1
|
Hamrick A, Cope HD, Forbis D, Rog O. Kinetic analysis of strand invasion during C. elegans meiosis reveals similar rates of sister- and homolog-directed repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632442. [PMID: 39829846 PMCID: PMC11741252 DOI: 10.1101/2025.01.10.632442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Meiotic chromosome segregation requires reciprocal exchanges between the parental chromosomes (homologs). Exchanges are formed via tightly-regulated repair of double-strand DNA breaks (DSBs). However, since repair intermediates are mostly quantified in fixed images, our understanding of the mechanisms that control the progression of repair remains limited. Here, we study meiotic repair kinetics in Caenorhabditis elegans by extinguishing new DSBs and following the disappearance of a crucial intermediate - strand invasion mediated by the conserved RecA-family recombinase RAD-51. We find that RAD-51 foci have a half-life of 42-132 minutes for both endogenous and exogenous DSBs. Surprisingly, we find that repair templated by the sister chromatid is not slower than repair templated by the homolog. This suggests that differential kinetics are unlikely to underlie 'homolog bias': the preferential use of the homolog as a repair template. We also use our kinetic information to revisit the total number of DSBs per nucleus - the 'substrate' for the formation of exchanges - and find an average of 40 DSBs in wild-type meiosis and >50 DSBs when homolog pairing is perturbed. Our work opens the door for analysis of the interplay between meiotic repair kinetics and the fidelity of genome inheritance.
Collapse
Affiliation(s)
| | | | - Divya Forbis
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
2
|
Toraason E, Salagean A, Almanzar DE, Brown JE, Richter CM, Kurhanewicz NA, Rog O, Libuda DE. BRCA1/BRC-1 and SMC-5/6 regulate DNA repair pathway engagement during Caenorhabditis elegans meiosis. eLife 2024; 13:e80687. [PMID: 39115289 PMCID: PMC11368404 DOI: 10.7554/elife.80687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The preservation of genome integrity during sperm and egg development is vital for reproductive success. During meiosis, the tumor suppressor BRCA1/BRC-1 and structural maintenance of chromosomes 5/6 (SMC-5/6) complex genetically interact to promote high fidelity DNA double strand break (DSB) repair, but the specific DSB repair outcomes these proteins regulate remain unknown. Using genetic and cytological methods to monitor resolution of DSBs with different repair partners in Caenorhabditis elegans, we demonstrate that both BRC-1 and SMC-5 repress intersister crossover recombination events. Sequencing analysis of conversion tracts from homolog-independent DSB repair events further indicates that BRC-1 regulates intersister/intrachromatid noncrossover conversion tract length. Moreover, we find that BRC-1 specifically inhibits error prone repair of DSBs induced at mid-pachytene. Finally, we reveal functional interactions of BRC-1 and SMC-5/6 in regulating repair pathway engagement: BRC-1 is required for localization of recombinase proteins to DSBs in smc-5 mutants and enhances DSB repair defects in smc-5 mutants by repressing theta-mediated end joining (TMEJ). These results are consistent with a model in which some functions of BRC-1 act upstream of SMC-5/6 to promote recombination and inhibit error-prone DSB repair, while SMC-5/6 acts downstream of BRC-1 to regulate the formation or resolution of recombination intermediates. Taken together, our study illuminates the coordinated interplay of BRC-1 and SMC-5/6 to regulate DSB repair outcomes in the germline.
Collapse
Affiliation(s)
- Erik Toraason
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Alina Salagean
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - David E Almanzar
- School of Biological Sciences and Center for Cell and Genome Sciences, University of UtahSalt Lake CityUnited States
| | - Jordan E Brown
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Colette M Richter
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Nicole A Kurhanewicz
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of UtahSalt Lake CityUnited States
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| |
Collapse
|
3
|
Kutashev K, Meschichi A, Reeck S, Fonseca A, Sartori K, White CI, Sicard A, Rosa S. Differences in RAD51 transcriptional response and cell cycle dynamics reveal varying sensitivity to DNA damage among Arabidopsis thaliana root cell types. THE NEW PHYTOLOGIST 2024; 243:966-980. [PMID: 38840557 DOI: 10.1111/nph.19875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024]
Abstract
Throughout their lifecycle, plants are subjected to DNA damage from various sources, both environmental and endogenous. Investigating the mechanisms of the DNA damage response (DDR) is essential to unravel how plants adapt to the changing environment, which can induce varying amounts of DNA damage. Using a combination of whole-mount single-molecule RNA fluorescence in situ hybridization (WM-smFISH) and plant cell cycle reporter lines, we investigated the transcriptional activation of a key homologous recombination (HR) gene, RAD51, in response to increasing amounts of DNA damage in Arabidopsis thaliana roots. The results uncover consistent variations in RAD51 transcriptional response and cell cycle arrest among distinct cell types and developmental zones. Furthermore, we demonstrate that DNA damage induced by genotoxic stress results in RAD51 transcription throughout the whole cell cycle, dissociating its traditional link with S/G2 phases. This work advances the current comprehension of DNA damage response in plants by demonstrating quantitative differences in DDR activation. In addition, it reveals new associations with the cell cycle and cell types, providing crucial insights for further studies of the broader response mechanisms in plants.
Collapse
Affiliation(s)
- Konstantin Kutashev
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| | - Anis Meschichi
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology Zürich, Zürich, 8092, Switzerland
| | - Svenja Reeck
- Department of Cell and Developmental Biology, John Innes Centre, Research Park, Norwich, NR4 7UH, UK
| | - Alejandro Fonseca
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| | - Kevin Sartori
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| | - Charles I White
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293, CNRS, U1103 INSERM, Clermont-Ferrand, 63001, France
| | - Adrien Sicard
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| | - Stefanie Rosa
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| |
Collapse
|
4
|
Dubois E, Boisnard S, Bourbon HM, Yefsah K, Budin K, Debuchy R, Zhang L, Kleckner N, Zickler D, Espagne E. Canonical and noncanonical roles of Hop1 are crucial for meiotic prophase in the fungus Sordaria macrospora. PLoS Biol 2024; 22:e3002705. [PMID: 38950075 PMCID: PMC11244814 DOI: 10.1371/journal.pbio.3002705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/12/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
We show here that in the fungus Sordaria macrospora, the meiosis-specific HORMA-domain protein Hop1 is not essential for the basic early events of chromosome axis development, recombination initiation, or recombination-mediated homolog coalignment/pairing. In striking contrast, Hop1 plays a critical role at the leptotene/zygotene transition which is defined by transition from pairing to synaptonemal complex (SC) formation. During this transition, Hop1 is required for maintenance of normal axis structure, formation of SC from telomere to telomere, and development of recombination foci. These hop1Δ mutant defects are DSB dependent and require Sme4/Zip1-mediated progression of the interhomolog interaction program, potentially via a pre-SC role. The same phenotype occurs not only in hop1Δ but also in absence of the cohesin Rec8 and in spo76-1, a non-null mutant of cohesin-associated Spo76/Pds5. Thus, Hop1 and cohesins collaborate at this crucial step of meiotic prophase. In addition, analysis of 4 non-null mutants that lack this transition defect reveals that Hop1 also plays important roles in modulation of axis length, homolog-axis juxtaposition, interlock resolution, and spreading of the crossover interference signal. Finally, unexpected variations in crossover density point to the existence of effects that both enhance and limit crossover formation. Links to previously described roles of the protein in other organisms are discussed.
Collapse
Affiliation(s)
- Emeline Dubois
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphanie Boisnard
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Henri-Marc Bourbon
- Centre de Biologie Intégrative, Molecular, Cellular & Developmental Biology Unit, Université Fédérale de Toulouse, Toulouse, France
| | - Kenza Yefsah
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Karine Budin
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Robert Debuchy
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Liangran Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Denise Zickler
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Eric Espagne
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
5
|
Hernández Sánchez-Rebato M, Schubert V, White CI. Meiotic double-strand break repair DNA synthesis tracts in Arabidopsis thaliana. PLoS Genet 2024; 20:e1011197. [PMID: 39012914 PMCID: PMC11280534 DOI: 10.1371/journal.pgen.1011197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/26/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
We report here the successful labelling of meiotic prophase I DNA synthesis in the flowering plant, Arabidopsis thaliana. Incorporation of the thymidine analogue, EdU, enables visualisation of the footprints of recombinational repair of programmed meiotic DNA double-strand breaks (DSB), with ~400 discrete, SPO11-dependent, EdU-labelled chromosomal foci clearly visible at pachytene and later stages of meiosis. This number equates well with previous estimations of 200-300 DNA double-strand breaks per meiosis in Arabidopsis, confirming the power of this approach to detect the repair of most or all SPO11-dependent meiotic DSB repair events. The chromosomal distribution of these DNA-synthesis foci accords with that of early recombination markers and MLH1, which marks Class I crossover sites. Approximately 10 inter-homologue cross-overs (CO) have been shown to occur in each Arabidopsis male meiosis and, athough very probably under-estimated, an equivalent number of inter-homologue gene conversions (GC) have been described. Thus, at least 90% of meiotic recombination events, and very probably more, have not previously been accessible for analysis. Visual examination of the patterns of the foci on the synapsed pachytene chromosomes corresponds well with expectations from the different mechanisms of meiotic recombination and notably, no evidence for long Break-Induced Replication DNA synthesis tracts was found. Labelling of meiotic prophase I, SPO11-dependent DNA synthesis holds great promise for further understanding of the molecular mechanisms of meiotic recombination, at the heart of reproduction and evolution of eukaryotes.
Collapse
Affiliation(s)
- Miguel Hernández Sánchez-Rebato
- Institut de Génétique, Reproduction et Développement, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Charles I. White
- Institut de Génétique, Reproduction et Développement, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
6
|
Zhao Y, Ren L, Zhao T, You H, Miao Y, Liu H, Cao L, Wang B, Shen Y, Li Y, Tang D, Cheng Z. SCC3 is an axial element essential for homologous chromosome pairing and synapsis. eLife 2024; 13:RP94180. [PMID: 38864853 PMCID: PMC11168746 DOI: 10.7554/elife.94180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Cohesin is a multi-subunit protein that plays a pivotal role in holding sister chromatids together during cell division. Sister chromatid cohesion 3 (SCC3), constituents of cohesin complex, is highly conserved from yeast to mammals. Since the deletion of individual cohesin subunit always causes lethality, it is difficult to dissect its biological function in both mitosis and meiosis. Here, we obtained scc3 weak mutants using CRISPR-Cas9 system to explore its function during rice mitosis and meiosis. The scc3 weak mutants displayed obvious vegetative defects and complete sterility, underscoring the essential roles of SCC3 in both mitosis and meiosis. SCC3 is localized on chromatin from interphase to prometaphase in mitosis. However, in meiosis, SCC3 acts as an axial element during early prophase I and subsequently situates onto centromeric regions following the disassembly of the synaptonemal complex. The loading of SCC3 onto meiotic chromosomes depends on REC8. scc3 shows severe defects in homologous pairing and synapsis. Consequently, SCC3 functions as an axial element that is essential for maintaining homologous chromosome pairing and synapsis during meiosis.
Collapse
Affiliation(s)
- Yangzi Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhouChina
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Lijun Ren
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityShandongChina
| | - Tingting Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityShandongChina
| | - Hanli You
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhouChina
| | - Yongjie Miao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhouChina
| | - Huixin Liu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Lei Cao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Bingxin Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Zhukuan Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhouChina
| |
Collapse
|
7
|
Yang Y, Wang N, Liu G, Nan W, Wang B, Gartner A, Zhang H, Hong Y. COSA-1 mediated pro-crossover complex formation promotes meiotic crossing over in C. elegans. Nucleic Acids Res 2024; 52:4375-4392. [PMID: 38412290 PMCID: PMC11077092 DOI: 10.1093/nar/gkae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
Accurate chromosome segregation during meiosis requires the establishment of at least one crossover (CO) between each pair of homologous chromosomes. CO formation depends on a group of conserved pro-CO proteins, which colocalize at CO-designated sites during late meiotic prophase I. However, it remains unclear whether these pro-CO proteins form a functional complex and how they promote meiotic CO formation in vivo. Here, we show that COSA-1, a key component required for CO formation, interacts with other pro-CO factors, MSH-5 and ZHP-3, via its N-terminal disordered region. Point mutations that impair these interactions do not affect CO designation, but they strongly hinder the accumulation of COSA-1 at CO-designated sites and result in defective CO formation. These defects can be partially bypassed by artificially tethering an interaction-compromised COSA-1 derivate to ZHP-3. Furthermore, we revealed that the accumulation of COSA-1 into distinct foci is required to assemble functional 'recombination nodules'. These prevent early CO-designated recombination intermediates from being dismantled by the RTEL-1 helicase and protect late recombination intermediates, such as Holliday junctions, until they are resolved by CO-specific resolvases. Altogether, our findings provide insight into COSA-1 mediated pro-CO complex assembly and its contribution to CO formation.
Collapse
Affiliation(s)
- Yuejun Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Nan Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Guoteng Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Wencong Nan
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Bin Wang
- National Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Anton Gartner
- Institute for Basic Sciences Center for Genomic Integrity, Graduate School for Health Sciences and Technology and Department for Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hongtao Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Ye Hong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
8
|
Dash S, Joshi S, Pankajam AV, Shinohara A, Nishant KT. Heterozygosity alters Msh5 binding to meiotic chromosomes in the baker's yeast. Genetics 2024; 226:iyad214. [PMID: 38124392 DOI: 10.1093/genetics/iyad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Meiotic crossovers are initiated from programmed DNA double-strand breaks. The Msh4-Msh5 heterodimer is an evolutionarily conserved mismatch repair-related protein complex that promotes meiotic crossovers by stabilizing strand invasion intermediates and joint molecule structures such as Holliday junctions. In vivo studies using homozygous strains of the baker's yeast Saccharomyces cerevisiae (SK1) show that the Msh4-Msh5 complex associates with double-strand break hotspots, chromosome axes, and centromeres. Many organisms have heterozygous genomes that can affect the stability of strand invasion intermediates through heteroduplex rejection of mismatch-containing sequences. To examine Msh4-Msh5 function in a heterozygous context, we performed chromatin immunoprecipitation and sequencing (ChIP-seq) analysis in a rapidly sporulating hybrid S. cerevisiae strain (S288c-sp/YJM789, containing sporulation-enhancing QTLs from SK1), using SNP information to distinguish reads from homologous chromosomes. Overall, Msh5 localization in this hybrid strain was similar to that determined in the homozygous strain (SK1). However, relative Msh5 levels were reduced in regions of high heterozygosity, suggesting that high mismatch densities reduce levels of recombination intermediates to which Msh4-Msh5 binds. Msh5 peaks were also wider in the hybrid background compared to the homozygous strain (SK1). We determined regions containing heteroduplex DNA by detecting chimeric sequence reads with SNPs from both parents. Msh5-bound double-strand break hotspots overlap with regions that have chimeric DNA, consistent with Msh5 binding to heteroduplex-containing recombination intermediates.
Collapse
Affiliation(s)
- Suman Dash
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | - Sameer Joshi
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | - Ajith V Pankajam
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Koodali T Nishant
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
- Center for High-Performance Computing, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| |
Collapse
|
9
|
Chen L, Weir JR. The molecular machinery of meiotic recombination. Biochem Soc Trans 2024; 52:379-393. [PMID: 38348856 PMCID: PMC10903461 DOI: 10.1042/bst20230712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
Meiotic recombination, a cornerstone of eukaryotic diversity and individual genetic identity, is essential for the creation of physical linkages between homologous chromosomes, facilitating their faithful segregation during meiosis I. This process requires that germ cells generate controlled DNA lesions within their own genome that are subsequently repaired in a specialised manner. Repair of these DNA breaks involves the modulation of existing homologous recombination repair pathways to generate crossovers between homologous chromosomes. Decades of genetic and cytological studies have identified a multitude of factors that are involved in meiotic recombination. Recent work has started to provide additional mechanistic insights into how these factors interact with one another, with DNA, and provide the molecular outcomes required for a successful meiosis. Here, we provide a review of the recent developments with a focus on protein structures and protein-protein interactions.
Collapse
Affiliation(s)
- Linda Chen
- Structural Biochemistry of Meiosis Group, Friedrich Miescher Laboratory, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - John R. Weir
- Structural Biochemistry of Meiosis Group, Friedrich Miescher Laboratory, Max-Planck-Ring 9, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Abstract
The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.
Collapse
Affiliation(s)
- Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
11
|
Börner GV, Hochwagen A, MacQueen AJ. Meiosis in budding yeast. Genetics 2023; 225:iyad125. [PMID: 37616582 PMCID: PMC10550323 DOI: 10.1093/genetics/iyad125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/13/2023] [Indexed: 08/26/2023] Open
Abstract
Meiosis is a specialized cell division program that is essential for sexual reproduction. The two meiotic divisions reduce chromosome number by half, typically generating haploid genomes that are packaged into gametes. To achieve this ploidy reduction, meiosis relies on highly unusual chromosomal processes including the pairing of homologous chromosomes, assembly of the synaptonemal complex, programmed formation of DNA breaks followed by their processing into crossovers, and the segregation of homologous chromosomes during the first meiotic division. These processes are embedded in a carefully orchestrated cell differentiation program with multiple interdependencies between DNA metabolism, chromosome morphogenesis, and waves of gene expression that together ensure the correct number of chromosomes is delivered to the next generation. Studies in the budding yeast Saccharomyces cerevisiae have established essentially all fundamental paradigms of meiosis-specific chromosome metabolism and have uncovered components and molecular mechanisms that underlie these conserved processes. Here, we provide an overview of all stages of meiosis in this key model system and highlight how basic mechanisms of genome stability, chromosome architecture, and cell cycle control have been adapted to achieve the unique outcome of meiosis.
Collapse
Affiliation(s)
- G Valentin Börner
- Center for Gene Regulation in Health and Disease (GRHD), Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | | - Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
12
|
Ziesel A, Weng Q, Ahuja JS, Bhattacharya A, Dutta R, Cheng E, Börner GV, Lichten M, Hollingsworth NM. Rad51-mediated interhomolog recombination during budding yeast meiosis is promoted by the meiotic recombination checkpoint and the conserved Pif1 helicase. PLoS Genet 2022; 18:e1010407. [PMID: 36508468 PMCID: PMC9779700 DOI: 10.1371/journal.pgen.1010407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/22/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
During meiosis, recombination between homologous chromosomes (homologs) generates crossovers that promote proper segregation at the first meiotic division. Recombination is initiated by Spo11-catalyzed DNA double strand breaks (DSBs). 5' end resection of the DSBs creates 3' single strand tails that two recombinases, Rad51 and Dmc1, bind to form presynaptic filaments that search for homology, mediate strand invasion and generate displacement loops (D-loops). D-loop processing then forms crossover and non-crossover recombinants. Meiotic recombination occurs in two temporally distinct phases. During Phase 1, Rad51 is inhibited and Dmc1 mediates the interhomolog recombination that promotes homolog synapsis. In Phase 2, Rad51 becomes active and functions with Rad54 to repair residual DSBs, making increasing use of sister chromatids. The transition from Phase 1 to Phase 2 is controlled by the meiotic recombination checkpoint through the meiosis-specific effector kinase Mek1. This work shows that constitutive activation of Rad51 in Phase 1 results in a subset of DSBs being repaired by a Rad51-mediated interhomolog recombination pathway that is distinct from that of Dmc1. Strand invasion intermediates generated by Rad51 require more time to be processed into recombinants, resulting in a meiotic recombination checkpoint delay in prophase I. Without the checkpoint, Rad51-generated intermediates are more likely to involve a sister chromatid, thereby increasing Meiosis I chromosome nondisjunction. This Rad51 interhomolog recombination pathway is specifically promoted by the conserved 5'-3' helicase PIF1 and its paralog, RRM3 and requires Pif1 helicase activity and its interaction with PCNA. This work demonstrates that (1) inhibition of Rad51 during Phase 1 is important to prevent competition with Dmc1 for DSB repair, (2) Rad51-mediated meiotic recombination intermediates are initially processed differently than those made by Dmc1, and (3) the meiotic recombination checkpoint provides time during prophase 1 for processing of Rad51-generated recombination intermediates.
Collapse
Affiliation(s)
- Andrew Ziesel
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Qixuan Weng
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Jasvinder S. Ahuja
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Abhishek Bhattacharya
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - Raunak Dutta
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Evan Cheng
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - G. Valentin Börner
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Nancy M. Hollingsworth
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
13
|
Meschichi A, Zhao L, Reeck S, White C, Da Ines O, Sicard A, Pontvianne F, Rosa S. The plant-specific DDR factor SOG1 increases chromatin mobility in response to DNA damage. EMBO Rep 2022; 23:e54736. [PMID: 36278395 PMCID: PMC9724665 DOI: 10.15252/embr.202254736] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022] Open
Abstract
Homologous recombination (HR) is a conservative DNA repair pathway in which intact homologous sequences are used as a template for repair. How the homology search happens in the crowded space of the cell nucleus is, however, still poorly understood. Here, we measure chromosome and double-strand break (DSB) site mobility in Arabidopsis thaliana, using lacO/LacI lines and two GFP-tagged HR reporters. We observe an increase in chromatin mobility upon the induction of DNA damage, specifically at the S/G2 phases of the cell cycle. This increase in mobility is lost in the sog1-1 mutant, a central transcription factor of the DNA damage response in plants. Also, DSB sites show particularly high mobility levels and their enhanced mobility requires the HR factor RAD54. Our data suggest that repair mechanisms promote chromatin mobility upon DNA damage, implying a role of this process in the early steps of the DNA damage response.
Collapse
Affiliation(s)
- Anis Meschichi
- Plant Biology DepartmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Lihua Zhao
- Plant Biology DepartmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Svenja Reeck
- John Innes Centre, Norwich Research ParkNorwichUK
| | - Charles White
- Institut Génétique Reproduction et Développement (iGReD)Université Clermont Auvergne, UMR 6293, CNRS, U1103 INSERMClermont‐FerrandFrance
| | - Olivier Da Ines
- Institut Génétique Reproduction et Développement (iGReD)Université Clermont Auvergne, UMR 6293, CNRS, U1103 INSERMClermont‐FerrandFrance
| | - Adrien Sicard
- Plant Biology DepartmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP)Université de Perpignan Via DomitiaPerpignanFrance
| | - Stefanie Rosa
- Plant Biology DepartmentSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
14
|
Shodhan A, Xaver M, Wheeler D, Lichten M. Turning coldspots into hotspots: targeted recruitment of axis protein Hop1 stimulates meiotic recombination in Saccharomyces cerevisiae. Genetics 2022; 222:iyac106. [PMID: 35876814 PMCID: PMC9434160 DOI: 10.1093/genetics/iyac106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
The DNA double-strand breaks that initiate meiotic recombination are formed in the context of the meiotic chromosome axis, which in Saccharomyces cerevisiae contains a meiosis-specific cohesin isoform and the meiosis-specific proteins Hop1 and Red1. Hop1 and Red1 are important for double-strand break formation; double-strand break levels are reduced in their absence and their levels, which vary along the lengths of chromosomes, are positively correlated with double-strand break levels. How axis protein levels influence double-strand break formation and recombination remains unclear. To address this question, we developed a novel approach that uses a bacterial ParB-parS partition system to recruit axis proteins at high levels to inserts at recombination coldspots where Hop1 and Red1 levels are normally low. Recruiting Hop1 markedly increased double-strand breaks and homologous recombination at target loci, to levels equivalent to those observed at endogenous recombination hotspots. This local increase in double-strand breaks did not require Red1 or the meiosis-specific cohesin component Rec8, indicating that, of the axis proteins, Hop1 is sufficient to promote double-strand break formation. However, while most crossovers at endogenous recombination hotspots are formed by the meiosis-specific MutLγ resolvase, crossovers that formed at an insert locus were only modestly reduced in the absence of MutLγ, regardless of whether or not Hop1 was recruited to that locus. Thus, while local Hop1 levels determine local double-strand break levels, the recombination pathways that repair these breaks can be determined by other factors, raising the intriguing possibility that different recombination pathways operate in different parts of the genome.
Collapse
Affiliation(s)
- Anura Shodhan
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Martin Xaver
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Raina VB, Schoot Uiterkamp M, Vader G. Checkpoint control in meiotic prophase: Idiosyncratic demands require unique characteristics. Curr Top Dev Biol 2022; 151:281-315. [PMID: 36681474 DOI: 10.1016/bs.ctdb.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromosomal transactions such as replication, recombination and segregation are monitored by cell cycle checkpoint cascades. These checkpoints ensure the proper execution of processes that are needed for faithful genome inheritance from one cell to the next, and across generations. In meiotic prophase, a specialized checkpoint monitors defining events of meiosis: programmed DNA break formation, followed by dedicated repair through recombination based on interhomolog (IH) crossovers. This checkpoint shares molecular characteristics with canonical DNA damage checkpoints active during somatic cell cycles. However, idiosyncratic requirements of meiotic prophase have introduced unique features in this signaling cascade. In this review, we discuss the unique features of the meiotic prophase checkpoint. While being related to canonical DNA damage checkpoint cascades, the meiotic prophase checkpoint also shows similarities with the spindle assembly checkpoint (SAC) that guards chromosome segregation. We highlight these emerging similarities in the signaling logic of the checkpoints that govern meiotic prophase and chromosome segregation, and how thinking of these similarities can help us better understand meiotic prophase control. We also discuss work showing that, when aberrantly expressed, components of the meiotic prophase checkpoint might alter DNA repair fidelity and chromosome segregation in cancer cells. Considering checkpoint function in light of demands imposed by the special characteristics of meiotic prophase helps us understand checkpoint integration into the meiotic cell cycle machinery.
Collapse
Affiliation(s)
- Vivek B Raina
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York City, NY, United States
| | - Maud Schoot Uiterkamp
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Gerben Vader
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Papaioannou IA, Dutreux F, Peltier FA, Maekawa H, Delhomme N, Bardhan A, Friedrich A, Schacherer J, Knop M. Sex without crossing over in the yeast Saccharomycodes ludwigii. Genome Biol 2021; 22:303. [PMID: 34732243 PMCID: PMC8567612 DOI: 10.1186/s13059-021-02521-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intermixing of genomes through meiotic reassortment and recombination of homologous chromosomes is a unifying theme of sexual reproduction in eukaryotic organisms and is considered crucial for their adaptive evolution. Previous studies of the budding yeast species Saccharomycodes ludwigii suggested that meiotic crossing over might be absent from its sexual life cycle, which is predominated by fertilization within the meiotic tetrad. RESULTS We demonstrate that recombination is extremely suppressed during meiosis in Sd. ludwigii. DNA double-strand break formation by the conserved transesterase Spo11, processing and repair involving interhomolog interactions are required for normal meiosis but do not lead to crossing over. Although the species has retained an intact meiotic gene repertoire, genetic and population analyses suggest the exceptionally rare occurrence of meiotic crossovers in its genome. A strong AT bias of spontaneous mutations and the absence of recombination are likely responsible for its unusually low genomic GC level. CONCLUSIONS Sd. ludwigii has followed a unique evolutionary trajectory that possibly derives fitness benefits from the combination of frequent mating between products of the same meiotic event with the extreme suppression of meiotic recombination. This life style ensures preservation of heterozygosity throughout its genome and may enable the species to adapt to its environment and survive with only minimal levels of rare meiotic recombination. We propose Sd. ludwigii as an excellent natural forum for the study of genome evolution and recombination rates.
Collapse
Affiliation(s)
| | - Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - France A. Peltier
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Hiromi Maekawa
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Current affiliation: Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Amit Bardhan
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Michael Knop
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
17
|
Imai Y, Olaya I, Sakai N, Burgess SM. Meiotic Chromosome Dynamics in Zebrafish. Front Cell Dev Biol 2021; 9:757445. [PMID: 34692709 PMCID: PMC8531508 DOI: 10.3389/fcell.2021.757445] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies in zebrafish have revealed key features of meiotic chromosome dynamics, including clustering of telomeres in the bouquet configuration, biogenesis of chromosome axis structures, and the assembly and disassembly of the synaptonemal complex that aligns homologs end-to-end. The telomere bouquet stage is especially pronounced in zebrafish meiosis and sub-telomeric regions play key roles in mediating pairing and homologous recombination. In this review, we discuss the temporal progression of these events in meiosis prophase I and highlight the roles of proteins associated with meiotic chromosome architecture in homologous recombination. Finally, we discuss the interplay between meiotic mutants and gonadal sex differentiation and future research directions to study meiosis in living cells, including cell culture.
Collapse
Affiliation(s)
- Yukiko Imai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Ivan Olaya
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States.,Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis, CA, United States
| | - Noriyoshi Sakai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.,Department of Genetics, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Sean M Burgess
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
18
|
Ahuja JS, Harvey CS, Wheeler DL, Lichten M. Repeated strand invasion and extensive branch migration are hallmarks of meiotic recombination. Mol Cell 2021; 81:4258-4270.e4. [PMID: 34453891 PMCID: PMC8541907 DOI: 10.1016/j.molcel.2021.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Currently favored models for meiotic recombination posit that both noncrossover and crossover recombination are initiated by DNA double-strand breaks but form by different mechanisms: noncrossovers by synthesis-dependent strand annealing and crossovers by formation and resolution of double Holliday junctions centered around the break. This dual mechanism hypothesis predicts different hybrid DNA patterns in noncrossover and crossover recombinants. We show that these predictions are not upheld, by mapping with unprecedented resolution parental strand contributions to recombinants at a model locus. Instead, break repair in both noncrossovers and crossovers involves synthesis-dependent strand annealing, often with multiple rounds of strand invasion. Crossover-specific double Holliday junction formation occurs via processes involving branch migration as an integral feature, one that can be separated from repair of the break itself. These findings reveal meiotic recombination to be a highly dynamic process and prompt a new view of the relationship between crossover and noncrossover recombination.
Collapse
Affiliation(s)
- Jasvinder S Ahuja
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Catherine S Harvey
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David L Wheeler
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Gergelits V, Parvanov E, Simecek P, Forejt J. Chromosome-wide characterization of meiotic noncrossovers (gene conversions) in mouse hybrids. Genetics 2021; 217:1-14. [PMID: 33683354 DOI: 10.1093/genetics/iyaa013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/13/2020] [Indexed: 01/16/2023] Open
Abstract
During meiosis, the recombination-initiating DNA double-strand breaks (DSBs) are repaired by crossovers or noncrossovers (gene conversions). While crossovers are easily detectable, noncrossover identification is hampered by the small size of their converted tracts and the necessity of sequence polymorphism. We report identification and characterization of a mouse chromosome-wide set of noncrossovers by next-generation sequencing of 10 mouse intersubspecific chromosome substitution strains. Based on 94 identified noncrossovers, we determined the mean length of a conversion tract to be 32 bp. The spatial chromosome-wide distribution of noncrossovers and crossovers significantly differed, although both sets overlapped the known hotspots of PRDM9-directed histone methylation and DNA DSBs, thus supporting their origin in the standard DSB repair pathway. A significant deficit of noncrossovers descending from asymmetric DSBs proved their proposed adverse effect on meiotic recombination and pointed to sister chromatids as an alternative template for their repair. The finding has implications for the molecular mechanism of hybrid sterility in mice from crosses between closely related Mus musculus musculus and Mus musculus domesticus subspecies.
Collapse
Affiliation(s)
- Vaclav Gergelits
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, CZ-12000 Prague, Czech Republic
| | - Emil Parvanov
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic
| | - Petr Simecek
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic
| | - Jiri Forejt
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic
| |
Collapse
|
20
|
Abstract
The formation of crossovers between homologous chromosomes is key to sexual reproduction. In most species, crossovers are spaced further apart than would be expected if they formed independently, a phenomenon termed crossover interference. Despite more than a century of study, the molecular mechanisms implementing crossover interference remain a subject of active debate. Recent findings of how signaling proteins control the formation of crossovers and about the interchromosomal interface in which crossovers form offer new insights into this process. In this Review, we present a cell biological and biophysical perspective on crossover interference, summarizing the evidence that links interference to the spatial, dynamic, mechanical and molecular properties of meiotic chromosomes. We synthesize this physical understanding in the context of prevailing mechanistic models that aim to explain how crossover interference is implemented.
Collapse
Affiliation(s)
- Lexy von Diezmann
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA.,School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ofer Rog
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA.,School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
21
|
Mutagenicity in haploid yeast meiosis resulting from repair of DSBs by the sister chromatid. Curr Genet 2021; 67:799-806. [PMID: 33966123 DOI: 10.1007/s00294-021-01189-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Mutations in diploid budding yeast occur in meiosis at higher frequencies than in cells grown vegetatively. Such meiotic mutations are thought to result from the repair of double-strand breaks (DSBs) in meiosis, during the process of recombination. Here, we report studies of mutagenicity in haploid strains that may undergo meiosis due to the expression of both mating-type alleles, MATa and MATα. We measure the rate of mutagenicity in the reporter gene CAN1, and find it to be fivefold higher than in mitotic cells, as determined by fluctuation analysis. This enhanced meiotic mutagenicity is shown to depend on the presence of SPO11, the gene responsible for meiotic DSBs. Mutations in haploid meiosis must result from repair of the DSBs through interaction with the sister chromatid, rather than with non-sister chromatids as in diploids. Thus, mutations in diploid meiosis that are not ostensibly associated with recombination events can be explained by sister-chromatid repair. The spectrum of meiotic mutations revealed by Sanger sequencing is similar in haploid and in diploid meiosis. Compared to mitotic mutations in CAN1, long Indels are more frequent among meiotic mutations. Both, meiotic and mitotic mutations are more common at G/C sites than at A/T, in spite of an opposite bias in the target reporter gene. We conclude that sister-chromatid repair of DSBs is a major source of mutagenicity in meiosis.
Collapse
|
22
|
Kar FM, Hochwagen A. Phospho-Regulation of Meiotic Prophase. Front Cell Dev Biol 2021; 9:667073. [PMID: 33928091 PMCID: PMC8076904 DOI: 10.3389/fcell.2021.667073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Germ cells undergoing meiosis rely on an intricate network of surveillance mechanisms that govern the production of euploid gametes for successful sexual reproduction. These surveillance mechanisms are particularly crucial during meiotic prophase, when cells execute a highly orchestrated program of chromosome morphogenesis and recombination, which must be integrated with the meiotic cell division machinery to ensure the safe execution of meiosis. Dynamic protein phosphorylation, controlled by kinases and phosphatases, has emerged as one of the main signaling routes for providing readout and regulation of chromosomal and cellular behavior throughout meiotic prophase. In this review, we discuss common principles and provide detailed examples of how these phosphorylation events are employed to ensure faithful passage of chromosomes from one generation to the next.
Collapse
Affiliation(s)
- Funda M Kar
- Department of Biology, New York University, New York, NY, United States
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY, United States
| |
Collapse
|
23
|
Almanzar DE, Gordon SG, Rog O. Meiotic sister chromatid exchanges are rare in C. elegans. Curr Biol 2021; 31:1499-1507.e3. [PMID: 33740426 PMCID: PMC8051885 DOI: 10.1016/j.cub.2020.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/08/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Abstract
Sexual reproduction shuffles the parental genomes to generate new genetic combinations. To achieve that, the genome is subjected to numerous double-strand breaks, the repair of which involves two crucial decisions: repair pathway and repair template.1 Use of crossover pathways with the homologous chromosome as template exchanges genetic information and directs chromosome segregation. Crossover repair, however, can compromise the integrity of the repair template and is therefore tightly regulated. The extent to which crossover pathways are used during sister-directed repair is unclear because the identical sister chromatids are difficult to distinguish. Nonetheless, indirect assays have led to the suggestion that inter-sister crossovers, or sister chromatid exchanges (SCEs), are quite common.2-11 Here we devised a technique to directly score physiological SCEs in the C. elegans germline using selective sister chromatid labeling with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU). Surprisingly, we find SCEs to be rare in meiosis, accounting for <2% of repair events. SCEs remain rare even when the homologous chromosome is unavailable, indicating that almost all sister-directed repair is channeled into noncrossover pathways. We identify two mechanisms that limit SCEs. First, SCEs are elevated in the absence of the RecQ helicase BLMHIM-6. Second, the synaptonemal complex-a conserved interface that promotes crossover repair12,13-promotes SCEs when localized between the sisters. Our data suggest that crossover pathways in C. elegans are only used to generate the single necessary link between the homologous chromosomes. Noncrossover pathways repair almost all other breaks, regardless of the repair template.
Collapse
Affiliation(s)
- David E Almanzar
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | - Spencer G Gordon
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | - Ofer Rog
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA.
| |
Collapse
|
24
|
Jenczewski E. Moving to and fro between Arabidopsis and its crop relatives confirms the role of chromosome remodelling on meiotic recombination. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2811-2813. [PMID: 33822174 DOI: 10.1093/jxb/erab032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article comments on:
Cuacos M, Lambing C, Pachon-Penalba M, Osman K, Armstrong SJ, Henderson IR, Sanchez-Moran E, Franklin FCH, Heckmann S. 2021. Meiotic chromosome axis remodelling is critical for meiotic recombination in Brassica rapa. Journal of Experimental Botany 72, 3012–3027.
Collapse
Affiliation(s)
- Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
25
|
Toraason E, Horacek A, Clark C, Glover ML, Adler VL, Premkumar T, Salagean A, Cole F, Libuda DE. Meiotic DNA break repair can utilize homolog-independent chromatid templates in C. elegans. Curr Biol 2021; 31:1508-1514.e5. [PMID: 33740427 DOI: 10.1016/j.cub.2021.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
During meiosis, the maintenance of genome integrity is critical for generating viable haploid gametes.1 In meiotic prophase I, double-strand DNA breaks (DSBs) are induced and a subset of these DSBs are repaired as interhomolog crossovers to ensure proper chromosome segregation. DSBs not resolved as crossovers with the homolog must be repaired by other pathways to ensure genome integrity.2 To determine if alternative repair templates can be engaged for meiotic DSB repair during oogenesis, we developed an assay to detect sister and/or intra-chromatid repair events at a defined DSB site during Caenorhabditis elegans meiosis. Using this assay, we directly demonstrate that the sister chromatid or the same DNA molecule can be engaged as a meiotic repair template for both crossover and noncrossover recombination, with noncrossover events being the predominant recombination outcome. We additionally find that the sister or intra-chromatid substrate is available as a recombination partner for DSBs induced throughout meiotic prophase I, including late prophase when the homolog is unavailable. Analysis of noncrossover conversion tract sequences reveals that DSBs are processed similarly throughout prophase I. We further present data indicating that the XPF-1 nuclease functions in late prophase to promote sister or intra-chromatid repair at steps of recombination following joint molecule processing. Despite its function in sister or intra-chromatid repair, we find that xpf-1 mutants do not exhibit severe defects in progeny viability following exposure to ionizing radiation. Overall, we propose that C. elegans XPF-1 may assist as an intersister or intrachromatid resolvase only in late prophase I.
Collapse
Affiliation(s)
- Erik Toraason
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Anna Horacek
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Cordell Clark
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Marissa L Glover
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Victoria L Adler
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Tolkappiyan Premkumar
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX 78957, USA
| | - Alina Salagean
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Francesca Cole
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX 78957, USA
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA.
| |
Collapse
|
26
|
Hatkevich T, Miller DE, Turcotte CA, Miller MC, Sekelsky J. A pathway for error-free non-homologous end joining of resected meiotic double-strand breaks. Nucleic Acids Res 2021; 49:879-890. [PMID: 33406239 PMCID: PMC7826270 DOI: 10.1093/nar/gkaa1205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Programmed DNA double-strand breaks (DSBs) made during meiosis are repaired by recombination with the homologous chromosome to generate, at selected sites, reciprocal crossovers that are critical for the proper separation of homologs in the first meiotic division. Backup repair processes can compensate when the normal meiotic recombination processes are non-functional. We describe a novel backup repair mechanism that occurs when the homologous chromosome is not available in Drosophila melanogaster meiosis. In the presence of a previously described mutation (Mcm5A7) that disrupts chromosome pairing, DSB repair is initiated by homologous recombination but is completed by non-homologous end joining (NHEJ). Remarkably, this process yields precise repair products. Our results provide support for a recombination intermediate recently proposed in mouse meiosis, in which an oligonucleotide bound to the Spo11 protein that catalyzes DSB formation remains bound after resection. We propose that this oligonucleotide functions as a primer for fill-in synthesis to allow scarless repair by NHEJ. We argue that this is a conserved repair mechanism that is likely to be invoked to overcome occasional challenges in normal meiosis.
Collapse
Affiliation(s)
- Talia Hatkevich
- Curriculum in Genetics and Molecular Biology, 120 Mason Farm Road, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Danny E Miller
- Department of Pediatrics, Division of Medical Genetics, University of Washington, Seattle, Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Carolyn A Turcotte
- Curriculum in Genetics and Molecular Biology, 120 Mason Farm Road, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Margaret C Miller
- Department of Biology, University of North Carolina, 120 South Road, Chapel Hill, NC 27599, USA
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, 120 Mason Farm Road, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Biology, University of North Carolina, 120 South Road, Chapel Hill, NC 27599, USA.,Integrative Program in Biological and Genome Sciences, 250 Bell Tower Drive, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
27
|
Mu X, Murakami H, Mohibullah N, Keeney S. Chromosome-autonomous feedback down-regulates meiotic DNA break competence upon synaptonemal complex formation. Genes Dev 2020; 34:1605-1618. [PMID: 33184224 PMCID: PMC7706706 DOI: 10.1101/gad.342873.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/29/2020] [Indexed: 01/20/2023]
Abstract
The number of DNA double-strand breaks (DSBs) initiating meiotic recombination is elevated in Saccharomyces cerevisiae mutants that are globally defective in forming crossovers and synaptonemal complex (SC), a protein scaffold juxtaposing homologous chromosomes. These mutants thus appear to lack a negative feedback loop that inhibits DSB formation when homologs engage one another. This feedback is predicted to be chromosome autonomous, but this has not been tested. Moreover, what chromosomal process is recognized as "homolog engagement" remains unclear. To address these questions, we evaluated effects of homolog engagement defects restricted to small portions of the genome using karyotypically abnormal yeast strains with a homeologous chromosome V pair, monosomic V, or trisomy XV. We found that homolog engagement-defective chromosomes incurred more DSBs, concomitant with prolonged retention of the DSB-promoting protein Rec114, while the rest of the genome remained unaffected. SC-deficient, crossover-proficient mutants ecm11 and gmc2 experienced increased DSB numbers diagnostic of homolog engagement defects. These findings support the hypothesis that SC formation provokes DSB protein dissociation, leading in turn to loss of a DSB competent state. Our findings show that DSB number is regulated in a chromosome-autonomous fashion and provide insight into how homeostatic DSB controls respond to aneuploidy during meiosis.
Collapse
Affiliation(s)
- Xiaojing Mu
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Hajime Murakami
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Neeman Mohibullah
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Scott Keeney
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
28
|
Komakhina VV, Krinitsina AA, Milyukova NA, Komakhin RA. Expression of Recombinant SPO11 Genes Locally Alters Crossing Over in Tomato. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420090124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Yao Y, Li X, Chen W, Liu H, Mi L, Ren D, Mo A, Lu P. ATM Promotes RAD51-Mediated Meiotic DSB Repair by Inter-Sister-Chromatid Recombination in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:839. [PMID: 32670319 PMCID: PMC7329986 DOI: 10.3389/fpls.2020.00839] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/26/2020] [Indexed: 05/17/2023]
Abstract
Meiotic recombination ensures accurate homologous chromosome segregation during meiosis and generates novel allelic combinations among gametes. During meiosis, DNA double strand breaks (DSBs) are generated to facilitate recombination. To maintain genome integrity, meiotic DSBs must be repaired using appropriate DNA templates. Although the DNA damage response protein kinase Ataxia-telangiectasia mutated (ATM) has been shown to be involved in meiotic recombination in Arabidopsis, its mechanistic role is still unclear. In this study, we performed cytological analysis in Arabidopsis atm mutant, we show that there are fewer γH2AX foci, but more RAD51 and DMC1 foci on atm meiotic chromosomes. Furthermore, we observed an increase in meiotic Type I crossovers (COs) in atm. Our genetic analysis shows that the meiotic phenotype of atm rad51 double mutants is similar to the rad51 single mutant. Whereas, the atm dmc1 double mutant has a more severe chromosome fragmentation phenotype compared to both single mutants, suggesting that ATM functions in concert with RAD51, but in parallel to DMC1. Lastly, we show that atm asy1 double mutants also have more severe meiotic recombination defects. These data lead us to propose a model wherein ATM promotes RAD51-mediated meiotic DSB repair by inter-sister-chromatid (IS) recombination in Arabidopsis.
Collapse
Affiliation(s)
- Yuan Yao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaojing Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wanli Chen
- School of Life Sciences, Fudan University, Shanghai, China
| | - Hui Liu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Limin Mi
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ding Ren
- School of Life Sciences, Fudan University, Shanghai, China
| | - Aowei Mo
- School of Life Sciences, Fudan University, Shanghai, China
| | - Pingli Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
30
|
Sandhu R, Monge Neria F, Monge Neria J, Chen X, Hollingsworth NM, Börner GV. DNA Helicase Mph1 FANCM Ensures Meiotic Recombination between Parental Chromosomes by Dissociating Precocious Displacement Loops. Dev Cell 2020; 53:458-472.e5. [PMID: 32386601 PMCID: PMC7386354 DOI: 10.1016/j.devcel.2020.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 02/09/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
Meiotic pairing between parental chromosomes (homologs) is required for formation of haploid gametes. Homolog pairing depends on recombination initiation via programmed double-strand breaks (DSBs). Although DSBs appear prior to pairing, the homolog, rather than the sister chromatid, is used as repair partner for crossing over. Here, we show that Mph1, the budding yeast ortholog of Fanconi anemia helicase FANCM, prevents precocious DSB strand exchange between sister chromatids before homologs have completed pairing. By dissociating precocious DNA displacement loops (D-loops) between sister chromatids, Mph1FANCM ensures high levels of crossovers and non-crossovers between homologs. Later-occurring recombination events are protected from Mph1-mediated dissociation by synapsis protein Zip1. Increased intersister repair in absence of Mph1 triggers a shift among remaining interhomolog events from non-crossovers to crossover-specific strand exchange, explaining Mph1's apparent anti-crossover function. Our findings identify temporal coordination between DSB strand exchange and homolog pairing as a critical determinant for recombination outcome.
Collapse
Affiliation(s)
- Rima Sandhu
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Francisco Monge Neria
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Jesús Monge Neria
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Xiangyu Chen
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nancy M Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - G Valentin Börner
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
31
|
Miller DE. Synaptonemal Complex-Deficient Drosophila melanogaster Females Exhibit Rare DSB Repair Events, Recurrent Copy-Number Variation, and an Increased Rate of de Novo Transposable Element Movement. G3 (BETHESDA, MD.) 2020; 10:525-537. [PMID: 31882405 PMCID: PMC7003089 DOI: 10.1534/g3.119.400853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/23/2019] [Indexed: 01/11/2023]
Abstract
Genetic stability depends on the maintenance of a variety of chromosome structures and the precise repair of DNA breaks. During meiosis, programmed double-strand breaks (DSBs) made in prophase I are normally repaired as gene conversions or crossovers. DSBs can also be made by other mechanisms, such as the movement of transposable elements (TEs), which must also be resolved. Incorrect repair of these DNA lesions can lead to mutations, copy-number changes, translocations, and/or aneuploid gametes. In Drosophila melanogaster, as in most organisms, meiotic DSB repair occurs in the presence of a rapidly evolving multiprotein structure called the synaptonemal complex (SC). Here, whole-genome sequencing is used to investigate the fate of meiotic DSBs in D. melanogaster mutant females lacking functional SC, to assay for de novo CNV formation, and to examine the role of the SC in transposable element movement in flies. The data indicate that, in the absence of SC, copy-number variation still occurs and meiotic DSB repair by gene conversion occurs infrequently. Remarkably, an 856-kilobase de novo CNV was observed in two unrelated individuals of different genetic backgrounds and was identical to a CNV recovered in a previous wild-type study, suggesting that recurrent formation of large CNVs occurs in Drosophila. In addition, the rate of novel TE insertion was markedly higher than wild type in one of two SC mutants tested, suggesting that SC proteins may contribute to the regulation of TE movement and insertion in the genome. Overall, this study provides novel insight into the role that the SC plays in genome stability and provides clues as to why the sequence, but not structure, of SC proteins is rapidly evolving.
Collapse
Affiliation(s)
- Danny E Miller
- Division of Medical Genetics, Department of Medicine, and
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98105, and
- Seattle Children's Hospital, Seattle, Washington 98105
| |
Collapse
|
32
|
Tian M, Loidl J. An MCM family protein promotes interhomolog recombination by preventing precocious intersister repair of meiotic DSBs. PLoS Genet 2019; 15:e1008514. [PMID: 31815942 PMCID: PMC6922451 DOI: 10.1371/journal.pgen.1008514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/19/2019] [Accepted: 11/11/2019] [Indexed: 12/02/2022] Open
Abstract
Recombinational repair of meiotic DNA double-strand breaks (DSBs) uses the homologous chromosome as a template, although the sister chromatid offers itself as a spatially more convenient substrate. In many organisms, this choice is reinforced by the recombination protein Dmc1. In Tetrahymena, the repair of DSBs, which are formed early in prophase, is postponed to late prophase when homologous chromosomes and sister chromatids become juxtaposed owing to tight parallel packing in the thread-shaped nucleus, and thus become equally suitable for use as repair templates. The delay in DSB repair is achieved by rejection of the invading strand by the Sgs1 helicase in early meiotic prophase. In the absence of Mcmd1, a meiosis-specific minichromosome maintenance (MCM)-like protein (and its partner Pamd1), Dmc1 is prematurely lost from chromatin and DNA synthesis (as monitored by BrdU incorporation) takes place in early prophase. In mcmd1Δ and pamd1Δ mutants, only a few crossovers are formed. In a mcmd1Δ hop2Δ double mutant, normal timing of Dmc1 loss and DNA synthesis is restored. Because Tetrahymena Hop2 is believed to enable homologous strand invasion, we conclude that Dmc1 loss in the absence of Mcmd1 affects only post-invasion recombination intermediates. Therefore, we propose that the Dmc1 nucleofilament becomes dismantled immediately after forming a heteroduplex with a template strand. As a consequence, repair synthesis and D-loop extension starts in early prophase intermediates and prevents strand rejection before the completion of homologous pairing. In this case, DSB repair may primarily use the sister chromatid. We conclude that Mcmd1‒Pamd1 protects the Dmc1 nucleofilament from premature dismantling, thereby suppressing precocious repair synthesis and excessive intersister strand exchange at the cost of homologous recombination. Minichromosome maintenance (MCM) proteins are mainly known for their involvement in DNA replication. However, distant members of this protein family have recently been shown to promote interhomolog over intersister recombination in meiosis. They achieve this by enforcing or stabilizing the invasion of a double-stranded DNA by a filament consisting of a homologous single-stranded DNA molecule coated with a strand exchange protein. This interaction then would lead to the exchange of DNA strands and, ultimately, crossing over. Here, we study a member of the MCM protein family in the protist Tetrahymena thermophila. Meiosis in this organism has several unusual features: A synaptonemal complex is not formed, and homologous prealignment occurs during the close parallel arrangement of chromosomes in the extremely elongated, threadlike meiotic prophase nucleus. This noncanonical pairing has come along with altered mechanisms for recombination partner choice. Thus, we find that the Tetrahymena meiotic MCM protein promotes crossovers in an unprecedented way: It suppresses the formation of recombination intermediates between sister DNA molecules early in meiosis, thereby increasing the chance of competing interhomolog recombination events. Thus, members of the same protein family have been harnessed by different organisms to achieve the same result via completely different mechanisms.
Collapse
Affiliation(s)
- Miao Tian
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
33
|
Kaur H, Gn K, Lichten M. Unresolved Recombination Intermediates Cause a RAD9-Dependent Cell Cycle Arrest in Saccharomyces cerevisiae. Genetics 2019; 213:805-818. [PMID: 31562181 PMCID: PMC6827386 DOI: 10.1534/genetics.119.302632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
In Saccharomyces cerevisiae, the conserved Sgs1-Top3-Rmi1 helicase-decatenase regulates homologous recombination by limiting accumulation of recombination intermediates that are crossover precursors. In vitro studies have suggested that this may be due to dissolution of double-Holliday junction joint molecules by Sgs1-driven convergent junction migration and Top3-Rmi1 mediated strand decatenation. To ask whether dissolution occurs in vivo, we conditionally depleted Sgs1 and/or Rmi1 during return to growth (RTG), a procedure where recombination intermediates formed during meiosis are resolved when cells resume the mitotic cell cycle. Sgs1 depletion during RTG delayed joint molecule resolution, but, ultimately, most were resolved and cells divided normally. In contrast, Rmi1 depletion resulted in delayed and incomplete joint molecule resolution, and most cells did not divide. rad9 ∆ mutation restored cell division in Rmi1-depleted cells, indicating that the DNA damage checkpoint caused this cell cycle arrest. Restored cell division in Rmi1-depleted rad9 ∆ cells frequently produced anucleate cells, consistent with the suggestion that persistent recombination intermediates prevented chromosome segregation. Our findings indicate that Sgs1-Top3-Rmi1 acts in vivo, as it does in vitro, to promote recombination intermediate resolution by dissolution. They also indicate that, in the absence of Top3-Rmi1 activity, unresolved recombination intermediates persist and activate the DNA damage response, which is usually thought to be activated by much earlier DNA damage-associated lesions.
Collapse
Affiliation(s)
- Hardeep Kaur
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Krishnaprasad Gn
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| |
Collapse
|
34
|
Heissl A, Betancourt AJ, Hermann P, Povysil G, Arbeithuber B, Futschik A, Ebner T, Tiemann-Boege I. The impact of poly-A microsatellite heterologies in meiotic recombination. Life Sci Alliance 2019; 2:e201900364. [PMID: 31023833 PMCID: PMC6485458 DOI: 10.26508/lsa.201900364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Meiotic recombination has strong, but poorly understood effects on short tandem repeat (STR) instability. Here, we screened thousands of single recombinant products with sperm typing to characterize the role of polymorphic poly-A repeats at a human recombination hotspot in terms of hotspot activity and STR evolution. We show that the length asymmetry between heterozygous poly-A's strongly influences the recombination outcome: a heterology of 10 A's (9A/19A) reduces the number of crossovers and elevates the frequency of non-crossovers, complex recombination products, and long conversion tracts. Moreover, the length of the heterology also influences the STR transmission during meiotic repair with a strong and significant insertion bias for the short heterology (6A/7A) and a deletion bias for the long heterology (9A/19A). In spite of this opposing insertion-/deletion-biased gene conversion, we find that poly-A's are enriched at human recombination hotspots that could have important consequences in hotspot activation.
Collapse
Affiliation(s)
- Angelika Heissl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | | | - Philipp Hermann
- Institute of Applied Statistics, Johannes Kepler University, Linz, Austria
| | - Gundula Povysil
- Institute of Bioinformatics, Johannes Kepler University, Linz, Austria
| | | | - Andreas Futschik
- Institute of Applied Statistics, Johannes Kepler University, Linz, Austria
| | - Thomas Ebner
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Kepler University Clinic, Linz, Austria
| | | |
Collapse
|
35
|
Arbel‐Eden A, Simchen G. Elevated Mutagenicity in Meiosis and Its Mechanism. Bioessays 2019; 41:e1800235. [DOI: 10.1002/bies.201800235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/31/2019] [Indexed: 12/25/2022]
Affiliation(s)
| | - Giora Simchen
- Department of GeneticsThe Hebrew University of JerusalemJerusalem 91904 Israel
| |
Collapse
|
36
|
Hollingsworth NM, Gaglione R. The meiotic-specific Mek1 kinase in budding yeast regulates interhomolog recombination and coordinates meiotic progression with double-strand break repair. Curr Genet 2019; 65:631-641. [PMID: 30671596 DOI: 10.1007/s00294-019-00937-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 11/29/2022]
Abstract
Recombination, along with sister chromatid cohesion, is used during meiosis to physically connect homologous chromosomes so that they can be segregated properly at the first meiotic division. Recombination is initiated by the introduction of programmed double strand breaks (DSBs) into the genome, a subset of which is processed into crossovers. In budding yeast, the regulation of meiotic DSB repair is controlled by a meiosis-specific kinase called Mek1. Mek1 kinase activity promotes recombination between homologs, rather than sister chromatids, as well as the processing of recombination intermediates along a pathway that results in synapsis of homologous chromosomes and the distribution of crossovers throughout the genome. In addition, Mek1 kinase activity provides a readout for the number of DSBs in the cell as part of the meiotic recombination checkpoint. This checkpoint delays entry into the first meiotic division until DSBs have been repaired by inhibiting the activity of the meiosis-specific transcription factor Ndt80, a site-specific DNA binding protein that activates transcription of over 300 target genes. Recent work has shown that Mek1 binds to Ndt80 and phosphorylates it on multiple sites, including the DNA binding domain, thereby preventing Ndt80 from activating transcription. As DSBs are repaired, Mek1 is removed from chromosomes and its activity decreases. Loss of the inhibitory Mek1 phosphates and phosphorylation of Ndt80 by the meiosis-specific kinase, Ime2, promote Ndt80 activity such that Ndt80 transcribes its own gene in a positive feedback loop, as well as genes required for the completion of recombination and entry into the meiotic divisions. Mek1 is therefore the key regulator of meiotic recombination in yeast.
Collapse
Affiliation(s)
- Nancy M Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Robert Gaglione
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
37
|
Crickard JB, Kaniecki K, Kwon Y, Sung P, Greene EC. Meiosis-specific recombinase Dmc1 is a potent inhibitor of the Srs2 antirecombinase. Proc Natl Acad Sci U S A 2018; 115:E10041-E10048. [PMID: 30301803 PMCID: PMC6205449 DOI: 10.1073/pnas.1810457115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cross-over recombination products are a hallmark of meiosis because they are necessary for accurate chromosome segregation and they also allow for increased genetic diversity during sexual reproduction. However, cross-overs can also cause gross chromosomal rearrangements and are therefore normally down-regulated during mitotic growth. The mechanisms that enhance cross-over product formation upon entry into meiosis remain poorly understood. In Saccharomyces cerevisiae, the Superfamily 1 (Sf1) helicase Srs2, which is an ATP hydrolysis-dependent motor protein that actively dismantles recombination intermediates, promotes synthesis-dependent strand annealing, the result of which is a reduction in cross-over recombination products. Here, we show that the meiosis-specific recombinase Dmc1 is a potent inhibitor of Srs2. Biochemical and single-molecule assays demonstrate that Dmc1 acts by inhibiting Srs2 ATP hydrolysis activity, which prevents the motor protein from undergoing ATP hydrolysis-dependent translocation on Dmc1-bound recombination intermediates. We propose a model in which Dmc1 helps contribute to cross-over formation during meiosis by antagonizing the antirecombinase activity of Srs2.
Collapse
Affiliation(s)
- J Brooks Crickard
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032
| | - Kyle Kaniecki
- Department of Genetics and Development, Columbia University, New York, NY 10032
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032;
| |
Collapse
|
38
|
Widger A, Mahadevaiah SK, Lange J, ElInati E, Zohren J, Hirota T, Pacheco S, Maldonado-Linares A, Stanzione M, Ojarikre O, Maciulyte V, de Rooij DG, Tóth A, Roig I, Keeney S, Turner JMA. ATR is a multifunctional regulator of male mouse meiosis. Nat Commun 2018; 9:2621. [PMID: 29976923 PMCID: PMC6033951 DOI: 10.1038/s41467-018-04850-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/24/2018] [Indexed: 11/25/2022] Open
Abstract
Meiotic cells undergo genetic exchange between homologs through programmed DNA double-strand break (DSB) formation, recombination and synapsis. In mice, the DNA damage-regulated phosphatidylinositol-3-kinase-like kinase (PIKK) ATM regulates all of these processes. However, the meiotic functions of the PIKK ATR have remained elusive, because germline-specific depletion of this kinase is challenging. Here we uncover roles for ATR in male mouse prophase I progression. ATR deletion causes chromosome axis fragmentation and germ cell elimination at mid pachynema. This elimination cannot be rescued by deletion of ATM and the third DNA damage-regulated PIKK, PRKDC, consistent with the existence of a PIKK-independent surveillance mechanism in the mammalian germline. ATR is required for synapsis, in a manner genetically dissociable from DSB formation. ATR also regulates loading of recombinases RAD51 and DMC1 to DSBs and recombination focus dynamics on synapsed and asynapsed chromosomes. Our studies reveal ATR as a critical regulator of mouse meiosis.
Collapse
Affiliation(s)
- Alexander Widger
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Shantha K Mahadevaiah
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Julian Lange
- Molecular Biology Program, Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Elias ElInati
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jasmin Zohren
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Takayuki Hirota
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sarai Pacheco
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Cytology and Histology Unit, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Andros Maldonado-Linares
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Cytology and Histology Unit, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Marcello Stanzione
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Obah Ojarikre
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Valdone Maciulyte
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Dirk G de Rooij
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Attila Tóth
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Cytology and Histology Unit, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Scott Keeney
- Molecular Biology Program, Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - James M A Turner
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
39
|
Hunter N. Oocyte Quality Control: Causes, Mechanisms, and Consequences. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:235-247. [PMID: 29743337 DOI: 10.1101/sqb.2017.82.035394] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oocyte quality and number are key determinants of reproductive life span and success. These variables are shaped in part by the elimination of oocytes that experience problems during the early stages of meiosis. Meiotic prophase-I marks an extended period of genome vulnerability in which epigenetic reprogramming unleashes retroelements and hundreds of DNA double-strand breaks (DSBs) are inflicted to initiate the programmed recombination required for accurate chromosome segregation at the first meiotic division. Expression of LINE-1 retroelements perturbs several aspects of meiotic prophase and is associated with oocyte death during the early stages of meiotic prophase I. Defects in chromosome synapsis and recombination also trigger oocyte loss, but typically at a later stage, as cells transition into quiescence and form primordial follicles. Interrelated pathways that signal defects in DSB repair and chromosome synapsis mediate this late oocyte attrition. Here, I review our current understanding of early and late oocyte attrition based on studies in mouse and describe how these processes appear to be both distinct and overlapping and how they help balance the quality and size of oocyte reserves to maximize fecundity.
Collapse
Affiliation(s)
- Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, Davis, California 95616.,Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616.,Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616
| |
Collapse
|
40
|
Bogdanov YF. Noncanonical meiosis in the nematode Caenorhabditis elegans as a model for studying the molecular bases of the homologous chromosome synapsis, crossing over, and segregation. RUSS J GENET+ 2017. [DOI: 10.1134/s102279541712002x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Histone H3 Threonine 11 Phosphorylation Is Catalyzed Directly by the Meiosis-Specific Kinase Mek1 and Provides a Molecular Readout of Mek1 Activity in Vivo. Genetics 2017; 207:1313-1333. [PMID: 28986445 DOI: 10.1534/genetics.117.300359] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/05/2017] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae Mek1 is a CHK2/Rad53-family kinase that regulates meiotic recombination and progression upon its activation in response to DNA double-strand breaks (DSBs). The full catalog of direct Mek1 phosphorylation targets remains unknown. Here, we show that phosphorylation of histone H3 on threonine 11 (H3 T11ph) is induced by meiotic DSBs in S. cerevisiae and Schizosaccharomyces pombe Molecular genetic experiments in S. cerevisiae confirmed that Mek1 is required for H3 T11ph and revealed that phosphorylation is rapidly reversed when Mek1 kinase is no longer active. Reconstituting histone phosphorylation in vitro with recombinant proteins demonstrated that Mek1 directly catalyzes H3 T11 phosphorylation. Mutating H3 T11 to nonphosphorylatable residues conferred no detectable defects in otherwise unperturbed meiosis, although the mutations modestly reduced spore viability in certain strains where Rad51 is used for strand exchange in place of Dmc1. H3 T11ph is therefore mostly dispensable for Mek1 function. However, H3 T11ph provides an excellent marker of ongoing Mek1 kinase activity in vivo Anti-H3 T11ph chromatin immunoprecipitation followed by deep sequencing demonstrated that H3 T11ph was highly enriched at presumed sites of attachment of chromatin to chromosome axes, gave a more modest signal along chromatin loops, and was present at still lower levels immediately adjacent to DSB hotspots. These localization patterns closely tracked the distribution of Red1 and Hop1, axis proteins required for Mek1 activation. These findings provide insight into the spatial disposition of Mek1 kinase activity and the higher order organization of recombining meiotic chromosomes.
Collapse
|
42
|
Rinaldi VD, Bolcun-Filas E, Kogo H, Kurahashi H, Schimenti JC. The DNA Damage Checkpoint Eliminates Mouse Oocytes with Chromosome Synapsis Failure. Mol Cell 2017; 67:1026-1036.e2. [PMID: 28844861 DOI: 10.1016/j.molcel.2017.07.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/14/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
Pairing and synapsis of homologous chromosomes during meiosis is crucial for producing genetically normal gametes and is dependent upon repair of SPO11-induced double-strand breaks (DSBs) by homologous recombination. To prevent transmission of genetic defects, diverse organisms have evolved mechanisms to eliminate meiocytes containing unrepaired DSBs or unsynapsed chromosomes. Here we show that the CHK2 (CHEK2)-dependent DNA damage checkpoint culls not only recombination-defective mouse oocytes but also SPO11-deficient oocytes that are severely defective in homolog synapsis. The checkpoint is triggered in oocytes that accumulate a threshold level of spontaneous DSBs (∼10) in late prophase I, the repair of which is inhibited by the presence of HORMAD1/2 on unsynapsed chromosome axes. Furthermore, Hormad2 deletion rescued the fertility of oocytes containing a synapsis-proficient, DSB repair-defective mutation in a gene (Trip13) required for removal of HORMADs from synapsed chromosomes, suggesting that many meiotic DSBs are normally repaired by intersister recombination in mice.
Collapse
Affiliation(s)
- Vera D Rinaldi
- Cornell University, Departments of Biomedical Sciences and Molecular Biology and Genetics, Ithaca, NY 14850, USA
| | - Ewelina Bolcun-Filas
- Cornell University, Departments of Biomedical Sciences and Molecular Biology and Genetics, Ithaca, NY 14850, USA; The Jackson Laboratory, Bar Harbor, ME 14850, USA
| | - Hiroshi Kogo
- Gunma University, Department of Anatomy and Cell Biology, Maebashi, Gunma 371-8511, Japan
| | - Hiroki Kurahashi
- Fujita Health University, Institute of Comprehensive Molecular Science, Toyoake, Aichi 470-1192, Japan
| | - John C Schimenti
- Cornell University, Departments of Biomedical Sciences and Molecular Biology and Genetics, Ithaca, NY 14850, USA.
| |
Collapse
|
43
|
BIME2, a novel gene required for interhomolog meiotic recombination in the protist model organism Tetrahymena. Chromosome Res 2017; 25:291-298. [PMID: 28803330 PMCID: PMC5662671 DOI: 10.1007/s10577-017-9563-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/23/2022]
Abstract
Meiotic recombination is initiated by DNA double-strand breaks (DSBs). Most DSBs are converted into nonreciprocal exchanges (gene conversions) or crossovers (COs) between sister chromatids. Only a minority of DSBs are processed toward interhomolog COs, the precursors of the chiasmata that connect homologous chromosomes. Dmc1, the meiosis-specific paralog of the universal recombination protein Rad51, is required for interhomolog COs; in its absence, univalents are primarily formed. Here, we report a ciliate-specific novel meiotic gene, BIME2, which also promotes interhomolog crossing over. In the bime2Δ mutant, DSBs are formed and repaired normally, but bivalent formation is strongly reduced. Bime2 protein forms foci on chromatin during meiotic prophase, and chromatin localization of Bime2 and Dmc1 is largely interdependent. Bime2 distantly resembles budding yeast Rdh54/Tid1 and the vertebrate Rad54B helicases and may have similar functions in promoting or stabilizing Dmc1 nucleoprotein filaments.
Collapse
|
44
|
CRISPR Technology Reveals RAD(51)-ical Mechanisms of Repair in Roundworms: An Educational Primer for Use with "Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans". Genetics 2017; 204:883-891. [PMID: 28114101 DOI: 10.1534/genetics.116.195479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mechanisms cells use to maintain genetic fidelity via DNA repair and the accuracy of these processes have garnered interest from scientists engaged in basic research to clinicians seeking improved treatment for cancer patients. Despite the continued advances, many details of DNA repair are still incompletely understood. In addition, the inherent complexity of DNA repair processes, even at the most fundamental level, makes it a challenging topic. This primer is meant to assist both educators and students in using a recent paper, "Promotion of homologous recombination by SWS-1 in complex with RAD-51 paralogs in Caenorhabditis elegans," to understand mechanisms of DNA repair. The goals of this primer are to highlight and clarify several key techniques utilized, with special emphasis on the clustered, regularly interspaced, short palindromic repeats technique and the ways in which it has revolutionized genetics research, as well as to provide questions for deeper in-class discussion.
Collapse
|
45
|
Shodhan A, Kataoka K, Mochizuki K, Novatchkova M, Loidl J. A Zip3-like protein plays a role in crossover formation in the SC-less meiosis of the protist Tetrahymena. Mol Biol Cell 2017; 28:825-833. [PMID: 28100637 PMCID: PMC5349789 DOI: 10.1091/mbc.e16-09-0678] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 11/11/2022] Open
Abstract
When programmed meiotic DNA double-strand breaks (DSBs) undergo recombinational repair, genetic crossovers (COs) may be formed. A certain level of this is required for the faithful segregation of chromosomes, but the majority of DSBs are processed toward a safer alternative, namely noncrossovers (NCOs), via nonreciprocal DNA exchange. At the crossroads between these two DSB fates is the Msh4-Msh5 (MutSγ) complex, which stabilizes CO-destined recombination intermediates and members of the Zip3/RNF212 family of RING finger proteins, which in turn stabilize MutSγ. These proteins function in the context of the synaptonemal complex (SC) and mainly act on SC-dependent COs. Here we show that in the SC-less ciliate Tetrahymena, Zhp3 (a protein distantly related to Zip3/RNF212), together with MutSγ, is responsible for the majority of COs. This activity of Zhp3 suggests an evolutionarily conserved SC-independent strategy for balancing CO:NCO ratios. Moreover, we report a novel meiosis-specific protein, Sa15, as an interacting partner of Zhp3. Sa15 forms linear structures in meiotic prophase nuclei to which Zhp3 localizes. Sa15 is required for a wild-type level of CO formation. Its linear organization suggests the existence of an underlying chromosomal axis that serves as a scaffold for Zhp3 and other recombination proteins.
Collapse
Affiliation(s)
- Anura Shodhan
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Kensuke Kataoka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences and
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences and
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences and
- Research Institute of Molecular Pathology, 1030 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
46
|
Coordination of Double Strand Break Repair and Meiotic Progression in Yeast by a Mek1-Ndt80 Negative Feedback Loop. Genetics 2017; 206:497-512. [PMID: 28249986 DOI: 10.1534/genetics.117.199703] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/25/2017] [Indexed: 11/18/2022] Open
Abstract
During meiosis, homologous chromosomes are physically connected by crossovers and sister chromatid cohesion. Interhomolog crossovers are generated by the highly regulated repair of programmed double strand breaks (DSBs). The meiosis-specific kinase Mek1 is critical for this regulation. Mek1 downregulates the mitotic recombinase Rad51, indirectly promoting interhomolog strand invasion by the meiosis-specific recombinase Dmc1. Mek1 also promotes the formation of crossovers that are distributed throughout the genome by interference and is the effector kinase for a meiosis-specific checkpoint that delays entry into Meiosis I until DSBs have been repaired. The target of this checkpoint is a meiosis-specific transcription factor, Ndt80, which is necessary to express the polo-like kinase CDC5 and the cyclin CLB1 thereby allowing completion of recombination and meiotic progression. This work shows that Mek1 and Ndt80 negatively feedback on each other such that when DSB levels are high, Ndt80 is inactive due to high levels of Mek1 activity. As DSBs are repaired, chromosomes synapse and Mek1 activity is reduced below a threshold that allows activation of Ndt80. Ndt80 transcription of CDC5 results in degradation of Red1, a meiosis-specific protein required for Mek1 activation, thereby abolishing Mek1 activity completely. Elimination of Mek1 kinase activity allows Rad51-mediated repair of any remaining DSBs. In this way, cells do not enter Meiosis I until recombination is complete and all DSBs are repaired.
Collapse
|
47
|
Medhi D, Goldman AS, Lichten M. Local chromosome context is a major determinant of crossover pathway biochemistry during budding yeast meiosis. eLife 2016; 5. [PMID: 27855779 PMCID: PMC5222560 DOI: 10.7554/elife.19669] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022] Open
Abstract
The budding yeast genome contains regions where meiotic recombination initiates more frequently than in others. This pattern parallels enrichment for the meiotic chromosome axis proteins Hop1 and Red1. These proteins are important for Spo11-catalyzed double strand break formation; their contribution to crossover recombination remains undefined. Using the sequence-specific VMA1-derived endonuclease (VDE) to initiate recombination in meiosis, we show that chromosome structure influences the choice of proteins that resolve recombination intermediates to form crossovers. At a Hop1-enriched locus, most VDE-initiated crossovers, like most Spo11-initiated crossovers, required the meiosis-specific MutLγ resolvase. In contrast, at a locus with lower Hop1 occupancy, most VDE-initiated crossovers were MutLγ-independent. In pch2 mutants, the two loci displayed similar Hop1 occupancy levels, and VDE-induced crossovers were similarly MutLγ-dependent. We suggest that meiotic and mitotic recombination pathways coexist within meiotic cells, and that features of meiotic chromosome structure determine whether one or the other predominates in different regions. DOI:http://dx.doi.org/10.7554/eLife.19669.001 Inside the cells of many species, double-stranded DNA is packaged together with specialized proteins to form structures called chromosomes. Breaks that span across both strands of the DNA can cause cell death because if the break is incorrectly repaired, a segment of the DNA may be lost. Cells use a process known as homologous recombination to repair such breaks correctly. This uses an undamaged DNA molecule as a template that can be copied to replace missing segments of the DNA sequence. During the repair of double-strand breaks, connections called crossovers may form. This results in the damaged and undamaged DNA molecules swapping a portion of their sequences. In meiosis, a type of cell division that produces sperm and eggs, cells deliberately break their chromosomes and then repair them using homologous recombination. The crossovers that form during this process are important for sharing chromosomes between the newly forming cells. It is crucial that the crossovers form at the right time and place along the chromosomes. Chromosomes have different structures depending on whether a cell is undergoing meiosis or normal (mitotic) cell division. This structure may influence how and where crossovers form. Enzymes called resolvases catalyze the reactions that occur during the last step in homologous recombination to generate crossovers. One particular resolvase acts only during meiosis, whereas others are active in both mitotic and meiotic cells. However, it is not known whether local features of the chromosome structure – such as the proteins packaged in the chromosome alongside the DNA – influence when and where meiotic crossover occurs. Medhi et al. have now studied how recombination occurs along different regions of the chromosomes in budding yeast cells, which undergo meiosis in a similar way to human cells. The results of the experiments reveal that the mechanism by which crossovers form depends on proteins called axis proteins, one type of which is specifically found in meiotic chromosomes. In regions that had high levels of meiotic axis proteins, crossovers mainly formed using the meiosis-specific resolvase enzyme. In regions that had low levels of meiotic axis proteins, crossovers formed using resolvases that are active in mitotic cells. Further experiments demonstrated that altering the levels of one of the meiotic axis proteins changed which resolvase was used. Overall, the results presented by Medhi et al. show that differences in chromosome structure, in particular the relative concentration of meiotic axis proteins, influence how crossovers form in yeast. Future studies will investigate whether this is observed in other organisms such as humans, and whether local chromosome structure influences other steps of homologous recombination in meiosis. DOI:http://dx.doi.org/10.7554/eLife.19669.002
Collapse
Affiliation(s)
- Darpan Medhi
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States.,Sheffield Institute for Nucleic Acids, The University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Alastair Sh Goldman
- Sheffield Institute for Nucleic Acids, The University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| |
Collapse
|
48
|
Abstract
Comparisons among a variety of eukaryotes have revealed considerable variability in the structures and processes involved in their meiosis. Nevertheless, conventional forms of meiosis occur in all major groups of eukaryotes, including early-branching protists. This finding confirms that meiosis originated in the common ancestor of all eukaryotes and suggests that primordial meiosis may have had many characteristics in common with conventional extant meiosis. However, it is possible that the synaptonemal complex and the delicate crossover control related to its presence were later acquisitions. Later still, modifications to meiotic processes occurred within different groups of eukaryotes. Better knowledge on the spectrum of derived and uncommon forms of meiosis will improve our understanding of many still mysterious aspects of the meiotic process and help to explain the evolutionary basis of functional adaptations to the meiotic program.
Collapse
Affiliation(s)
- Josef Loidl
- Department of Chromosome Biology and Vienna Biocenter, University of Vienna, A-1030 Vienna, Austria;
| |
Collapse
|
49
|
Wei L, Levine AS, Lan L. Transcription-coupled homologous recombination after oxidative damage. DNA Repair (Amst) 2016; 44:76-80. [DOI: 10.1016/j.dnarep.2016.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
50
|
Sun XQ, Li DH, Xue JY, Yang SH, Zhang YM, Li MM, Hang YY. Insertion DNA Accelerates Meiotic Interchromosomal Recombination in Arabidopsis thaliana. Mol Biol Evol 2016; 33:2044-53. [PMID: 27189569 DOI: 10.1093/molbev/msw087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nucleotide insertions/deletions are ubiquitous in eukaryotic genomes, and the resulting hemizygous (unpaired) DNA has significant, heritable effects on adjacent DNA. However, little is known about the genetic behavior of insertion DNA. Here, we describe a binary transgenic system to study the behavior of insertion DNA during meiosis. Transgenic Arabidopsis lines were generated to carry two different defective reporter genes on nonhomologous chromosomes, designated as "recipient" and "donor" lines. Double hemizygous plants (harboring unpaired DNA) were produced by crossing between the recipient and the donor, and double homozygous lines (harboring paired DNA) via self-pollination. The transfer of the donor's unmutated sequence to the recipient generated a functional β-glucuronidase gene, which could be visualized by histochemical staining and corroborated by polymerase chain reaction amplification and sequencing. More than 673 million seedlings were screened, and the results showed that meiotic ectopic recombination in the hemizygous lines occurred at a frequency >6.49-fold higher than that in the homozygous lines. Gene conversion might have been exclusively or predominantly responsible for the gene correction events. The direct measurement of ectopic recombination events provided evidence that an insertion, in the absence of an allelic counterpart, could scan the entire genome for homologous counterparts with which to pair. Furthermore, the unpaired (hemizygous) architectures could accelerate ectopic recombination between itself and interchromosomal counterparts. We suggest that the ectopic recombination accelerated by hemizygous architectures may be a general mechanism for interchromosomal recombination through ubiquitously dispersed repeat sequences in plants, ultimately contributing to genetic renovation and eukaryotic evolution.
Collapse
Affiliation(s)
- Xiao-Qin Sun
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Ding-Hong Li
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jia-Yu Xue
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Si-Hai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan-Mei Zhang
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Mi-Mi Li
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yue-Yu Hang
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|