1
|
Tucker SK, Seale BC, Brown DT, Hebert MD. Coilin and SUMOylation influence PARP1 dynamics and the DNA damage response. J Cell Sci 2025; 138:jcs263953. [PMID: 40342165 DOI: 10.1242/jcs.263953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/26/2025] [Indexed: 05/11/2025] Open
Abstract
Coilin is a nucleoplasmic protein that is enriched in some cell types in the Cajal body (CB). CBs take part in the biogenesis of many different types of ribonucleoproteins (RNPs), such as small nuclear RNPs. Coilin is known as the CB marker protein and is required for CB formation. The function of nucleoplasmic coilin is less understood and has been shown to impact protein modification by SUMO, the small ubiquitin-like modifier. Additionally, it is known that coilin is recruited to sites of DNA damage caused by UVA exposure or expression of herpes simplex viral protein. PARP1, a DNA damage response protein, has been shown to be SUMOylated by PIAS4, a SUMO E3 ligase that associates with coilin. Here, we show that SUMOylation of PARP1 is lessened when coilin is suppressed. We also found that coilin knockdown and a SUMO inhibitor drug, TAK-981, influence the dynamics of PARP1 in response to micro-irradiation. Additionally, we find that the SUMOylation status of coilin influences its mobility in the CB and recruitment to sites of DNA damage. These data demonstrate that coilin and SUMOylation both have an influence on the DNA damage response.
Collapse
Affiliation(s)
- Sara K Tucker
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Blaise C Seale
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - David T Brown
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
2
|
McLaurin DM, Tucker SK, Siddique SJ, Challagundla L, Gibert Y, Hebert MD. A Novel Role for Coilin in Vertebrate Innate Immunity. FASEB J 2025; 39:e70580. [PMID: 40277349 PMCID: PMC12023821 DOI: 10.1096/fj.202403276r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/04/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Coilin is a protein localized in the nucleus, where it plays a role in the assembly of the Cajal Body and is involved in ribonucleoprotein biogenesis. Our recent research has uncovered new roles for coilin, including its involvement in producing microRNAs and in modifying other proteins through phosphorylation and SUMOylation. We also proposed that coilin could respond to stress signals. In plants, coilin has been shown to help regulate immune genes and activate defense mechanisms, especially in response to stress. In this study, we used two vertebrate models to study coilin function: a human primary foreskin fibroblast cell line deficient in coilin through RNA interference and a newly created zebrafish line with a mutation in the coilin gene generated by CRISPR-Cas9. Transcriptomic analysis in these two models of coilin deficiency revealed dysregulation of immunity-related genes in both species. To phenotypically validate the transcriptomic results, we challenged zebrafish coilin mutants with lipopolysaccharide (LPS), which triggers an innate immune response, and identified an attenuated response to LPS in vivo in the zebrafish coilin mutants. Our results support a vital novel function for coilin in vertebrates in regulating the expression of immunity-related genes. Moreover, these findings could lead to more research on how coilin regulates innate immunity in animals and humans.
Collapse
Affiliation(s)
- Douglas M. McLaurin
- Department of Cell and Molecular BiologyThe University of Mississippi Medical CenterJacksonMississippiUSA
| | - Sara K. Tucker
- Department of Cell and Molecular BiologyThe University of Mississippi Medical CenterJacksonMississippiUSA
| | - Shanzida J. Siddique
- Department of Cell and Molecular BiologyThe University of Mississippi Medical CenterJacksonMississippiUSA
| | - Lavanya Challagundla
- Department of Cell and Molecular BiologyThe University of Mississippi Medical CenterJacksonMississippiUSA
| | - Yann Gibert
- Department of Cell and Molecular BiologyThe University of Mississippi Medical CenterJacksonMississippiUSA
| | - Michael D. Hebert
- Department of Cell and Molecular BiologyThe University of Mississippi Medical CenterJacksonMississippiUSA
| |
Collapse
|
3
|
Tucker SK, McLaurin DM, Hebert MD. Cajal body formation is regulated by coilin SUMOylation. J Cell Sci 2024; 137:jcs263447. [PMID: 39660502 PMCID: PMC11827600 DOI: 10.1242/jcs.263447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Cajal bodies (CBs) are membraneless organelles whose mechanism of formation is still not fully understood. Many proteins contribute to the formation of CBs, including Nopp140 (NOLC1), WRAP53 and coilin. Coilin is modified on multiple different lysine residues by SUMO, the small ubiquitin-like modifier. In addition to its accumulation in CBs, coilin is also found in the nucleoplasm, where its role is still being evaluated. Here, we demonstrate a novel mechanism of CB regulation by examining the interaction changes of coilin when its SUMOylation is disrupted. The impact of global SUMOylation inhibition and targeted disruption of coilin SUMOylation on CB formation was examined. We found that two types of global SUMOylation inhibition and expression of SUMO-deficient coilin mutants increased CB number but decreased CB size. Additionally, we saw via coimmunoprecipitation that a SUMO-deficient coilin mutant has altered interaction with Nopp140. This demonstrates increased mechanistic ties between CB formation and SUMOylation.
Collapse
Affiliation(s)
- Sara K. Tucker
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Douglas M. McLaurin
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D. Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
4
|
Blatnik AJ, Sanjeev M, Slivka J, Pastore B, Embree CM, Tang W, Singh G, Burghes AHM. Sm-site containing mRNAs can accept Sm-rings and are downregulated in Spinal Muscular Atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617433. [PMID: 39416143 PMCID: PMC11482833 DOI: 10.1101/2024.10.09.617433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Sm-ring assembly is important for the biogenesis, stability, and function of uridine-rich small nuclear RNAs (U snRNAs) involved in pre-mRNA splicing and histone pre-mRNA processing. Sm-ring assembly is cytoplasmic and dependent upon the Sm-site sequence and structural motif, ATP, and Survival motor neuron (SMN) protein complex. While RNAs other than U snRNAs were previously shown to associate with Sm proteins, whether this association follows Sm-ring assembly requirements is unknown. We systematically identified Sm-sites within the human and mouse transcriptomes and assessed whether these sites can accept Sm-rings. In addition to snRNAs, Sm-sites are highly prevalent in the 3' untranslated regions of long messenger RNAs. RNA immunoprecipitation experiments confirm that Sm-site containing mRNAs associate with Sm proteins in the cytoplasm. In modified Sm-ring assembly assays, Sm-site containing RNAs, from either bulk polyadenylated RNAs or those transcribed in vitro , specifically associate with Sm proteins in an Sm-site and ATP-dependent manner. In cell and animal models of Spinal Muscular Atrophy (SMA), mRNAs containing Sm-sites are downregulated, suggesting reduced Sm-ring assembly on these mRNAs may contribute to SMA pathogenesis. Together, this study establishes that Sm-site containing mRNAs can accept Sm-rings and identifies a novel mechanism for Sm proteins in regulation of cytoplasmic mRNAs. GRAPHICAL ABSTRACT
Collapse
|
5
|
Hong M, Zhou X, Zeng C, Xu D, Xu T, Liao S, Wang K, Zhu C, Shan G, Huang X, Chen X, Feng X, Guang S. Nucleolar stress induces nucleolar stress body formation via the NOSR-1/NUMR-1 axis in Caenorhabditis elegans. Nat Commun 2024; 15:7256. [PMID: 39179648 PMCID: PMC11343841 DOI: 10.1038/s41467-024-51693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
Environmental stimuli not only alter gene expression profiles but also induce structural changes in cells. How distinct nuclear bodies respond to cellular stress is poorly understood. Here, we identify a subnuclear organelle named the nucleolar stress body (NoSB), the formation of which is induced by the inhibition of rRNA transcription or inactivation of rRNA processing and maturation in C. elegans. NoSB does not colocalize with other previously described subnuclear organelles. We conduct forward genetic screening and identify a bZIP transcription factor, named nucleolar stress response-1 (NOSR-1), that is required for NoSB formation. The inhibition of rRNA transcription or inactivation of rRNA processing and maturation increases nosr-1 expression. By using transcriptome analysis of wild-type animals subjected to different nucleolar stress conditions and nosr-1 mutants, we identify that the SR-like protein NUMR-1 (nuclear localized metal responsive) is the target of NOSR-1. Interestingly, NUMR-1 is a component of NoSB and itself per se is required for the formation of NoSB. We conclude that the NOSR-1/NUMR-1 axis likely responds to nucleolar stress and mediates downstream stress-responsive transcription programs and subnuclear morphology alterations in C. elegans.
Collapse
Affiliation(s)
- Minjie Hong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaotian Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chenming Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ting Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shimiao Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ge Shan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Xuezhu Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
6
|
Cao H, Wen Y, Ma H, Liu W. Validation and Analysis of COIL, a Gene Associated with Multiple Lambing Traits in Sheep. Genes (Basel) 2024; 15:235. [PMID: 38397224 PMCID: PMC10888269 DOI: 10.3390/genes15020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
In a past study, the team used specific-locus amplified fragment sequencing (SLAF sequencing) to detect single-nucleotide polymorphisms (SNPs) contributing to the differences in lambing numbers in Xinjiang sheep. This study verified the correlation between the COIL gene and lambing number characters in sheep and explored its possible mechanism of action. In this study, three SNPs in the COIL gene, namely COILSNP1 (rs7321466), COILSNP2 (rs7314134), and COILSNP3 (rs7321563), were explored in terms of their possible mechanism of action. A tissue expression profiling analysis revealed that the COIL gene was significantly more expressed in the uterus and ovaries than in other tissues (p < 0.05), whereas an association analysis revealed that the number of lambs born was significantly different among individuals with different genotypes of this COILSNP1 (p < 0.05). The Cell Counting Kit-8(CCK-8) revealed that the overexpression of the COIL gene significantly increased the proliferation of mouse ovarian fibroblasts and sheep fibroblasts (p < 0.05). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) revealed that the overexpression of the COIL gene significantly increased the activity of sheep fibroblasts (p < 0.01) and mouse ovarian fibroblasts (p < 0.05). The overexpression of the COIL gene affected the biogenesis pathway of spliceosomal U snRNPs by validating protein network connections. This activity affects ovulation, embryonic development, and changes in lambing size in sheep.
Collapse
Affiliation(s)
| | | | - Haiyu Ma
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (H.C.); (Y.W.); (W.L.)
| | | |
Collapse
|
7
|
McLaurin DM, Tucker SK, Hebert MD. Coilin mediates m6A RNA methylation through phosphorylation of METTL3. Biol Open 2023; 12:bio060116. [PMID: 38050869 PMCID: PMC10714142 DOI: 10.1242/bio.060116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs that regulate gene expression. An important step in miRNA biogenesis occurs when primary miRNAs are bound and cleaved by the microprocessor to generate precursor miRNAs. Regulation at this step is essential and one such regulator includes m6A RNA methylation, an RNA modification found on primary miRNAs that is installed by METTL3 and bound by hnRNPA2B1. Our lab has recently discovered that the Cajal body marker protein coilin also participates in miRNA biogenesis and hypothesized that coilin may be influencing miRNA biogenesis through m6A RNA methylation. Here we report that coilin suppression reduces m6A on primary Let7a and miR-21. We also found that coilin suppression reduced the protein expression of hnRNPA2B1 and METTL3. We observed an interaction between coilin and ectopically expressed METTL3 and found that coilin suppression reduced the nucleoplasmic portion of METTL3 and blunted ectopic METTL3 phosphorylation. Finally, coilin suppression disrupted the greater METTL3 complex with cofactors METTL14 and WTAP. Collectively, our work has uncovered a role for coilin in mediating m6A RNA methylation and provides an avenue by which coilin participates in miRNA biogenesis.
Collapse
Affiliation(s)
- Douglas M. McLaurin
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Sara K. Tucker
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D. Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
8
|
Abstract
The nucleus of higher eukaryotes contains a number of structures that concentrate specific biomolecules and play distinct roles in nuclear metabolism. In recent years, the molecular mechanisms controlling their formation have been intensively studied. In this brief review, I focus on coilin and Cajal bodies. Coilin is a key scaffolding protein of Cajal bodies that is evolutionarily conserved in metazoans. Cajal bodies are thought to be one of the archetypal nuclear structures involved in the metabolism of several short non-coding nuclear RNAs. Yet surprisingly little is known about the structure and function of coilin, and a comprehensive model to explain the origin of Cajal bodies is also lacking. Here, I summarize recent results on Cajal bodies and coilin and discuss them in the context of the last three decades of research in this field.
Collapse
Affiliation(s)
- David Staněk
- Laboratory of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Lettin L, Erbay B, Blair GE. Viruses and Cajal Bodies: A Critical Cellular Target in Virus Infection? Viruses 2023; 15:2311. [PMID: 38140552 PMCID: PMC10747631 DOI: 10.3390/v15122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Nuclear bodies (NBs) are dynamic structures present in eukaryotic cell nuclei. They are not bounded by membranes and are often considered biomolecular condensates, defined structurally and functionally by the localisation of core components. Nuclear architecture can be reorganised during normal cellular processes such as the cell cycle as well as in response to cellular stress. Many plant and animal viruses target their proteins to NBs, in some cases triggering their structural disruption and redistribution. Although not all such interactions have been well characterised, subversion of NBs and their functions may form a key part of the life cycle of eukaryotic viruses that require the nucleus for their replication. This review will focus on Cajal bodies (CBs) and the viruses that target them. Since CBs are dynamic structures, other NBs (principally nucleoli and promyelocytic leukaemia, PML and bodies), whose components interact with CBs, will also be considered. As well as providing important insights into key virus-host cell interactions, studies on Cajal and associated NBs may identify novel cellular targets for development of antiviral compounds.
Collapse
Affiliation(s)
- Lucy Lettin
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
| | - Bilgi Erbay
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
- Moleküler Biyoloji ve Genetik Bölümü, Fen Fakültesi, Van Yuzuncu Yil University, Van 65140, Türkiye
| | - G. Eric Blair
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
| |
Collapse
|
10
|
White L, Erbay B, Blair GE. The Cajal body protein p80-coilin forms a complex with the adenovirus L4-22K protein and facilitates the nuclear export of adenovirus mRNA. mBio 2023; 14:e0145923. [PMID: 37795984 PMCID: PMC10653806 DOI: 10.1128/mbio.01459-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/11/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE The architecture of sub-nuclear structures of eucaryotic cells is often changed during the infectious cycle of many animal and plant viruses. Cajal bodies (CBs) form a major sub-nuclear structure whose functions may include the regulation of cellular RNA metabolism. During the lifecycle of human adenovirus 5 (Ad5), CBs are reorganized from their spherical-like structure into smaller clusters termed microfoci. The mechanism of this reorganization and its significance for virus replication has yet to be established. Here we show that the major CB protein, p80-coilin, facilitates the nuclear export of Ad5 transcripts. Depletion of p80-coilin by RNA interference led to lowered levels of viral proteins and infectious virus. p80-coilin was found to form a complex with the viral L4-22K protein in Ad5-infected cells and in some reorganized microfoci. These findings assign a new role for p80-coilin as a potential regulator of infection by a human DNA virus.
Collapse
Affiliation(s)
- Laura White
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Bilgi Erbay
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - G. Eric Blair
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
11
|
Egelberg M, De Marchi T, Pekar G, Tran L, Bendahl P, Tullberg AS, Holmberg E, Karlsson P, Farnebo M, Killander F, Nimeús E. Low levels of WRAP53 predict decreased efficacy of radiotherapy and are prognostic for local recurrence and death from breast cancer: a long-term follow-up of the SweBCG91RT randomized trial. Mol Oncol 2023; 17:2029-2040. [PMID: 36975842 PMCID: PMC10552889 DOI: 10.1002/1878-0261.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Downregulation of the DNA repair protein WD40-encoding RNA antisense to p53 (WRAP53) has been associated with radiotherapy resistance and reduced cancer survival. The aim of this study was to evaluate WRAP53 protein and RNA levels as prognostic and predictive markers in the SweBCG91RT trial, in which breast cancer patients were randomized for postoperative radiotherapy. Using tissue microarray and microarray-based gene expression, 965 and 759 tumors were assessed for WRAP53 protein and RNA levels, respectively. Correlation with local recurrence and breast cancer-related death was assessed for prognosis, and the interaction between WRAP53 and radiotherapy in relation to local recurrence was assessed for radioresistance prediction. Tumors with low WRAP53 protein levels had a higher subhazard ratio (SHR) for local recurrence [1.76 (95% CI 1.10-2.79)] and breast cancer-related death [1.55 (1.02-2.38)]. Low WRAP53 RNA levels were associated with almost a three-fold decreased effect of radiotherapy in relation to ipsilateral breast tumor recurrence [IBTR; SHR 0.87 (95% CI 0.44-1.72)] compared with high RNA levels [0.33 (0.19-0.55)], with a significant interaction (P = 0.024). In conclusion, low WRAP53 protein is prognostic for local recurrence and breast cancer-related death. Low WRAP53 RNA is a potential marker for radioresistance.
Collapse
Affiliation(s)
- Moa Egelberg
- Division of Surgery, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversitySweden
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversitySweden
- Department of RadiologyKristianstad HospitalSweden
| | - Tommaso De Marchi
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversitySweden
| | - Gyula Pekar
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversitySweden
| | - Lena Tran
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversitySweden
| | - Pär‐Ola Bendahl
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversitySweden
| | - Axel Stenmark Tullberg
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University HospitalUniversity of GothenburgSweden
| | - Erik Holmberg
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University HospitalUniversity of GothenburgSweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University HospitalUniversity of GothenburgSweden
| | - Marianne Farnebo
- Department of Bioscience and Nutrition & Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Fredrika Killander
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversitySweden
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of MedicineSkåne University HospitalLundSweden
| | - Emma Nimeús
- Division of Surgery, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversitySweden
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversitySweden
- Division of Surgery, Department of Clinical Sciences Lund, Faculty of MedicineSkåne University HospitalLundSweden
| |
Collapse
|
12
|
Taliansky ME, Love AJ, Kołowerzo-Lubnau A, Smoliński DJ. Cajal bodies: Evolutionarily conserved nuclear biomolecular condensates with properties unique to plants. THE PLANT CELL 2023; 35:3214-3235. [PMID: 37202374 PMCID: PMC10473218 DOI: 10.1093/plcell/koad140] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
Proper orchestration of the thousands of biochemical processes that are essential to the life of every cell requires highly organized cellular compartmentalization of dedicated microenvironments. There are 2 ways to create this intracellular segregation to optimize cellular function. One way is to create specific organelles, enclosed spaces bounded by lipid membranes that regulate macromolecular flux in and out of the compartment. A second way is via membraneless biomolecular condensates that form due to to liquid-liquid phase separation. Although research on these membraneless condensates has historically been performed using animal and fungal systems, recent studies have explored basic principles governing the assembly, properties, and functions of membraneless compartments in plants. In this review, we discuss how phase separation is involved in a variety of key processes occurring in Cajal bodies (CBs), a type of biomolecular condensate found in nuclei. These processes include RNA metabolism, formation of ribonucleoproteins involved in transcription, RNA splicing, ribosome biogenesis, and telomere maintenance. Besides these primary roles of CBs, we discuss unique plant-specific functions of CBs in RNA-based regulatory pathways such as nonsense-mediated mRNA decay, mRNA retention, and RNA silencing. Finally, we summarize recent progress and discuss the functions of CBs in responses to pathogen attacks and abiotic stresses, responses that may be regulated via mechanisms governed by polyADP-ribosylation. Thus, plant CBs are emerging as highly complex and multifunctional biomolecular condensates that are involved in a surprisingly diverse range of molecular mechanisms that we are just beginning to appreciate.
Collapse
Affiliation(s)
| | - Andrew J Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Agnieszka Kołowerzo-Lubnau
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| | - Dariusz Jan Smoliński
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| |
Collapse
|
13
|
Fortuna TR, Kour S, Chimata AV, Muiños-Bühl A, Anderson EN, Nelson Iv CH, Ward C, Chauhan O, O'Brien C, Rajasundaram D, Rajan DS, Wirth B, Singh A, Pandey UB. SMN regulates GEMIN5 expression and acts as a modifier of GEMIN5-mediated neurodegeneration. Acta Neuropathol 2023; 146:477-498. [PMID: 37369805 PMCID: PMC11348892 DOI: 10.1007/s00401-023-02607-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
GEMIN5 is essential for core assembly of small nuclear Ribonucleoproteins (snRNPs), the building blocks of spliceosome formation. Loss-of-function mutations in GEMIN5 lead to a neurodevelopmental syndrome among patients presenting with developmental delay, motor dysfunction, and cerebellar atrophy by perturbing SMN complex protein expression and assembly. Currently, molecular determinants of GEMIN5-mediated disease have yet to be explored. Here, we identified SMN as a genetic suppressor of GEMIN5-mediated neurodegeneration in vivo. We discovered that an increase in SMN expression by either SMN gene therapy replacement or the antisense oligonucleotide (ASO), Nusinersen, significantly upregulated the endogenous levels of GEMIN5 in mammalian cells and mutant GEMIN5-derived iPSC neurons. Further, we identified a strong functional association between the expression patterns of SMN and GEMIN5 in patient Spinal Muscular Atrophy (SMA)-derived motor neurons harboring loss-of-function mutations in the SMN gene. Interestingly, SMN binds to the C-terminus of GEMIN5 and requires the Tudor domain for GEMIN5 binding and expression regulation. Finally, we show that SMN upregulation ameliorates defective snRNP biogenesis and alternative splicing defects caused by loss of GEMIN5 in iPSC neurons and in vivo. Collectively, these studies indicate that SMN acts as a regulator of GEMIN5 expression and neuropathologies.
Collapse
Affiliation(s)
- Tyler R Fortuna
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Anixa Muiños-Bühl
- Institute of Human Genetics, Center for Molecular Medicine, Center for Rare Disorders, University of Cologne, Cologne, Germany
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Charlie H Nelson Iv
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Caroline Ward
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Om Chauhan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Casey O'Brien
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Deepa S Rajan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine, Center for Rare Disorders, University of Cologne, Cologne, Germany
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Lett KE, McLaurin DM, Tucker SK, Hebert MD. The Cajal body marker protein coilin is SUMOylated and possesses SUMO E3 ligase-like activity. FRONTIERS IN RNA RESEARCH 2023; 1:1197990. [PMID: 39703804 PMCID: PMC11656447 DOI: 10.3389/frnar.2023.1197990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cajal bodies (CBs) are subnuclear domains that contribute to the biogenesis of several different classes of ribonucleoproteins (RNPs) including small nuclear RNPs. Only some cell types contain abundant CBs, such as neuronal cells and skeletal muscle, but CBs are invariant features of transformed cells. In contrast, coilin, the CB marker protein, is a ubiquitously expressed nuclear protein but the function of coilin in cell types that lack CBs is not well understood. We have previously shown that coilin promotes microRNA biogenesis by promoting phosphorylation of DGCR8, a component of the Microprocessor. Here we identify 7 additional residues of DGCR8 with decreased phosphorylation upon coilin knockdown. In addition to phosphorylation, the addition of a small ubiquitin-like modifier (SUMO) to DGCR8 also increases its stability. Because of coilin's role in the promotion of DGCR8 phosphorylation, we investigated whether coilin is involved in DGCR8 SUMOylation. We show that coilin knockdown results in global decrease of protein SUMOylation, including decreased DGCR8 and Sp100 (a PML body client protein) SUMOylation and decreased SMN expression. Alternatively, we found that coilin expression rescued Sp100 SUMOylation and increased DGCR8 and SMN levels in a coilin knockout cell line. Furthermore, we found that coilin facilitates RanGAP1 SUMOylation, interacts directly with components of the SUMOylation machinery (Ubc9 and SUMO2), and itself is SUMOylated in vitro and in vivo. In summary, we have identified coilin as a regulator of DGCR8 phosphorylation and a promotor of protein SUMOylation with SUMO E3 ligase-like activity.
Collapse
Affiliation(s)
- Katheryn E. Lett
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Douglas M. McLaurin
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Sara K. Tucker
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D. Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
15
|
Spechenkova N, Samarskaya VO, Kalinina NO, Zavriev SK, MacFarlane S, Love AJ, Taliansky M. Plant Poly(ADP-Ribose) Polymerase 1 Is a Potential Mediator of Cross-Talk between the Cajal Body Protein Coilin and Salicylic Acid-Mediated Antiviral Defence. Viruses 2023; 15:1282. [PMID: 37376582 DOI: 10.3390/v15061282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
The nucleolus and Cajal bodies (CBs) are sub-nuclear domains with well-known roles in RNA metabolism and RNA-protein assembly. However, they also participate in other important aspects of cell functioning. This study uncovers a previously unrecognised mechanism by which these bodies and their components regulate host defences against pathogen attack. We show that the CB protein coilin interacts with poly(ADP-ribose) polymerase 1 (PARP1), redistributes it to the nucleolus and modifies its function, and that these events are accompanied by substantial increases in endogenous concentrations of salicylic acid (SA), activation of SA-responsive gene expression and callose deposition leading to the restriction of tobacco rattle virus (TRV) systemic infection. Consistent with this, we also find that treatment with SA subverts the negative effect of the pharmacological PARP inhibitor 3-aminobenzamide (3AB) on plant recovery from TRV infection. Our results suggest that PARP1 could act as a key molecular actuator in the regulatory network which integrates coilin activities as a stress sensor for virus infection and SA-mediated antivirus defence.
Collapse
Affiliation(s)
- Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Viktoriya O Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalya O Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey K Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - S MacFarlane
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Andrew J Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
16
|
Lazo PA, Morejón-García P. VRK1 variants at the cross road of Cajal body neuropathogenic mechanisms in distal neuropathies and motor neuron diseases. Neurobiol Dis 2023; 183:106172. [PMID: 37257665 DOI: 10.1016/j.nbd.2023.106172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Distal hereditary neuropathies and neuro motor diseases are complex neurological phenotypes associated with pathogenic variants in a large number of genes, but in some the origin is unknown. Recently, rare pathogenic variants of the human VRK1 gene have been associated with these neurological phenotypes. All VRK1 pathogenic variants are recessive, and their clinical presentation occurs in either homozygous or compound heterozygous patients. The pathogenic VRK1 gene pathogenic variants are located in three clusters within the protein sequence. The main, and initial, shared clinical phenotype among VRK1 pathogenic variants is a distal progressive loss of motor and/or sensory function, which includes diseases such as spinal muscular atrophy, Charcot-Marie-Tooth, amyotrophic lateral sclerosis and hereditary spastic paraplegia. In most cases, symptoms start early in infancy, or in utero, and are slowly progressive. Additional neurological symptoms vary among non-related patients, probably because of their different VRK1 variants and their genetic background. The underlying common pathogenic mechanism, by its functional impairment, is a likely consequence of the roles that the VRK1 protein plays in the regulation on the stability and assembly of Cajal bodies, which affect RNA maturation and processing, neuronal migration of RNPs along axons, and DNA-damage responses. Alterations of these processes are associated with several neuro sensory or motor syndromes. The clinical heterogeneity of the neurological phenotypes associated with VRK1 is a likely consequence of the protein complexes in which VRK1 is integrated, which include several proteins known to be associated with Cajal bodies and DNA damage responses. Several hereditary distal neurological diseases are a consequence of pathogenic variants in genes that alter these cellular functions. We conclude that VRK1-related distal hereditary neuropathies and motor neuron diseases represent a novel subgroup of Cajal body related neurological syndromes.
Collapse
Affiliation(s)
- Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| | - Patricia Morejón-García
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
17
|
Barpanda A, Tuckley C, Ray A, Banerjee A, Duttagupta SP, Kantharia C, Srivastava S. A protein microarray-based serum proteomic investigation reveals distinct autoantibody signature in colorectal cancer. Proteomics Clin Appl 2023; 17:e2200062. [PMID: 36408811 DOI: 10.1002/prca.202200062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE Colorectal cancer (CRC) has been reported as the second leading cause of cancer death worldwide. The 5-year annual survival is around 50%, mainly due to late diagnosis, striking necessity for early detection. This study aims to identify autoantibody in patients' sera for early screening of cancer. EXPERIMENTAL DESIGN The study used a high-density human proteome array with approximately 17,000 recombinant proteins. Screening of sera from healthy individuals, CRC from Indian origin, and CRC from middle-east Asia origin were performed. Bio-statistical analysis was performed to identify significant autoantibodies altered. Pathway analysis was performed to explore the underlying mechanism of the disease. RESULTS The comprehensive proteomic analysis revealed dysregulation of 15 panels of proteins including CORO7, KCNAB1, WRAP53, NDUFS6, KRT30, and COLGALT2. Further biological pathway analysis for the top dysregulated autoantigenic proteins revealed perturbation in important biological pathways such as ECM degradation and cytoskeletal remodeling etc. CONCLUSIONS AND CLINICAL RELEVANCE: The generation of an autoimmune response against cancer-linked pathways could be linked to the screening of the disease. The process of immune surveillance can be detected at an early stage of cancer. Moreover, AAbs can be easily extracted from blood serum through the least invasive test for disease screening.
Collapse
Affiliation(s)
- Abhilash Barpanda
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Chaitanya Tuckley
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Arka Ray
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Siddhartha P Duttagupta
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Chetan Kantharia
- Department of surgical gastroenterology at King Edward Memorial Hospital and Seth G. S. Medical College, Mumbai, India
| | - Sanjeeva Srivastava
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
18
|
Gadelha RB, Machado CB, Pessoa FMCDP, Pantoja LDC, Barreto IV, Ribeiro RM, de Moraes Filho MO, de Moraes MEA, Khayat AS, Moreira-Nunes CA. The Role of WRAP53 in Cell Homeostasis and Carcinogenesis Onset. Curr Issues Mol Biol 2022; 44:5498-5515. [PMID: 36354684 PMCID: PMC9688736 DOI: 10.3390/cimb44110372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2023] Open
Abstract
The WD repeat containing antisense to TP53 (WRAP53) gene codifies an antisense transcript for tumor protein p53 (TP53), stabilization (WRAP53α), and a functional protein (WRAP53β, WDR79, or TCAB1). The WRAP53β protein functions as a scaffolding protein that is important for telomerase localization, telomere assembly, Cajal body integrity, and DNA double-strand break repair. WRAP53β is one of many proteins known for containing WD40 domains, which are responsible for mediating a variety of cell interactions. Currently, WRAP53 overexpression is considered a biomarker for a diverse subset of cancer types, and in this study, we describe what is known about WRAP53β's multiple interactions in cell protein trafficking, Cajal body formation, and DNA double-strand break repair and its current perspectives as a biomarker for cancer.
Collapse
Affiliation(s)
- Renan Brito Gadelha
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Caio Bezerra Machado
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Flávia Melo Cunha de Pinho Pessoa
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Laudreísa da Costa Pantoja
- Department of Pediatrics, Octávio Lobo Children’s Hospital, Belém 60430-275, PA, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
| | - Igor Valentim Barreto
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | | | - Manoel Odorico de Moraes Filho
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Maria Elisabete Amaral de Moraes
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
| | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
- Northeast Biotechnology Network (RENORBIO), Itaperi Campus, Ceará State University, Fortaleza 60740-903, CE, Brazil
| |
Collapse
|
19
|
Suzuki H, Abe R, Shimada M, Hirose T, Hirose H, Noguchi K, Ike Y, Yasui N, Furugori K, Yamaguchi Y, Toyoda A, Suzuki Y, Yamamoto T, Saitoh N, Sato S, Tomomori-Sato C, Conaway RC, Conaway JW, Takahashi H. The 3' Pol II pausing at replication-dependent histone genes is regulated by Mediator through Cajal bodies' association with histone locus bodies. Nat Commun 2022; 13:2905. [PMID: 35614107 PMCID: PMC9133132 DOI: 10.1038/s41467-022-30632-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
Non-polyadenylated mRNAs of replication-dependent histones (RDHs) are synthesized by RNA polymerase II (Pol II) at histone locus bodies (HLBs). HLBs frequently associate with Cajal bodies (CBs), in which 3'-end processing factors for RDH genes are enriched; however, this association's role in transcription termination of RDH genes remains unclear. Here, we show that Pol II pauses immediately upstream of transcript end sites of RDH genes and Mediator plays a role in this Pol II pausing through CBs' association with HLBs. Disruption of the Mediator docking site for Little elongation complex (LEC)-Cap binding complex (CBC)-Negative elongation factor (NELF), components of CBs, interferes with CBs' association with HLBs and 3' Pol II pausing, resulting in increased aberrant unprocessed RDH gene transcripts. Our findings suggest Mediator's involvement in CBs' association with HLBs to facilitate 3' Pol II pausing and subsequent 3'-end processing of RDH genes by supplying 3'-end processing factors.
Collapse
Affiliation(s)
- Hidefumi Suzuki
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Ryota Abe
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Miho Shimada
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Hiroko Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Keisuke Noguchi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Yoko Ike
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Nanami Yasui
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Kazuki Furugori
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Yuki Yamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, Kanagawa, 226-8501, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Tatsuro Yamamoto
- Division of Cancer Biology, The Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Shigeo Sato
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA
| | - Chieri Tomomori-Sato
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA
| | - Ronald C Conaway
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA.,Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Joan W Conaway
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, MO, 64110, USA.,Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| |
Collapse
|
20
|
Zhang S, Ding Y, Sun Z, Ge Y, Li Y, Han X, Xu Q, Zhou L, Chen Y, Xu H, Bai Y, Xu C, Ding H, Yan S, Wang W. Identification of Expression Pattern and Clinical Significance of the Small Cajal Body-specific RNA SCARNA16 in Hepatocellular Carcinoma. J Clin Transl Hepatol 2022; 10:104-111. [PMID: 35233378 PMCID: PMC8845156 DOI: 10.14218/jcth.2021.00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/21/2021] [Accepted: 04/27/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS For high morbidity and mortality, hepatocellular carcinoma (HCC) becomes a major health issue worldwide. Nowadays, numerous non-coding RNAs (ncRNAs) are known to regulate the occurrence and pathogenesis of tumors. Some ncRNAs have also been developed as tumor biomarkers and therapeutic targets. However, the potential function of the small Cajal body-specific RNA (scaRNA) SCARNA16, a newly identified ncRNA, remains to be explored in HCC. METHODS In both HCC cell lines and specimens from 120 enrolled patients, the expression values of SCARNA16 were detected. We divided patients into SCARNA16 high and low expression subgroups, and then analyzed the difference of various clinical characteristics and prognosis data between subgroups. RESULTS Compared to paired controls, SCARNA16 was significantly down-regulated in HCC cell lines and clinical specimens (p<0.01). Besides, HCC patients with lower SCARNA16 expression commonly presented with larger and more tumor lesions, more vessel carcinoma emboli, more capsular invasion and higher TNM stages (p<0.05). Moreover, SCARNA16 expression was negatively correlated with postoperative prognosis of HCC patients in 5-year follow-up, including tumor-free survival (TFS) (median time of low vs. high subgroups: 14 vs. 48 months, p=0.006) and overall survival (OS) (median time of low vs. high subgroups: 39 vs. 52 months, p=0.001). Besides, SCARNA16 acted as an independent prognostic biomarker in TFS (hazard ratio [HR]: 0.578, 95% CI: 0.345-0.969, p=0.038) and OS (HR: 0.366, 95% CI: 0.178-0.752, p=0.006). CONCLUSIONS Low expression patterns of SCARNA16 remarkably associated with severe clinical status and poor survival of patients, suggesting that SCARNA16 possesses potency as a novel biomarker for HCC.
Collapse
Affiliation(s)
- Sitong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Yao Ge
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Yanjie Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Xin Han
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Qianhui Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Liuzhi Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Yining Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Hao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Yang Bai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Chang Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Hao Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Sheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Correspondence to: Weilin Wang, Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, Zhejiang 310009, China. ORCID: https://orcid.org/0000-0001-9432-2649. Tel: +86-571-8778-3820, Fax: +86-571-8706-8001, E-mail: ; Sheng Yan, Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, Zhejiang 310009, China. ORCID: https://orcid.org/0000-0002-4153-3546. Tel: +86-571-8723-6688, Fax: +86-571-8723-6765, E-mail:
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Correspondence to: Weilin Wang, Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, Zhejiang 310009, China. ORCID: https://orcid.org/0000-0001-9432-2649. Tel: +86-571-8778-3820, Fax: +86-571-8706-8001, E-mail: ; Sheng Yan, Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, Zhejiang 310009, China. ORCID: https://orcid.org/0000-0002-4153-3546. Tel: +86-571-8723-6688, Fax: +86-571-8723-6765, E-mail:
| |
Collapse
|
21
|
Bergstrand S, O'Brien EM, Coucoravas C, Hrossova D, Peirasmaki D, Schmidli S, Dhanjal S, Pederiva C, Siggens L, Mortusewicz O, O'Rourke JJ, Farnebo M. Small Cajal body-associated RNA 2 (scaRNA2) regulates DNA repair pathway choice by inhibiting DNA-PK. Nat Commun 2022; 13:1015. [PMID: 35197472 PMCID: PMC8866460 DOI: 10.1038/s41467-022-28646-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/25/2022] [Indexed: 12/20/2022] Open
Abstract
Evidence that long non-coding RNAs (lncRNAs) participate in DNA repair is accumulating, however, whether they can control DNA repair pathway choice is unknown. Here we show that the small Cajal body-specific RNA 2 (scaRNA2) can promote HR by inhibiting DNA-dependent protein kinase (DNA-PK) and, thereby, NHEJ. By binding to the catalytic subunit of DNA-PK (DNA-PKcs), scaRNA2 weakens its interaction with the Ku70/80 subunits, as well as with the LINP1 lncRNA, thereby preventing catalytic activation of the enzyme. Inhibition of DNA-PK by scaRNA2 stimulates DNA end resection by the MRN/CtIP complex, activation of ATM at DNA lesions and subsequent repair by HR. ScaRNA2 is regulated in turn by WRAP53β, which binds this RNA, sequestering it away from DNA-PKcs and allowing NHEJ to proceed. These findings reveal that RNA-dependent control of DNA-PK catalytic activity is involved in regulating whether the cell utilizes NHEJ or HR. Proper repair of DNA double-strand breaks is essential for genomic stability. Here, the authors report that a long non-coding RNA, scaRNA2, inhibits DNA-PK and thereby regulates the choice between error-prone NHEJ and error-free HR DNA repair.
Collapse
Affiliation(s)
- Sofie Bergstrand
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Stockholm, Sweden
| | - Eleanor M O'Brien
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Christos Coucoravas
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Dominika Hrossova
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Sandro Schmidli
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Soniya Dhanjal
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Chiara Pederiva
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Lee Siggens
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Mortusewicz
- Department of Oncology and Pathology, SciLife, Karolinska Institutet, Stockholm, Sweden
| | - Julienne J O'Rourke
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Farnebo
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Stockholm, Sweden. .,Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
22
|
Systematic mapping of nuclear domain-associated transcripts reveals speckles and lamina as hubs of functionally distinct retained introns. Mol Cell 2022; 82:1035-1052.e9. [PMID: 35182477 DOI: 10.1016/j.molcel.2021.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022]
Abstract
The nucleus is highly compartmentalized through the formation of distinct classes of membraneless domains. However, the composition and function of many of these structures are not well understood. Using APEX2-mediated proximity labeling and RNA sequencing, we surveyed human transcripts associated with nuclear speckles, several additional domains, and the lamina. Remarkably, speckles and lamina are associated with distinct classes of retained introns enriched in genes that function in RNA processing, translation, and the cell cycle, among other processes. In contrast to the lamina-proximal introns, retained introns associated with speckles are relatively short, GC-rich, and enriched for functional sites of RNA-binding proteins that are concentrated in these domains. They are also highly differentially regulated across diverse cellular contexts, including the cell cycle. Thus, our study provides a resource of nuclear domain-associated transcripts and further reveals speckles and lamina as hubs of distinct populations of retained introns linked to gene regulation and cell cycle progression.
Collapse
|
23
|
Telomerase in Cancer: Function, Regulation, and Clinical Translation. Cancers (Basel) 2022; 14:cancers14030808. [PMID: 35159075 PMCID: PMC8834434 DOI: 10.3390/cancers14030808] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cells undergoing malignant transformation must circumvent replicative senescence and eventual cell death associated with progressive telomere shortening that occurs through successive cell division. To do so, malignant cells reactivate telomerase to extend their telomeres and achieve cellular immortality, which is a “Hallmark of Cancer”. Here we review the telomere-dependent and -independent functions of telomerase in cancer, as well as its potential as a biomarker and therapeutic target to diagnose and treat cancer patients. Abstract During the process of malignant transformation, cells undergo a series of genetic, epigenetic, and phenotypic alterations, including the acquisition and propagation of genomic aberrations that impart survival and proliferative advantages. These changes are mediated in part by the induction of replicative immortality that is accompanied by active telomere elongation. Indeed, telomeres undergo dynamic changes to their lengths and higher-order structures throughout tumor formation and progression, processes overseen in most cancers by telomerase. Telomerase is a multimeric enzyme whose function is exquisitely regulated through diverse transcriptional, post-transcriptional, and post-translational mechanisms to facilitate telomere extension. In turn, telomerase function depends not only on its core components, but also on a suite of binding partners, transcription factors, and intra- and extracellular signaling effectors. Additionally, telomerase exhibits telomere-independent regulation of cancer cell growth by participating directly in cellular metabolism, signal transduction, and the regulation of gene expression in ways that are critical for tumorigenesis. In this review, we summarize the complex mechanisms underlying telomere maintenance, with a particular focus on both the telomeric and extratelomeric functions of telomerase. We also explore the clinical utility of telomeres and telomerase in the diagnosis, prognosis, and development of targeted therapies for primary, metastatic, and recurrent cancers.
Collapse
|
24
|
Ranhem C, Larsson GL, Lindqvist D, Sorbe B, Karlsson MG, Farnebo M, Hellman K, Kovaleska L, Kashuba E, Andersson S. Evaluation of dyskerin expression and the Cajal body protein WRAP53β as potential prognostic markers for patients with primary vaginal carcinoma. Oncol Lett 2021; 23:30. [PMID: 34868367 PMCID: PMC8630817 DOI: 10.3892/ol.2021.13148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/30/2021] [Indexed: 11/06/2022] Open
Abstract
Primary vaginal cancer (PVC) is a rare gynaecological malignancy, which, at present, lacks appropriate biomarkers for prognosis. The proteins dyskerin and WD repeat containing antisense to TP53 (WRAP53β), both of which exert their functions in the telomerase holoenzyme complex, have been shown to be upregulated in different cancer types. These proteins have also been proposed as prognostic markers in some types of cancer. The aim of the present study was to examine the expression patterns of dyskerin and WRAP53β in patients with PVC. Moreover, as part of a search for effective biomarkers to evaluate prognosis in PVC, the expression of these two proteins and their potential association with clinical variables and survival were also evaluated. The expression of dyskerin and WRAP53β was assessed in PVC tumour samples from 68 patients using immunohistochemistry. The majority of tumour samples showed low and moderate expression levels of dyskerin. Upregulation of dyskerin in tumour samples was significantly associated with a shorter survival time and a poorer cancer-specific survival rate. WRAP53β was also expressed in most of the cells but was not significantly associated with clinical variables or survival. This study demonstrates that upregulation of dyskerin is significantly associated with poor prognosis. Thus, dyskerin may serve as a promising prognostic marker and a potential putative therapeutic target in PVC.
Collapse
Affiliation(s)
- Cecilia Ranhem
- Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.,Centre for Clinical Research Region Västmanland, Uppsala University, Västmanlands Hospital Västerås, 721 89 Västerås, Sweden
| | - Gabriella Lillsunde Larsson
- School of Health and Medical Sciences, Örebro University, Campus USÖ, 701 82 Örebro, Sweden.,Department of Laboratory Medicine, Örebro University Hospital, 701 85 Örebro, Sweden
| | - David Lindqvist
- Department of Radiation Sciences, Umeå Universitet, 901 87 Umeå, Sweden
| | - Bengt Sorbe
- Department of Oncology, Örebro University Hospital, 701 85 Örebro, Sweden
| | - Mats G Karlsson
- School of Medical Sciences, Örebro University, 701 85 Örebro, Sweden
| | - Marianne Farnebo
- Department of Bioscience and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kristina Hellman
- Department of Oncology-Pathology, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Larysa Kovaleska
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, 03022 Kiev, Ukraine
| | - Elena Kashuba
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, 03022 Kiev, Ukraine.,Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sonia Andersson
- Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
25
|
Lett KE, Logan MK, McLaurin DM, Hebert MD. Coilin enhances phosphorylation and stability of DGCR8 and promotes miRNA biogenesis. Mol Biol Cell 2021; 32:br4. [PMID: 34319763 PMCID: PMC8684749 DOI: 10.1091/mbc.e21-05-0225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/11/2022] Open
Abstract
MicroRNAs (miRNAs) are ∼22 nt small noncoding RNAs that control gene expression at the posttranscriptional level through translational inhibition and destabilization of their target mRNAs. The biogenesis of miRNAs involves a series of processing steps beginning with cropping of the primary miRNA transcript by the Microprocessor complex, which is composed of Drosha and DGCR8. Here we report a novel regulatory interaction between the Microprocessor components and coilin, the Cajal body (CB) marker protein. Coilin knockdown causes alterations in the level of primary and mature miRNAs, let-7a and miR-34a, and their miRNA targets, HMGA2 and Notch1, respectively. We also found that coilin knockdown affects the levels of DGCR8 and Drosha in cells with (HeLa) and without (WI-38) CBs. To further explore the role of coilin in miRNA biogenesis, we conducted a series of coimmunoprecipitation experiments using coilin and DGCR8 constructs, which revealed that coilin and DGCR8 can form a complex. Additionally, our results indicate that phosphorylation of DGCR8, which has been shown to increase protein stability, is impacted by coilin knockdown. Collectively, our results implicate coilin as a member of the regulatory network governing miRNA biogenesis.
Collapse
Affiliation(s)
- Katheryn E. Lett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216-4505
| | - Madelyn K. Logan
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216-4505
| | - Douglas M. McLaurin
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216-4505
| | - Michael D. Hebert
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216-4505
| |
Collapse
|
26
|
Bogard B, Francastel C, Hubé F. Systematic Identification and Functional Validation of New snoRNAs in Human Muscle Progenitors. Noncoding RNA 2021; 7:ncrna7030056. [PMID: 34564318 PMCID: PMC8482216 DOI: 10.3390/ncrna7030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Small non-coding RNAs (sncRNAs) represent an important class of regulatory RNAs involved in the regulation of transcription, RNA splicing or translation. Among these sncRNAs, small nucleolar RNAs (snoRNAs) mostly originate from intron splicing in humans and are central to posttranscriptional regulation of gene expression. However, the characterization of the complete repertoire of sncRNAs in a given cellular context and the functional annotation of the human transcriptome are far from complete. Here, we report the large-scale identification of sncRNAs in the size range of 50 to 200 nucleotides without a priori on their biogenesis, structure and genomic origin in the context of normal human muscle cells. We provided a complete set of experimental validation of novel candidate snoRNAs by evaluating the prerequisites for their biogenesis and functionality, leading to their validation as genuine snoRNAs. Interestingly, we also found intergenic snoRNAs, which we showed are in fact integrated into candidate introns of unannotated transcripts or degraded by the Nonsense Mediated Decay pathway. Hence, intergenic snoRNAs represent a new type of landmark for the identification of new transcripts that have gone undetected because of low abundance or degradation after the release of the snoRNA.
Collapse
|
27
|
Hao Y, Wang XL, Xiao J, Jiao CL, Meng XY, Guo JC, Shao JF, Feng JX, He JP. Diaphyseal and Metaphyseal Modeling Defects-Clinical Findings and Identification of WRAP53 Deficiency in Craniometadiaphyseal Dysplasia. Front Genet 2021; 12:684905. [PMID: 34484289 PMCID: PMC8416243 DOI: 10.3389/fgene.2021.684905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Diaphyseal and metaphyseal modeling defects lead to severe changes in bone mass and shape, which are common features in osteoporosis that linked to non-vertebral fractures. Original mechanism of diaphyseal and metaphyseal modeling defects has proved elusive. Studying rare syndromes can elucidate mechanisms of common disorders and identify potential therapeutic targets. Methods: We evaluated a family pedigree with craniometadiaphyseal dysplasia (CRMDD, OMIM 269300), a genetic disorder that is characterized by cortical-bone thinning, limb deformity, and absent of normal metaphyseal flaring and diaphyseal constriction. Systemic radiographic examination and serum hormone test were made for this rare disease. One patient and her two normal parents were examined by means of whole-exome sequencing (WES) to identify the candidate pathogenic gene and rule out mucopolysaccharidosis and Prader-Willi Syndrome by means of Sanger sequencing. Results: There are several conspicuous radiographic characteristics: (1) bullet-shaped phalanges, (2) long and narrow pelvic inlet, absent of supra-acetabular constriction, (3) round rod-shaped long tubular bones, (4) prominent aiploic mastoid, (5) bending-shaped limb, genua varus and genu varum, and (6) congenital dislocation of elbow. Here, we did not find any wormian bones, and there are several typical clinical characteristics: (1) macrocephaly and wide jaw, (2) Avatar elf-shaped ears, pointed and protruding ears, (3) hypertrophy of limbs, (4) flat feet and giant hand phenomenon, (5) nail dystrophy, (6) limb deformity, (7) high-arched palate, (8) superficial hemangiomas, (9) tall stature, and intellectual disability. In this patient, we found biallelic frameshift deletion mutations in WRAP53, and those two mutations were transmitted from her parents respectively. Conclusions: We describe her clinical and radiological findings and presented a new subtype without wormian bones and with a tall stature. Our study showed that craniometadiaphyseal dysplasia was caused by a deficiency of WRAP53 with autosomal recessive inheritance.
Collapse
Affiliation(s)
- Yun Hao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Lin Wang
- Department of Pediatric Surgery, Pediatric Orthopedic, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Pediatric Surgery, Pediatric Orthopedic, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Lei Jiao
- Department of Pediatric Surgery, Pediatric Orthopedic, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Yao Meng
- Department of Pediatric Surgery, Pediatric Orthopedic, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Chao Guo
- Department of Pediatric Surgery, Pediatric Orthopedic, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Fan Shao
- Department of Pediatric Surgery, Pediatric Orthopedic, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie-Xiong Feng
- Department of Pediatric Surgery, Pediatric Orthopedic, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Peng He
- Department of Pediatric Surgery, Pediatric Orthopedic, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Blatnik AJ, McGovern VL, Burghes AHM. What Genetics Has Told Us and How It Can Inform Future Experiments for Spinal Muscular Atrophy, a Perspective. Int J Mol Sci 2021; 22:8494. [PMID: 34445199 PMCID: PMC8395208 DOI: 10.3390/ijms22168494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by motor neuron loss and subsequent atrophy of skeletal muscle. SMA is caused by deficiency of the essential survival motor neuron (SMN) protein, canonically responsible for the assembly of the spliceosomal small nuclear ribonucleoproteins (snRNPs). Therapeutics aimed at increasing SMN protein levels are efficacious in treating SMA. However, it remains unknown how deficiency of SMN results in motor neuron loss, resulting in many reported cellular functions of SMN and pathways affected in SMA. Herein is a perspective detailing what genetics and biochemistry have told us about SMA and SMN, from identifying the SMA determinant region of the genome, to the development of therapeutics. Furthermore, we will discuss how genetics and biochemistry have been used to understand SMN function and how we can determine which of these are critical to SMA moving forward.
Collapse
Affiliation(s)
| | | | - Arthur H. M. Burghes
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Rightmire Hall, Room 168, 1060 Carmack Road, Columbus, OH 43210, USA; (A.J.B.III); (V.L.M.)
| |
Collapse
|
29
|
Niu J, Gao RQ, Cui MT, Zhang CG, Li ST, Cheng S, Ding W. Suppression of TCAB1 expression induced cellular senescence by lessening proteasomal degradation of p21 in cancer cells. Cancer Cell Int 2021; 21:26. [PMID: 33413389 PMCID: PMC7788802 DOI: 10.1186/s12935-020-01745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/31/2020] [Indexed: 11/25/2022] Open
Abstract
Background TCAB1, a.k.a. WRAP53β or WDR79, is an important molecule for the maintenance of Cajal bodies and critically involved in telomere elongation and DNA repair. Upregulation of TCAB1 were discovered in a variety types of cancers. However, the function of TCAB1 in tumor cell senescence remains absent. Methods The TCAB1 knockdown cell lines were constructed. The expression levels of TCAB1, p21, p16 and p53 were detected by qRT-PCR and western blotting. Staining of senescence-associated β-galactosidase was used to detect senescent cells. The ubiquitination of the p21 was analysed by immunoprecipitation and in vivo ubiquitination assay. TCGA databases were employed to perform in silico analyses for the mRNA expression of TCAB1, p21, p16 and p53. Results Here, we discovered that knockdown of TCAB1 induced rapid progression of cellular senescence in A549, H1299 and HeLa cells. In exploiting the mechanism underlining the role of TCAB1 on senescence, we found a significant increase of p21 at the protein levels upon TCAB1 depletion, whereas the p21 mRNA expression was not altered. We verified that TCAB1 knockdown was able to shunt p21 from proteasomal degradation by regulating the ubiquitination of p21. In rescue assays, it was demonstrated that decreasing the expression of p21 or increasing the expression of TCAB1 were able to attenuate the cellular senescence process induced by TCAB1 silencing. Conclusions This study revealed the importance of TCAB1 for its biological functions in the regulation of cell senescence. Our results will be helpful to understand the mechanisms of senescence in cancer cells, which could provide clues for designing novel strategies for developing effective treatment regimens.
Collapse
Affiliation(s)
- Jing Niu
- School of Basic Medical Sciences, Capital Medical University, 10 You'an Men West, Beijing, P. R. China.,Beijing Key Laboratory for Tumor Invasion and Metastasis Research, Capital Medical University, 10 You'an Men West, Beijing, P. R. China
| | - Rui-Qi Gao
- School of Basic Medical Sciences, Capital Medical University, 10 You'an Men West, Beijing, P. R. China
| | - Meng-Tian Cui
- School of Basic Medical Sciences, Capital Medical University, 10 You'an Men West, Beijing, P. R. China
| | - Chen-Guang Zhang
- School of Basic Medical Sciences, Capital Medical University, 10 You'an Men West, Beijing, P. R. China.,Beijing Key Laboratory for Tumor Invasion and Metastasis Research, Capital Medical University, 10 You'an Men West, Beijing, P. R. China
| | - Shen-Tao Li
- Central Facility of Biomedical Research, Capital Medical University, 10 You'an Men West, Beijing, P. R. China
| | - Shan Cheng
- School of Basic Medical Sciences, Capital Medical University, 10 You'an Men West, Beijing, P. R. China.
| | - Wei Ding
- School of Basic Medical Sciences, Capital Medical University, 10 You'an Men West, Beijing, P. R. China.
| |
Collapse
|
30
|
Ilik İA, Malszycki M, Lübke AK, Schade C, Meierhofer D, Aktaş T. SON and SRRM2 are essential for nuclear speckle formation. eLife 2020; 9:60579. [PMID: 33095160 PMCID: PMC7671692 DOI: 10.7554/elife.60579] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Nuclear speckles (NS) are among the most prominent biomolecular condensates. Despite their prevalence, research on the function of NS is virtually restricted to colocalization analyses, since an organizing core, without which NS cannot form, remains unidentified. The monoclonal antibody SC35, raised against a spliceosomal extract, is frequently used to mark NS. Unexpectedly, we found that this antibody was mischaracterized and the main target of SC35 mAb is SRRM2, a spliceosome-associated protein that sharply localizes to NS. Here we show that, the core of NS is likely formed by SON and SRRM2, since depletion of SON leads only to a partial disassembly of NS, while co-depletion of SON and SRRM2 or depletion of SON in a cell-line where intrinsically disordered regions (IDRs) of SRRM2 are genetically deleted, leads to a near-complete dissolution of NS. This work, therefore, paves the way to study the role of NS under diverse physiological and stress conditions. Most cells store their genetic material inside a compartment called the nucleus, which helps to separate DNA from other molecules in the cell. Inside the nucleus, DNA is tightly packed together with proteins that can read the cell’s genetic code and convert into the RNA molecules needed to build proteins. However, the contents of the nucleus are not randomly arranged, and these proteins are often clustered into specialized areas where they perform their designated roles. One of the first nuclear territories to be identified were granular looking structures named Nuclear Speckles (or NS for short), which are thought to help process RNA before it leaves the nucleus. Structures like NS often contain a number of different factors held together by a core group of proteins known as a scaffold. Although NS were discovered over a century ago, little is known about their scaffold proteins, making it difficult to understand the precise role of these speckles. Typically, researchers visualize NS using a substance called SC35 which targets specific sites in these structures. However, it was unclear which parts of the NS this marker binds to. To answer this question, Ilik et al. studied NS in human cells grown in the lab. The analysis revealed that SC35 attaches to certain parts of a large, flexible protein called SRRM2. Ilik et al. discovered that although the structure and sequence of SRMM2 varies between different animal species, a small region of this protein remained unchanged throughout evolution. Studying the evolutionary history of SRRM2 led to the identification of another protein with similar properties called SON. Ilik et al. found that depleting SON and SRRM2 from human cells caused other proteins associated with the NS to diffuse away from their territories and become dispersed within the nucleus. This suggests that SRMM2 and SON make up the scaffold that holds the proteins in NS together. Nuclear speckles have been associated with certain viral infections, and seem to help prevent the onset of diseases such as Huntington’s and spinocerebellar ataxia. These newly discovered core proteins could therefore further our understanding of the role NS play in disease.
Collapse
Affiliation(s)
| | - Michal Malszycki
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Freie Universität Berlin, Berlin, Germany
| | - Anna Katharina Lübke
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Freie Universität Berlin, Berlin, Germany
| | - Claudia Schade
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Tuğçe Aktaş
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
31
|
Schrumpfová PP, Fajkus J. Composition and Function of Telomerase-A Polymerase Associated with the Origin of Eukaryotes. Biomolecules 2020; 10:biom10101425. [PMID: 33050064 PMCID: PMC7658794 DOI: 10.3390/biom10101425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
The canonical DNA polymerases involved in the replication of the genome are unable to fully replicate the physical ends of linear chromosomes, called telomeres. Chromosomal termini thus become shortened in each cell cycle. The maintenance of telomeres requires telomerase—a specific RNA-dependent DNA polymerase enzyme complex that carries its own RNA template and adds telomeric repeats to the ends of chromosomes using a reverse transcription mechanism. Both core subunits of telomerase—its catalytic telomerase reverse transcriptase (TERT) subunit and telomerase RNA (TR) component—were identified in quick succession in Tetrahymena more than 30 years ago. Since then, both telomerase subunits have been described in various organisms including yeasts, mammals, birds, reptiles and fish. Despite the fact that telomerase activity in plants was described 25 years ago and the TERT subunit four years later, a genuine plant TR has only recently been identified by our group. In this review, we focus on the structure, composition and function of telomerases. In addition, we discuss the origin and phylogenetic divergence of this unique RNA-dependent DNA polymerase as a witness of early eukaryotic evolution. Specifically, we discuss the latest information regarding the recently discovered TR component in plants, its conservation and its structural features.
Collapse
Affiliation(s)
- Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic;
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- Correspondence:
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic;
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
32
|
RNA-protein interaction mapping via MS2- or Cas13-based APEX targeting. Proc Natl Acad Sci U S A 2020; 117:22068-22079. [PMID: 32839320 DOI: 10.1073/pnas.2006617117] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RNA-protein interactions underlie a wide range of cellular processes. Improved methods are needed to systematically map RNA-protein interactions in living cells in an unbiased manner. We used two approaches to target the engineered peroxidase APEX2 to specific cellular RNAs for RNA-centered proximity biotinylation of protein interaction partners. Both an MS2-MCP system and an engineered CRISPR-Cas13 system were used to deliver APEX2 to the human telomerase RNA hTR with high specificity. One-minute proximity biotinylation captured candidate binding partners for hTR, including more than a dozen proteins not previously linked to hTR. We validated the interaction between hTR and the N 6-methyladenosine (m6A) demethylase ALKBH5 and showed that ALKBH5 is able to erase the m6A modification on endogenous hTR. ALKBH5 also modulates telomerase complex assembly and activity. MS2- and Cas13-targeted APEX2 may facilitate the discovery of novel RNA-protein interactions in living cells.
Collapse
|
33
|
Logan MK, McLaurin DM, Hebert MD. Synergistic interactions between Cajal bodies and the miRNA processing machinery. Mol Biol Cell 2020; 31:1561-1569. [PMID: 32432989 PMCID: PMC7521794 DOI: 10.1091/mbc.e20-02-0144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cajal bodies (CBs) are subnuclear domains involved in the formation of ribonucleoproteins (RNPs) including small nuclear RNPs (snRNPs). CBs associate with specific gene loci, which impacts expression and provides a platform for the biogenesis of the nascent transcripts emanating from these genes. Here we report that CBs can associate with the C19MC microRNA (miRNA) gene cluster, which suggests a role for CBs in the biogenesis of animal miRNAs. The machinery involved in the formation of miRNAs includes the Drosha/DGCR8 complex, which processes primary-miRNA to precursor miRNA. Further processing of precursor miRNA by Dicer and other components generates mature miRNA. To test if CBs influence the expression and formation of miRNAs, we examined two representative miRNAs (miR-520 h and let-7a) in conditions that disrupt CBs. CB disruption correlates with alterations in the level of primary and mature miRNA and the let-7a mRNA target, HMGA2. We have also found that the processing of some small CB-specific RNAs (scaRNAs) is directly mediated by the Drosha/DGCR8 complex. ScaRNAs form scaRNPs, which play an important role in snRNP formation. Collectively, our results demonstrate that CBs and the miRNA processing machinery functionally interact and together contribute to the biogenesis of miRNAs and snRNPs.
Collapse
Affiliation(s)
- Madelyn K Logan
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216
| | - Douglas M McLaurin
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216
| | - Michael D Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
34
|
Marcos AT, Martín‐Doncel E, Morejón‐García P, Marcos‐Alcalde I, Gómez‐Puertas P, Segura‐Puimedon M, Armengol L, Navarro‐Pando JM, Lazo PA. VRK1 (Y213H) homozygous mutant impairs Cajal bodies in a hereditary case of distal motor neuropathy. Ann Clin Transl Neurol 2020; 7:808-818. [PMID: 32365420 PMCID: PMC7261760 DOI: 10.1002/acn3.51050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Distal motor neuropathies with a genetic origin have a heterogeneous clinical presentation with overlapping features affecting distal nerves and including spinal muscular atrophies and amyotrophic lateral sclerosis. This indicates that their genetic background is heterogeneous. PATIENT AND METHODS In this work, we have identified and characterized the genetic and molecular base of a patient with a distal sensorimotor neuropathy of unknown origin. For this study, we performed whole-exome sequencing, molecular modelling, cloning and expression of mutant gene, and biochemical and cell biology analysis of the mutant protein. RESULTS A novel homozygous recessive mutation in the human VRK1 gene, coding for a chromatin kinase, causing a substitution (c.637T > C; p.Tyr213His) in exon 8, was detected in a patient presenting since childhood a progressive distal sensorimotor neuropathy and spinal muscular atrophy syndrome, with normal intellectual development. Molecular modelling predicted this mutant VRK1 has altered the kinase activation loop by disrupting its interaction with the C-terminal regulatory region. The p.Y213H mutant protein has a reduced kinase activity with different substrates, including histones H3 and H2AX, proteins involved in DNA damage responses, such as p53 and 53BP1, and coilin, the scaffold for Cajal bodies. The mutant VRK1(Y213H) protein is unable to rescue the formation of Cajal bodies assembled on coilin, in the absence of wild-type VRK1. CONCLUSION The VRK1(Y213H) mutant protein alters the activation loop, impairs the kinase activity of VRK1 causing a functional insufficiency that impairs the formation of Cajal bodies assembled on coilin, a protein that regulates SMN1 and Cajal body formation.
Collapse
Affiliation(s)
- Ana T. Marcos
- Unidad de GenéticaInstituto para el Estudio de la Biología de la Reproducción Humana (INEBIR)SevillaSpain
| | - Elena Martín‐Doncel
- Molecular Mechanisms of Cancer ProgramInstituto de Biología Molecular y Celular del CáncerConsejo Superior de Investigaciones Científicas (CSIC)Universidad de SalamancaSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de SalamancaSalamancaSpain
| | - Patricia Morejón‐García
- Molecular Mechanisms of Cancer ProgramInstituto de Biología Molecular y Celular del CáncerConsejo Superior de Investigaciones Científicas (CSIC)Universidad de SalamancaSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de SalamancaSalamancaSpain
| | - Iñigo Marcos‐Alcalde
- Molecular Modelling GroupCentro de Biología Molecular “Severo Ochoa”CSIC‐Universidad Autónoma de Madrid, CantoblancoMadridSpain
- School of Experimental SciencesBiosciences Research InstituteUniversidad Francisco de VitoriaPozuelo de Alarcón, MadridSpain
| | - Paulino Gómez‐Puertas
- Molecular Modelling GroupCentro de Biología Molecular “Severo Ochoa”CSIC‐Universidad Autónoma de Madrid, CantoblancoMadridSpain
| | - María Segura‐Puimedon
- Quantitative Genomic Medicine Laboratories, qGenomicsEspluges de LlobregatBarcelonaSpain
| | - Lluis Armengol
- Quantitative Genomic Medicine Laboratories, qGenomicsEspluges de LlobregatBarcelonaSpain
| | - José M. Navarro‐Pando
- Unidad de GenéticaInstituto para el Estudio de la Biología de la Reproducción Humana (INEBIR)SevillaSpain
- Cátedra de Reproducción y Genética HumanaFacultad de Ciencias de la SaludUniversidad Europea del AtlánticoSantanderSpain
- Fundación Universitaria Iberoamericana (FUNIBER)BarcelonaSpain
| | - Pedro A. Lazo
- Molecular Mechanisms of Cancer ProgramInstituto de Biología Molecular y Celular del CáncerConsejo Superior de Investigaciones Científicas (CSIC)Universidad de SalamancaSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de SalamancaSalamancaSpain
| |
Collapse
|
35
|
Biallelic mutations in WRAP53 result in dysfunctional telomeres, Cajal bodies and DNA repair, thereby causing Hoyeraal-Hreidarsson syndrome. Cell Death Dis 2020; 11:238. [PMID: 32303682 PMCID: PMC7165179 DOI: 10.1038/s41419-020-2421-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
Approximately half of all cases of Hoyeraal–Hreidarsson syndrome (HHS), a multisystem disorder characterized by bone marrow failure, developmental defects and very short telomeres, are caused by germline mutations in genes related to telomere biology. However, the varying symptoms and severity of the disease indicate that additional mechanisms are involved. Here, a 3-year-old boy with HHS was found to carry biallelic germline mutations in WRAP53 (WD40 encoding RNA antisense to p53), that altered two highly conserved amino acids (L283F and R398W) in the WD40 scaffold domain of the protein encoded. WRAP53β (also known as TCAB1 or WDR79) is involved in intracellular trafficking of telomerase, Cajal body functions and DNA repair. We found that both mutations cause destabilization, mislocalization and faulty interactions of WRAP53β, defects linked to misfolding by the TRiC chaperonin complex. Consequently, WRAP53β HHS mutants cannot elongate telomeres, maintain Cajal bodies or repair DNA double-strand breaks. These findings provide a molecular explanation for the pathogenesis underlying WRAP53β-associated HHS and highlight the potential contribution of DNA damage and/or defects in Cajal bodies to the early onset and/or severity of this disease.
Collapse
|
36
|
Moreno-Castro C, Prieto-Sánchez S, Sánchez-Hernández N, Hernández-Munain C, Suñé C. Role for the splicing factor TCERG1 in Cajal body integrity and snRNP assembly. J Cell Sci 2019; 132:jcs.232728. [PMID: 31636114 DOI: 10.1242/jcs.232728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/11/2019] [Indexed: 12/29/2022] Open
Abstract
Cajal bodies are nuclear organelles involved in the nuclear phase of small nuclear ribonucleoprotein (snRNP) biogenesis. In this study, we identified the splicing factor TCERG1 as a coilin-associated factor that is essential for Cajal body integrity. Knockdown of TCERG1 disrupts the localization of the components of Cajal bodies, including coilin and NOLC1, with coilin being dispersed in the nucleoplasm into numerous small foci, without affecting speckles, gems or the histone locus body. Furthermore, the depletion of TCERG1 affects the recruitment of Sm proteins to uridine-rich small nuclear RNAs (snRNAs) to form the mature core snRNP. Taken together, the results of this study suggest that TCERG1 plays an important role in Cajal body formation and snRNP biogenesis.
Collapse
Affiliation(s)
- Cristina Moreno-Castro
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), PTS, 18016 Granada, Spain
| | - Silvia Prieto-Sánchez
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), PTS, 18016 Granada, Spain
| | - Noemí Sánchez-Hernández
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), PTS, 18016 Granada, Spain
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), PTS, 18016 Granada, Spain
| | - Carlos Suñé
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), PTS, 18016 Granada, Spain
| |
Collapse
|
37
|
Bizarro J, Bhardwaj A, Smith S, Meier UT. Nopp140-mediated concentration of telomerase in Cajal bodies regulates telomere length. Mol Biol Cell 2019; 30:3136-3150. [PMID: 31664887 PMCID: PMC6938241 DOI: 10.1091/mbc.e19-08-0429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cajal bodies (CBs) are nuclear organelles concentrating two kinds of RNA–protein complexes (RNPs), spliceosomal small nuclear (sn), and small CB-specific (sca)RNPs. Whereas the CB marker protein coilin is responsible for retaining snRNPs, the tether for scaRNPs is not known. Here we show that Nopp140, an intrinsically disordered CB phosphoprotein, is required to recruit and retain all scaRNPs in CBs. Knockdown (KD) of Nopp140 releases all scaRNPs leading to an unprecedented reduction in size of CB granules, hallmarks of CB ultrastructure. The CB-localizing protein WDR79 (aka TCAB1), which is mutated in the inherited bone marrow failure syndrome dyskeratosis congenita, is a specific component of all scaRNPs, including telomerase. Whereas mislocalization of telomerase by mutation of WDR79 leads to critically shortened telomeres, mislocalization of telomerase by Nopp140 KD leads to gradual extension of telomeres. Our studies suggest that the dynamic distribution of telomerase between CBs and nucleoplasm uniquely impacts telomere length maintenance and identify Nopp140 as a novel player in telomere biology.
Collapse
Affiliation(s)
- Jonathan Bizarro
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Amit Bhardwaj
- Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Susan Smith
- Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - U Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
38
|
Shaw J, Yu C, Makhotenko AV, Makarova SS, Love AJ, Kalinina NO, MacFarlane S, Chen J, Taliansky ME. Interaction of a plant virus protein with the signature Cajal body protein coilin facilitates salicylic acid-mediated plant defence responses. THE NEW PHYTOLOGIST 2019; 224:439-453. [PMID: 31215645 DOI: 10.1111/nph.15994] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/06/2019] [Indexed: 05/22/2023]
Abstract
In addition to well-known roles in RNA metabolism, the nucleolus and Cajal bodies (CBs), both located within the nucleus, are involved in plant responses to biotic and abiotic stress. Previously we showed that plants in which expression of the CB protein coilin is downregulated are more susceptible to certain viruses including tobacco rattle virus (TRV), suggesting a role of coilin in antiviral defence. Experiments with coilin-deficient plants and the deletion mutant of the TRV 16K protein showed that both 16K and coilin are required for restriction of systemic TRV infection. The potential mechanisms of coilin-mediated antiviral defence were elucidated via experiments involving co-immunoprecipitation, use of NahG transgenic plants deficient in salicylic acid (SA) accumulation, measurement of endogenous SA concentrations and assessment of SA-responsive gene expression. Here we show that TRV 16K interacts with and relocalizes coilin to the nucleolus. In wild-type plants these events are accompanied by activation of SA-responsive gene expression and restriction of TRV systemic infection. By contrast, viral systemic spread was enhanced in NahG plants, implicating SA in these processes. Our findings suggest that coilin is involved in plant defence, responding to TRV infection by recognition of the TRV-encoded 16K protein and activating SA-dependent defence pathways.
Collapse
Affiliation(s)
- Jane Shaw
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Chulang Yu
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 117997, China
| | - Antonida V Makhotenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, 117997, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
| | - Svetlana S Makarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, 117997, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
| | - Andrew J Love
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Natalia O Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, 117997, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
| | - Stuart MacFarlane
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 117997, China
| | - Michael E Taliansky
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, 117997, Russia
| |
Collapse
|
39
|
Kolev NG, Rajan KS, Tycowski KT, Toh JY, Shi H, Lei Y, Michaeli S, Tschudi C. The vault RNA of Trypanosoma brucei plays a role in the production of trans-spliced mRNA. J Biol Chem 2019; 294:15559-15574. [PMID: 31439669 DOI: 10.1074/jbc.ra119.008580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/07/2019] [Indexed: 11/06/2022] Open
Abstract
The vault ribonucleoprotein (RNP), comprising vault RNA (vtRNA) and telomerase-associated protein 1 (TEP1), is found in many eukaryotes. However, previous studies of vtRNAs, for example in mammalian cells, have failed to reach a definitive conclusion about their function. vtRNAs are related to Y RNAs, which are complexed with Ro protein and influence Ro's function in noncoding RNA (ncRNA) quality control and processing. In Trypanosoma brucei, the small noncoding TBsRNA-10 was first described in a survey of the ncRNA repertoire in this organism. Here, we report that TBsRNA-10 in T. brucei is a vtRNA, based on its association with TEP1 and sequence similarity to those of other known and predicted vtRNAs. We observed that like vtRNAs in other species, TBsRNA-10 is transcribed by RNA polymerase III, which in trypanosomes also generates the spliceosomal U-rich small nuclear RNAs. In T. brucei, spliced leader (SL)-mediated trans-splicing of pre-mRNAs is an obligatory step in gene expression, and we found here that T. brucei's vtRNA is highly enriched in a non-nucleolar locus in the cell nucleus implicated in SL RNP biogenesis. Using a newly developed permeabilized cell system for the bloodstream form of T. brucei, we show that down-regulated vtRNA levels impair trans-spliced mRNA production, consistent with a role of vtRNA in trypanosome mRNA metabolism. Our results suggest a common theme for the functions of vtRNAs and Y RNAs. We conclude that by complexing with their protein-binding partners TEP1 and Ro, respectively, these two RNA species modulate the metabolism of various RNA classes.
Collapse
Affiliation(s)
- Nikolay G Kolev
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Justin Y Toh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Huafang Shi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Yuling Lei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| |
Collapse
|
40
|
Paredes-Céspedes DM, Herrera-Moreno JF, Bernal-Hernández YY, Medina-Díaz IM, Salazar AM, Ostrosky-Wegman P, Barrón-Vivanco BS, Rojas-García AE. Pesticide Exposure Modifies DNA Methylation of Coding Region of WRAP53α, an Antisense Sequence of p53, in a Mexican Population. Chem Res Toxicol 2019; 32:1441-1448. [PMID: 31243981 DOI: 10.1021/acs.chemrestox.9b00153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influence of pesticide exposure in alteration of DNA methylation patterns of specific genes is still limited, specifically in natural antisense transcripts (NAT), such as the WRAP53α gene. The aim of this study was to determine the methylation of the WRAP53α gene in mestizo and indigenous populations as well as its relationship with internal (age, sex, and body mass index) and external factors (pesticide exposure and micronutrient intake). A cross-sectional study was conducted including 91 mestizo individuals without occupational exposure to pesticides, 164 mestizo urban sprayers and 189 indigenous persons without occupational exposure to pesticides. Acute pesticide exposure was evaluated by measurement of urinary dialkylphosphate (DAP) concentration by gas chromatograph coupled to a mass spectrometer. Anthropometric characteristics, unhealthy habits, and chronic pesticide exposure were assessed using a structured questionnaire. The frequency of macro- and micronutrient intake was determined using SNUT software. DNA methylation of the WRAP53α gene was determined by pyrosequencing of bisulfite-modified DNA. The mestizo sprayers group had the higher values of %5mC. In addition, this group had the most DAP urinary concentration with respect to the indigenous and reference groups. Bivariate analysis showed an association between %5mC of the WRAP53α gene with micronutrient intake and pesticide exposure in mestizo sprayers, whereas changes in %5mC of the WRAP53α gene was associated with body mass index in the indigenous group. These data suggest that the %5mC of the WRAP53α gene can be influenced by pesticide exposure and ethnicity in the study population, and changes in the WRAP53α gene might cause an important cell process disturbance.
Collapse
Affiliation(s)
- Diana M Paredes-Céspedes
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado , Universidad Autónoma de Nayarit , 63155, Ciudad de la Cultura s/n. Col. Centro, C.P. 63000 , Tepic , Nayarit , México.,Posgrado en Ciencias Biológico Agropecuarias , Unidad Académica de Agricultura , Km. 9 Carretera Tepic-Compostela, Xalisco , Nayarit , México
| | - José F Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado , Universidad Autónoma de Nayarit , 63155, Ciudad de la Cultura s/n. Col. Centro, C.P. 63000 , Tepic , Nayarit , México.,Posgrado en Ciencias Biológico Agropecuarias , Unidad Académica de Agricultura , Km. 9 Carretera Tepic-Compostela, Xalisco , Nayarit , México
| | - Yael Y Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado , Universidad Autónoma de Nayarit , 63155, Ciudad de la Cultura s/n. Col. Centro, C.P. 63000 , Tepic , Nayarit , México
| | - Irma M Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado , Universidad Autónoma de Nayarit , 63155, Ciudad de la Cultura s/n. Col. Centro, C.P. 63000 , Tepic , Nayarit , México
| | - Ana M Salazar
- Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México (UNAM) , P.O. Box 70228, Ciudad Universitaria, México DF 04510 , México
| | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México (UNAM) , P.O. Box 70228, Ciudad Universitaria, México DF 04510 , México
| | - Briscia S Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado , Universidad Autónoma de Nayarit , 63155, Ciudad de la Cultura s/n. Col. Centro, C.P. 63000 , Tepic , Nayarit , México
| | - Aurora E Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado , Universidad Autónoma de Nayarit , 63155, Ciudad de la Cultura s/n. Col. Centro, C.P. 63000 , Tepic , Nayarit , México
| |
Collapse
|
41
|
Bergstrand S, O'Brien EM, Farnebo M. The Cajal Body Protein WRAP53β Prepares the Scene for Repair of DNA Double-Strand Breaks by Regulating Local Ubiquitination. Front Mol Biosci 2019; 6:51. [PMID: 31334247 PMCID: PMC6624377 DOI: 10.3389/fmolb.2019.00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
Proper repair of DNA double-strand breaks is critical for maintaining genome integrity and avoiding disease. Modification of damaged chromatin has profound consequences for the initial signaling and regulation of repair. One such modification involves ubiquitination by E3 ligases RNF8 and RNF168 within minutes after DNA double-strand break formation, altering chromatin structure and recruiting factors such as 53BP1 and BRCA1 for repair via non-homologous end-joining (NHEJ) and homologous recombination (HR), respectively. The WD40 protein WRAP53β plays an essential role in localizing RNF8 to DNA breaks by scaffolding its interaction with the upstream factor MDC1. Loss of WRAP53β impairs ubiquitination at DNA lesions and reduces downstream repair by both NHEJ and HR. Intriguingly, WRAP53β depletion attenuates repair of DNA double-strand breaks more than depletion of RNF8, indicating functions other than RNF8-mediated ubiquitination. WRAP53β plays key roles with respect to the nuclear organelles Cajal bodies, including organizing the genome to promote associated transcription and collecting factors involved in maturation of the spliceosome and telomere elongation within these organelles. It is possible that similar functions may aid also in DNA repair. Here we describe the involvement of WRAP53β in Cajal bodies and DNA double-strand break repair in detail and explore whether and how these processes may be linked. We also discuss the possibility that the overexpression of WRAP53β detected in several cancer types may reflect its normal participation in the DNA damage response rather than oncogenic properties.
Collapse
Affiliation(s)
- Sofie Bergstrand
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Eleanor M O'Brien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Farnebo
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Peng J, Zhan Y, Feng J, Fan S, Zang H. Expression of WDR79 is associated with TP53 mutation and poor prognosis in surgically resected non-small cell lung cancer. J Cancer 2019; 10:3046-3053. [PMID: 31281482 PMCID: PMC6590041 DOI: 10.7150/jca.30587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/30/2019] [Indexed: 12/16/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) represents a major health burden globally. WD repeat protein 79 (WDR79) is a member of the WD-repeat protein family. WDR79 is a highly conserved and natural antisense transcript to TP53 gene and involved in carcinogenesis of various types of cancer. Whether the alterations of WDR79 protein expression are associated with TP53 mutation and clinicopathological and prognostic implications in the patients with surgically resected NSCLC have not been reported. The purposes of the present study are to investigate the association between the expression of WDR79 and mutant p53 (mtp53) and clinicopathological features in NSCLC by immunohistochemistry. The results showed that positive expression of WDR79 (58.8%, 170/289) and mtp53 (48.1%, 139/289) in NSCLC was significantly higher than that in non-cancerous control lung tissues (5.7%, 3/53 and 1.9%, 1/53, respectively). There was a significantly higher positive percentage of WDR79 expression in NSCLC with lymph node metastasis. The statistically positive correlation between WDR79 and mtp53 expression (r = 0.212, P=0.014) was identified by Spearman's rank correlation analysis. Kaplan-Meier survival curve analysis indicated that positive expression of WDR79 and common positive expression of WDR79 and mtp53 were correlated with poor overall survival rates in NSCLC patients (P = 0.029 and P = 0.041, respectively). Multivariate Cox regression analysis further identified that WDR79 positive expression was an independent unfavorable prognostic factor of NSCLC (P = 0.034). Taken together, positive expression of WDR79 proteins may be related with TP53 mutations and act as valuable independent biomarker to predict poor prognosis of patients with surgically resected NSCLC.
Collapse
Affiliation(s)
- Jinwu Peng
- Department of Pathology, Xiangya Basic Medical School, Central South University, Changsha 410013, Hunan, China.,Department of Pathology, Xiangya Changde Hospital, Changde 415000, Hunan, China.,Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Juan Feng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| |
Collapse
|
43
|
Burke MF, McLaurin DM, Logan MK, Hebert MD. Alteration of 28S rRNA 2'- O-methylation by etoposide correlates with decreased SMN phosphorylation and reduced Drosha levels. Biol Open 2019; 8:bio041848. [PMID: 30858166 PMCID: PMC6451326 DOI: 10.1242/bio.041848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
The most common types of modification in human rRNA are pseudouridylation and 2'-O ribose methylation. These modifications are performed by small nucleolar ribonucleoproteins (snoRNPs) which contain a guide RNA (snoRNA) that base pairs at specific sites within the rRNA to direct the modification. rRNA modifications can vary, generating ribosome heterogeneity. One possible method that can be used to regulate rRNA modifications is by controlling snoRNP activity. RNA fragments derived from some small Cajal body-specific RNAs (scaRNA 2, 9 and 17) may influence snoRNP activity. Most scaRNAs accumulate in the Cajal body - a subnuclear domain - where they participate in the biogenesis of small nuclear RNPs, but scaRNA 2, 9 and 17 generate nucleolus-enriched fragments of unclear function, and we hypothesize that these fragments form regulatory RNPs that impact snoRNP activity and modulate rRNA modifications. Our previous work has shown that SMN, Drosha and various stresses, including etoposide treatment, may alter regulatory RNP formation. Here we demonstrate that etoposide treatment decreases the phosphorylation of SMN, reduces Drosha levels and increases the 2'-O-methylation of two sites within 28S rRNA. These findings further support a role for SMN and Drosha in regulating rRNA modification, possibly by affecting snoRNP or regulatory RNP activity.
Collapse
Affiliation(s)
- Marilyn F Burke
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Douglas M McLaurin
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Madelyn K Logan
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
44
|
Izumikawa K, Nobe Y, Ishikawa H, Yamauchi Y, Taoka M, Sato K, Nakayama H, Simpson RJ, Isobe T, Takahashi N. TDP-43 regulates site-specific 2'-O-methylation of U1 and U2 snRNAs via controlling the Cajal body localization of a subset of C/D scaRNAs. Nucleic Acids Res 2019; 47:2487-2505. [PMID: 30759234 PMCID: PMC6412121 DOI: 10.1093/nar/gkz086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
TDP-43 regulates cellular levels of Cajal bodies (CBs) that provide platforms for the assembly and RNA modifications of small nuclear ribonucleoproteins (snRNPs) involved in pre-mRNA splicing. Alterations in these snRNPs may be linked to pathogenesis of amyotrophic lateral sclerosis. However, specific roles for TDP-43 in CBs remain unknown. Here, we demonstrate that TDP-43 regulates the CB localization of four UG-rich motif-bearing C/D-box-containing small Cajal body-specific RNAs (C/D scaRNAs; i.e. scaRNA2, 7, 9 and 28) through the direct binding to these scaRNAs. TDP-43 enhances binding of a CB-localizing protein, WD40-repeat protein 79 (WDR79), to a subpopulation of scaRNA2 and scaRNA28; the remaining population of the four C/D scaRNAs was localized to CB-like structures even with WDR79 depletion. Depletion of TDP-43, in contrast, shifted the localization of these C/D scaRNAs, mainly into the nucleolus, as well as destabilizing scaRNA2, and reduced the site-specific 2'-O-methylation of U1 and U2 snRNAs, including at 70A in U1 snRNA and, 19G, 25G, 47U and 61C in U2 snRNA. Collectively, we suggest that TDP-43 and WDR79 have separate roles in determining CB localization of subsets of C/D and H/ACA scaRNAs.
Collapse
Affiliation(s)
- Keiichi Izumikawa
- Department of Applied Biological Science and Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Hideaki Ishikawa
- Department of Applied Biological Science and Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Ko Sato
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Hiroshi Nakayama
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Richard J Simpson
- Department of Applied Biological Science and Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
- La Trobe Institute for Molecular Science (LIMS), LIMS Building 1, Room 412 La Trobe University, Melbourne Victoria 3086, Australia
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Nobuhiro Takahashi
- Department of Applied Biological Science and Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
| |
Collapse
|
45
|
Chaytow H, Huang YT, Gillingwater TH, Faller KME. The role of survival motor neuron protein (SMN) in protein homeostasis. Cell Mol Life Sci 2018; 75:3877-3894. [PMID: 29872871 PMCID: PMC6182345 DOI: 10.1007/s00018-018-2849-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Ever since loss of survival motor neuron (SMN) protein was identified as the direct cause of the childhood inherited neurodegenerative disorder spinal muscular atrophy, significant efforts have been made to reveal the molecular functions of this ubiquitously expressed protein. Resulting research demonstrated that SMN plays important roles in multiple fundamental cellular homeostatic pathways, including a well-characterised role in the assembly of the spliceosome and biogenesis of ribonucleoproteins. More recent studies have shown that SMN is also involved in other housekeeping processes, including mRNA trafficking and local translation, cytoskeletal dynamics, endocytosis and autophagy. Moreover, SMN has been shown to influence mitochondria and bioenergetic pathways as well as regulate function of the ubiquitin-proteasome system. In this review, we summarise these diverse functions of SMN, confirming its key role in maintenance of the homeostatic environment of the cell.
Collapse
Affiliation(s)
- Helena Chaytow
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Yu-Ting Huang
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
| | - Kiterie M E Faller
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
46
|
Logan MK, Burke MF, Hebert MD. Altered dynamics of scaRNA2 and scaRNA9 in response to stress correlates with disrupted nuclear organization. Biol Open 2018; 7:bio.037101. [PMID: 30177550 PMCID: PMC6176948 DOI: 10.1242/bio.037101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small Cajal body-specific RNAs (scaRNAs) are part of small Cajal body-specific ribonucleoproteins (scaRNPs) that modify small nuclear RNA (snRNA) in Cajal bodies (CBs). Several scaRNAs (scaRNA 2, 9 and 17) have been found to generate smaller, nucleolus-enriched fragments. We hypothesize that the fragments derived from scaRNA 2, 9 and 17 form regulatory RNPs that influence the level of modifications within rRNA by altering small nucleolar RNP (snoRNP) activity. Here we show that external factors such as DNA damaging agents can alter the scaRNA9 full length to processed fragment ratio. We also show that full-length scaRNA2 levels are likewise impacted by DNA damage, which correlates with the disruption of SMN, coilin and WRAP53 co-localization in CBs. The dynamics of scaRNA9 were also shown to be affected by Drosha levels, which suggests that this protein may participate in the biogenesis and processing of this non-coding RNA. Identification of factors that contribute to scaRNA 2, 9 and 17 processing may facilitate an assessment of how external stress can lead to changes in rRNA modifications.
Collapse
Affiliation(s)
- Madelyn K Logan
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Marilyn F Burke
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
47
|
Correction: WRAP53 Is Essential for Cajal Body Formation and for Targeting the Survival of Motor Neuron Complex to Cajal Bodies. PLoS Biol 2018; 16:e3000030. [PMID: 30252836 PMCID: PMC6155438 DOI: 10.1371/journal.pbio.3000030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
48
|
Zhu Y, Ding L, Chen BF, Song JG, Yao YS. Oncogenic Activity of Wrap53 in Human Colorectal Cancer In Vitro and in Nude Mouse Xenografts. Med Sci Monit 2018; 24:6129-6136. [PMID: 30175821 PMCID: PMC6131976 DOI: 10.12659/msm.910214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background WD40-encoding RNA antisense to p53 (Wrap53) has been implicated in cancer development. However, the role of Wrap53 remains unknown in colorectal cancer. The aim of this study was to elucidate the function of Wrap53 in colorectal cancer tumorigenesis and development. Material/Methods This study analyzed Wrap53 expression in colorectal cancer tissue specimens using The Cancer Genome Atlas data and tumor cell lines and assessed the effects of Wrap53 knockdown on regulation of cancer cell malignant phenotypes in vitro and in nude mouse xenografts. Results Wrap53 expression was upregulated in colorectal cancer tissue specimens and cell lines. Knockdown of Wrap53 expression induced colorectal cancer cell line apoptosis and cell cycle arrest in the G1 phase, but reduced tumor cell line proliferation and invasion in vitro. Knockdown of Wrap53 in a nude mouse xenograft assay inhibited tumor cell line xenograft formation and growth. Conclusions Wrap53 is likely a potential oncogene or possesses oncogenic activity in colorectal cancer, promoting colorectal tumorigenesis. Targeting Wrap53 expression may represent a novel strategy for the control of colorectal cancer.
Collapse
Affiliation(s)
- Yu Zhu
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Lei Ding
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Bai-Feng Chen
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Jian-Gen Song
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Ying-Shui Yao
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| |
Collapse
|
49
|
Poole AR, Vicino I, Adachi H, Yu YT, Hebert MD. Regulatory RNPs: a novel class of ribonucleoproteins that potentially contribute to ribosome heterogeneity. Biol Open 2017; 6:1342-1354. [PMID: 28808137 PMCID: PMC5612246 DOI: 10.1242/bio.028092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many ribonucleoproteins (RNPs), which are comprised of noncoding RNA and associated proteins, are involved in essential cellular processes such as translation and pre-mRNA splicing. One class of RNP is the small Cajal body-specific RNP (scaRNP), which contributes to the biogenesis of small nuclear RNPs (snRNPs) that are central components of the spliceosome. Three scaRNAs are internally processed, generating stable nucleolus-enriched RNAs of unknown function. Here, we provide data that show that these RNAs become part of RNPs we term regulatory RNPs (regRNPs). Most modifications within rRNA (predominantly pseudouridylation and ribose 2′-O-methylation) are conducted by small nucleolar RNPs (snoRNPs), and we provide evidence that the activity of at least some of these snoRNPs is under the control of regRNPs. Because modifications within rRNA can vary in different physiological or pathological situations, rRNA modifications are thought to be the major source of ribosome heterogeneity. Our identification of regRNPs thus provides a potential mechanism for how ribosome heterogeneity may be accomplished. This work also provides additional functional connections between the Cajal body and the nucleolus. Summary: Processed scaRNAs give rise to a novel regulatory RNP, which regulates the modification of ribosomal RNA. These findings provide insight into the mechanisms governing ribosome heterogeneity.
Collapse
Affiliation(s)
- Aaron R Poole
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Ian Vicino
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael D Hebert
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
50
|
Epstein-Barr virus-induced up-regulation of TCAB1 is involved in the DNA damage response in nasopharyngeal carcinoma. Sci Rep 2017; 7:3218. [PMID: 28607398 PMCID: PMC5468285 DOI: 10.1038/s41598-017-03156-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 04/25/2017] [Indexed: 02/05/2023] Open
Abstract
Telomerase Cajal body protein 1 (TCAB1), which is involved in Cajal body maintenance, telomere elongation and ribonucleoprotein biogenesis, has been linked to cancer predisposition, including nasopharyngeal carcinoma (NPC), due to its oncogenic properties. However, there are no specific reports to date on the functional relevance of TCAB1 and Epstein–Barr virus (EBV), which is considered to be a risk factor for NPC. In this study, we first examined NPC clinical tissues and found a notable overexpression of TCAB1 in EBV-positive specimens. Secondly, on a cellular level, we also observed that TCAB1 expression rose gradually along with the increased duration of EBV exposure in NPC cell lines. Additionally, EBV infection promoted cell proliferation and telomerase activity, but the activation was significantly inhibited after TCAB1 knockdown. Moreover, depletion of TCAB1 caused both cell cycle arrest and apoptosis, and suppressed the activation of ataxia telangiectasia and Rad3 related protein (ATR) induced by EBV, resulting in accumulation of DNA damage. Taken together, we here demonstrate that up-regulated expression of TCAB1, induced by EBV in the development of NPC, is involved in stimulating telomerase activity and regulating the DNA damage response within the context of EBV infection.
Collapse
|