatic nucleus (SCN), "the brain clock," and especially the neurons expressing neuropeptide vasoactive intestinal polypeptide (VIP), have been suggested to be involved in the circadian regulation of PRL. In the present study, we used fluorescence immunohistochemistry, in situ hybridization histochemistry, confocal microscopy, three-dimensional reconstruction, and highly specific antibodies to visualize the occurrence of VIP receptors 1 and 2 (VPAC1 and VPAC2) in mouse brain hypothalamic sections stained in combination with VIP, oxytocin (OXT), arginine vasopressin (AVP), and DA (tyrosine hydroxylase, TH). We demonstrated that VIP fibers most likely originating from the ventral part of the SCN project to OXT neurons in the magnocellular part of the paraventricular nucleus (PVN). In the PVN, VIP fibers were found in close apposition to OXT neuron exclusively expressing the VPAC1 receptor. Furthermore, we demonstrate that neither OXT neurons nor TH or AVP neurons were expressing the VPAC2 receptor. VPAC1 receptor expression was also found on blood vessels but not in neurons expressing AVP or TH. These findings suggest that VIP signaling from the SCN does not directly target DA neurons involved in PRL secretion. Furthermore, the findings support the notion that VIP from neurons in the SCN could regulate circadian release of OXT in the posterior pituitary or modulate OXT neurons as a releasing factor involved in the circadian regulation of PRL from pituitary lactotrophs.
Collapse
Affiliation(s)
- Ida Stangerup
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Foster RG, Hughes S, Peirson SN. Circadian Photoentrainment in Mice and Humans. BIOLOGY 2020; 9:biology9070180. [PMID: 32708259 PMCID: PMC7408241 DOI: 10.3390/biology9070180] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/26/2022]
Abstract
Light around twilight provides the primary entrainment signal for circadian rhythms. Here we review the mechanisms and responses of the mouse and human circadian systems to light. Both utilize a network of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). In both species action spectra and functional expression of OPN4 in vitro show that melanopsin has a λmax close to 480 nm. Anatomical findings demonstrate that there are multiple pRGC sub-types, with some evidence in mice, but little in humans, regarding their roles in regulating physiology and behavior. Studies in mice, non-human primates and humans, show that rods and cones project to and can modulate the light responses of pRGCs. Such an integration of signals enables the rods to detect dim light, the cones to detect higher light intensities and the integration of intermittent light exposure, whilst melanopsin measures bright light over extended periods of time. Although photoreceptor mechanisms are similar, sensitivity thresholds differ markedly between mice and humans. Mice can entrain to light at approximately 1 lux for a few minutes, whilst humans require light at high irradiance (>100’s lux) and of a long duration (>30 min). The basis for this difference remains unclear. As our retinal light exposure is highly dynamic, and because photoreceptor interactions are complex and difficult to model, attempts to develop evidence-based lighting to enhance human circadian entrainment are very challenging. A way forward will be to define human circadian responses to artificial and natural light in the “real world” where light intensity, duration, spectral quality, time of day, light history and age can each be assessed.
Collapse
|
47
|
|
48
|
Tam SKE, Bannerman DM, Peirson SN. Mechanisms mediating the effects of light on sleep and alertness: current challenges. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Riedel CS, Georg B, Fahrenkrug J, Hannibal J. Altered light induced EGR1 expression in the SCN of PACAP deficient mice. PLoS One 2020; 15:e0232748. [PMID: 32379800 PMCID: PMC7205239 DOI: 10.1371/journal.pone.0232748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
The brain’s biological clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus and generates circadian rhythms in physiology and behavior. The circadian clock needs daily adjustment by light to stay synchronized (entrained) with the astronomical 24 h light/dark cycle. Light entrainment occurs via melanopsin expressing retinal ganglion cells (mRGCs) and two neurotransmitters of the retinohypothalamic tract (RHT), PACAP and glutamate, which transmit light information to the SCN neurons. In SCN neurons, light signaling involves the immediate-early genes Fos, Egr1 and the clock genes Per1 and Per2. In this study, we used PACAP deficient mice to evaluate PACAP’s role in light induced gene expression of EGR1 in SCN neurons during early (ZT17) and late (ZT23) subjective night at high (300 lux) and low (10 lux) white light exposure. We found significantly lower levels of both EGR1 mRNA and protein in the SCN in PACAP deficient mice compared to wild type mice at early subjective night (ZT17) exposed to low but not high light intensity. No difference was found between the two genotypes at late night (ZT23) at neither light intensities. In conclusion, light mediated EGR1 induction in SCN neurons at early night at low light intensities is dependent of PACAP signaling. A role of PACAP in shaping synaptic plasticity during light stimulation at night is discussed.
Collapse
Affiliation(s)
- Casper Schwartz Riedel
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark
| | - Birgitte Georg
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark
- * E-mail:
| |
Collapse
|
50
|
Li L, Yang P, Shi S, Zhang Z, Shi Q, Xu J, He H, Lei C, Wang E, Chen H, Huang Y. Association Analysis to Copy Number Variation (CNV) of Opn4 Gene with Growth Traits of Goats. Animals (Basel) 2020; 10:ani10030441. [PMID: 32155759 PMCID: PMC7143651 DOI: 10.3390/ani10030441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Copy number variation is a common genetic polymorphism and is mainly represented by submicroscopic levels of deletion and duplication which are caused by rearrangement of the genome. It is well known that copy number variations of genes are associated with growth traits of livestock. In this study, we detected the correlation between the copy number variation of the Opn4 gene and growth traits of Guizhou goats. We found that the copy number variation of the Opn4 gene had a significant influence on the body length and body weight of Guizhou goats. The results may provide preliminary suggestions into Guizhou goat breeding and new insights into the future of CNV as a new promising molecular marker in animal breeding. Abstract Extensive research has been carried out regarding the correlation between the growth traits of livestock and genetic polymorphisms, including single nucleotide polymorphisms and copy number variations (CNV). The purpose of this study was to analyze the CNV and its genetic effects of the Opn4 gene in 284 Guizhou goats (Guizhou black goat: n = 186, Guizhou white goat: n = 98). We used qPCR to detect the CNV of the Opn4 gene in Guizhou goats, and the classification results were correlated with the corresponding individual growth traits by SPSS software. The results showed that the Opn4 gene had a superior effect on growth traits with multiple copy variants in Guizhou black goats, and there was a significant correlation between copy number variation sites and body length traits. Contrary to the former conclusion, in Guizhou white goats, individuals with the Normal copy number type showed superior growth traits and copy number variant sites were significantly associated with body weight traits. Therefore, the CNV of the Opn4 gene can be used as a candidate molecular genetic marker to improve goat growth traits, speeding up the breeding process of goat elite varieties.
Collapse
Affiliation(s)
- LiJuan Li
- Institute of Bijie Test Area, Guizhou University of Engineering Science, Bijie, Guizhou 551700, China; (L.L.)
| | - Peng Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China; (P.Y.)
| | - ShuYue Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China; (P.Y.)
| | - ZiJing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 45002, China; (Z.Z.); (Q.S.)
| | - QiaoTing Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 45002, China; (Z.Z.); (Q.S.)
| | - JiaWei Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China; (P.Y.)
| | - Hua He
- Institute of Bijie Test Area, Guizhou University of Engineering Science, Bijie, Guizhou 551700, China; (L.L.)
- College of Veterinary Medicine, Northwest A&F University, Yangling Shaanxi 712100, China
| | - ChuZhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China; (P.Y.)
| | - ErYao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 45002, China; (Z.Z.); (Q.S.)
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China; (P.Y.)
| | - YongZhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China; (P.Y.)
- Correspondence: ; Tel.: +86-29-87092102; Fax: +86-29-87092164
| |
Collapse
|