1
|
Zhou DH, Jeon J, Farheen N, Friedman LJ, Kondev J, Buratowski S, Gelles J. Mechanisms of synergistic Mediator recruitment in RNA polymerase II transcription activation revealed by single-molecule fluorescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627625. [PMID: 39713438 PMCID: PMC11661148 DOI: 10.1101/2024.12.10.627625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Transcription activators trigger transcript production by RNA Polymerase II (RNApII) via the Mediator coactivator complex. Here the dynamics of activator, Mediator, and RNApII binding at promoter DNA were analyzed using multi-wavelength single-molecule microscopy of fluorescently labeled proteins in budding yeast nuclear extract. Binding of Mediator and RNApII to the template required activator and an upstream activator sequence (UAS), but not a core promoter. While Mediator and RNApII sometimes bind as a pre-formed complex, more commonly Mediator binds first and subsequently recruits RNApII to form a preinitiation complex precursor (pre-PIC) tethered to activators on the UAS. Interestingly, Mediator occupancy has a highly non-linear response to activator concentration, and fluorescence intensity measurements show Mediator preferentially associates with templates having at least two activators bound. Statistical mechanical modeling suggests this "synergy" is not due to cooperative binding between activators, but instead occurs when multiple DNA-bound activator molecules simultaneously interact with a single Mediator.
Collapse
Affiliation(s)
- Daniel H. Zhou
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| | - Jongcheol Jeon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Nida Farheen
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| | | | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA 02453
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| |
Collapse
|
2
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 PMCID: PMC12051360 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
3
|
Dunn LEM, Birkenheuer CH, Baines JD. A Revision of Herpes Simplex Virus Type 1 Transcription: First, Repress; Then, Express. Microorganisms 2024; 12:262. [PMID: 38399666 PMCID: PMC10892140 DOI: 10.3390/microorganisms12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The herpes virus genome bears more than 80 strong transcriptional promoters. Upon entry into the host cell nucleus, these genes are transcribed in an orderly manner, producing five immediate-early (IE) gene products, including ICP0, ICP4, and ICP22, while non-IE genes are mostly silent. The IE gene products are necessary for the transcription of temporal classes following sequentially as early, leaky late, and true late. A recent analysis using precision nuclear run-on followed by deep sequencing (PRO-seq) has revealed an important step preceding all HSV-1 transcription. Specifically, the immediate-early proteins ICP4 and ICP0 enter the cell with the incoming genome to help preclude the nascent antisense, intergenic, and sense transcription of all viral genes. VP16, which is also delivered into the nucleus upon entry, almost immediately reverses this repression on IE genes. The resulting de novo expression of ICP4 and ICP22 further repress antisense, intergenic, and early and late viral gene transcription through different mechanisms before the sequential de-repression of these gene classes later in infection. This early repression, termed transient immediate-early protein-mediated repression (TIEMR), precludes unproductive, antisense, intergenic, and late gene transcription early in infection to ensure the efficient and orderly progression of the viral cascade.
Collapse
Affiliation(s)
- Laura E M Dunn
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Claire H Birkenheuer
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Joel D Baines
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
4
|
Lin L, Du M, Li S, Sun C, Wu F, Deng L, Chen Q, Li C. Mediator complex subunit MED25 physically interacts with DST to regulate spikelet number in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:871-883. [PMID: 35212455 DOI: 10.1111/jipb.13238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Grain number is a flexible trait and contributes significantly to grain yield. In rice, the zinc finger transcription factor DROUGHT AND SALT TOLERANCE (DST) controls grain number by directly regulating cytokinin oxidase/dehydrogenase 2 (OsCKX2) expression. Although specific upstream regulators of the DST-OsCKX2 module have been identified, the mechanism employed by DST to regulate the expression of OsCKX2 remains unclear. Here, we demonstrate that DST-interacting protein 1 (DIP1), known as Mediator subunit OsMED25, acts as an interacting coactivator of DST. Phenotypic analyses revealed that OsMED25-RNAi and the osmed25 mutant plants exhibited enlarged panicles, with enhanced branching and spikelet number, similar to the dst mutant. Genetic analysis indicated that OsMED25 acts in the same pathway as the DST-OsCKX2 module to regulate spikelet number per panicle. Further biochemical analysis showed that OsMED25 physically interacts with DST at the promoter region of OsCKX2, and then recruits RNA polymerase II (Pol II) to activate OsCKX2 transcription. Thus, OsMED25 was involved in the communication between DST and Pol II general transcriptional machinery to regulate spikelet number. In general, our findings reveal a novel function of OsMED25 in DST-OsCKX2 modulated transcriptional regulation, thus enhancing our understanding of the regulatory mechanism underlying DST-OsCKX2-mediated spikelet number.
Collapse
Affiliation(s)
- Lihao Lin
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Minmin Du
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuyu Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuanlong Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangming Wu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
5
|
Gonzalez C, Akula S, Burleson M. The role of mediator subunit 12 in tumorigenesis and cancer therapeutics (Review). Oncol Lett 2022; 23:74. [PMID: 35111243 PMCID: PMC8771631 DOI: 10.3892/ol.2022.13194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Mediator complex subunit 12 (MED12) is a subunit of Mediator, a large multi-subunit protein complex that acts an important regulator of transcription. Specifically, MED12 is an integral part of the kinase module of Mediator along with MED13, CyclinC (CycC) and CDK8. Structural studies have indicated that MED12 makes a direct connection to CycC through a specific interface and thereby functions to create a link between MED13 and CycC-CDK8. Disruption of the MED12-CycC interface often leads to dysregulated CDK8 kinase activity, which has important physiological implications. For example, a number of studies have indicated that mutations within MED12 can lead to the formation of benign or malignant tumors, either as a result of MED12-CycC disruption or through distinct independent mechanisms. Furthermore, recent studies have indicated that the N-terminal portion of MED12 forms a direct connection to CDK8. Mutations within MED12 do not appear to disrupt the physical connection to CDK8, but rather abrogate CDK8 kinase activity. Thus, mutations in MED12 can cause disruption of CDK8 kinase activity through two separate mechanisms. The aim of the present review article was to discuss the MED12 mutational landscape in a variety of benign and malignant tumors, as well as the mechanistic basis behind tumorigenesis. Furthermore, the link between MED12 and drug resistance has also been discussed, as well as potential cancer therapeutics related to MED12-altered tumors.
Collapse
Affiliation(s)
- Cristian Gonzalez
- Department of Biology, University of The Incarnate Word, San Antonio, TX 78209, USA
| | - Shivani Akula
- Department of Chemistry, University of The Incarnate Word, San Antonio, TX 78209, USA
| | - Marieke Burleson
- Department of Biology, University of The Incarnate Word, San Antonio, TX 78209, USA
| |
Collapse
|
6
|
Wang L, Ruan C, Bao A, Li H. Small RNA profiling for identification of microRNAs involved in regulation of seed development and lipid biosynthesis in yellowhorn. BMC PLANT BIOLOGY 2021; 21:464. [PMID: 34641783 PMCID: PMC8513341 DOI: 10.1186/s12870-021-03239-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 09/29/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Yellowhorn (Xanthoceras sorbifolium), an endemic woody oil-bearing tree, has become economically important and is widely cultivated in northern China for bioactive oil production. However, the regulatory mechanisms of seed development and lipid biosynthesis affecting oil production in yellowhorn are still elusive. MicroRNAs (miRNAs) play crucial roles in diverse aspects of biological and metabolic processes in seeds, especially in seed development and lipid metabolism. It is still unknown how the miRNAs regulate the seed development and lipid biosynthesis in yellowhorn. RESULTS Here, based on investigations of differences in the seed growth tendency and embryo oil content between high-oil-content and low-oil-content lines, we constructed small RNA libraries from yellowhorn embryos at four seed development stages of the two lines and then profiled small RNA expression using high-throughput sequencing. A total of 249 known miRNAs from 46 families and 88 novel miRNAs were identified. Furthermore, by pairwise comparisons among the four seed development stages in each line, we found that 64 miRNAs (53 known and 11 novel miRNAs) were differentially expressed in the two lines. Across the two lines, 15, 11, 10, and 7 differentially expressed miRNAs were detected at 40, 54, 68, and 81 days after anthesis, respectively. Bioinformatic analysis was used to predict a total of 2654 target genes for 141 differentially expressed miRNAs (120 known and 21 novel miRNAs). Most of these genes were involved in the fatty acid biosynthetic process, regulation of transcription, nucleus, and response to auxin. Using quantitative real-time PCR and an integrated analysis of miRNA and mRNA expression, miRNA-target regulatory modules that may be involved in yellowhorn seed size, weight, and lipid biosynthesis were identified, such as miR172b-ARF2 (auxin response factor 2), miR7760-p3_1-AGL61 (AGAMOUS-LIKE 61), miR319p_1-FAD2-2 (omega-6 fatty acid desaturase 2-2), miR5647-p3_1-DGAT1 (diacylglycerol acyltransferase 1), and miR7760-p5_1-MED15A (Mediator subunit 15a). CONCLUSIONS This study provides new insights into the important regulatory roles of miRNAs in the seed development and lipid biosynthesis in yellowhorn. Our results will be valuable for dissecting the post-transcriptional and transcriptional regulation of seed development and lipid biosynthesis, as well as improving yellowhorn in northern China.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, 266100, China
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China.
| | - Aomin Bao
- Institute of Economic Forest, Tongliao Academy of Forestry Science and Technology, Tongliao, 028000, China
| | - He Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
| |
Collapse
|
7
|
Compe E, Egly JM. The Long Road to Understanding RNAPII Transcription Initiation and Related Syndromes. Annu Rev Biochem 2021; 90:193-219. [PMID: 34153211 DOI: 10.1146/annurev-biochem-090220-112253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotes, transcription of protein-coding genes requires the assembly at core promoters of a large preinitiation machinery containing RNA polymerase II (RNAPII) and general transcription factors (GTFs). Transcription is potentiated by regulatory elements called enhancers, which are recognized by specific DNA-binding transcription factors that recruit cofactors and convey, following chromatin remodeling, the activating cues to the preinitiation complex. This review summarizes nearly five decades of work on transcription initiation by describing the sequential recruitment of diverse molecular players including the GTFs, the Mediator complex, and DNA repair factors that support RNAPII to enable RNA synthesis. The elucidation of the transcription initiation mechanism has greatly benefited from the study of altered transcription components associated with human diseases that could be considered transcription syndromes.
Collapse
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 67404 Illkirch CEDEX, Commune Urbaine de Strasbourg, France; ,
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 67404 Illkirch CEDEX, Commune Urbaine de Strasbourg, France; , .,College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
8
|
Abdella R, Talyzina A, Chen S, Inouye CJ, Tjian R, He Y. Structure of the human Mediator-bound transcription preinitiation complex. Science 2021; 372:52-56. [PMID: 33707221 PMCID: PMC8117670 DOI: 10.1126/science.abg3074] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 12/24/2022]
Abstract
Eukaryotic transcription requires the assembly of a multisubunit preinitiation complex (PIC) composed of RNA polymerase II (Pol II) and the general transcription factors. The coactivator Mediator is recruited by transcription factors, facilitates the assembly of the PIC, and stimulates phosphorylation of the Pol II C-terminal domain (CTD) by the TFIIH subunit CDK7. Here, we present the cryo-electron microscopy structure of the human Mediator-bound PIC at a resolution below 4 angstroms. Transcription factor binding sites within Mediator are primarily flexibly tethered to the tail module. CDK7 is stabilized by multiple contacts with Mediator. Two binding sites exist for the Pol II CTD, one between the head and middle modules of Mediator and the other in the active site of CDK7, providing structural evidence for Pol II CTD phosphorylation within the Mediator-bound PIC.
Collapse
Affiliation(s)
- R Abdella
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - A Talyzina
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - S Chen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - C J Inouye
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, CA, USA
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - R Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, CA, USA
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Y He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, IL, USA
| |
Collapse
|
9
|
Zhang H, Chen DH, Mattoo RUH, Bushnell DA, Wang Y, Yuan C, Wang L, Wang C, Davis RE, Nie Y, Kornberg RD. Mediator structure and conformation change. Mol Cell 2021; 81:1781-1788.e4. [PMID: 33571424 DOI: 10.1016/j.molcel.2021.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 01/22/2023]
Abstract
Mediator is a universal adaptor for transcription control. It serves as an interface between gene-specific activator or repressor proteins and the general RNA polymerase II (pol II) transcription machinery. Previous structural studies revealed a relatively small part of Mediator and none of the gene activator-binding regions. We have determined the cryo-EM structure of the Mediator at near-atomic resolution. The structure reveals almost all amino acid residues in ordered regions, including the major targets of activator proteins, the Tail module, and the Med1 subunit of the Middle module. Comparison of Mediator structures with and without pol II reveals conformational changes that propagate across the entire Mediator, from Head to Tail, coupling activator- and pol II-interacting regions.
Collapse
Affiliation(s)
- Heqiao Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dong-Hua Chen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rayees U H Mattoo
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yannan Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Chao Yuan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Chunnian Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Ralph E Davis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yan Nie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China.
| | - Roger D Kornberg
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Wu D, Zhang Z, Chen X, Yan Y, Liu X. Angel or Devil ? - CDK8 as the new drug target. Eur J Med Chem 2020; 213:113043. [PMID: 33257171 DOI: 10.1016/j.ejmech.2020.113043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase 8 (CDK8) plays an momentous role in transcription regulation by forming kinase module or transcription factor phosphorylation. A large number of evidences have identified CDK8 as an important factor in cancer occurrence and development. In addition, CDK8 also participates in the regulation of cancer cell stress response to radiotherapy and chemotherapy, assists tumor cell invasion, metastasis, and drug resistance. Therefore, CDK8 is regarded as a promising target for cancer therapy. Most studies in recent years supported the role of CDK8 as a carcinogen, however, under certain conditions, CDK8 exists as a tumor suppressor. The functional diversity of CDK8 and its exceptional role in different types of cancer have aroused great interest from scientists but even more controversy during the discovery of CDK8 inhibitors. In addition, CDK8 appears to be an effective target for inflammation diseases and immune system disorders. Therefore, we summarized the research results of CDK8, involving physiological/pathogenic mechanisms and the development status of compounds targeting CDK8, provide a reference for the feasibility evaluation of CDK8 as a therapeutic target, and guidance for researchers who are involved in this field for the first time.
Collapse
Affiliation(s)
- Dan Wu
- School of Biological Engineering, Hefei Technology College, Hefei, 238000, PR China
| | - Zhaoyan Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Yaoyao Yan
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xinhua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
11
|
Abstract
More than 50 years after the identification of RNA polymerase II, the enzyme responsible for the transcription of most eukaryotic genes, studies have continued to reveal fresh aspects of its structure and regulation. New technologies, coupled with years of development of a vast catalog of RNA polymerase II accessory proteins and activities, have led to new revelations about the transcription process. The maturation of cryo-electron microscopy as a tool for unraveling the detailed structure of large molecular machines has provided numerous structures of the enzyme and its accessory factors. Advances in biophysical methods have enabled the observation of a single polymerase’s behavior, distinct from work on aggregate population averages. Other recent work has revealed new properties and activities of the general initiation factors that RNA polymerase II employs to accurately initiate transcription, as well as chromatin proteins that control RNA polymerase II’s firing frequency, and elongation factors that facilitate the enzyme’s departure from the promoter and which control sequential steps and obstacles that must be navigated by elongating RNA polymerase II. There has also been a growing appreciation of the physical properties conferred upon many of these proteins by regions of each polypeptide that are of low primary sequence complexity and that are often intrinsically disordered. This peculiar feature of a surprisingly large number of proteins enables a disordered region of the protein to morph into a stable structure and creates an opportunity for pathway participants to dynamically partition into subcompartments of the nucleus. These subcompartments host designated portions of the chemical reactions that lead to mRNA synthesis. This article highlights a selection of recent findings that reveal some of the resolved workings of RNA polymerase II and its ensemble of supporting factors.
Collapse
Affiliation(s)
- Daniel Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
12
|
Sun W, Han H, Deng L, Sun C, Xu Y, Lin L, Ren P, Zhao J, Zhai Q, Li C. Mediator Subunit MED25 Physically Interacts with PHYTOCHROME INTERACTING FACTOR4 to Regulate Shade-Induced Hypocotyl Elongation in Tomato. PLANT PHYSIOLOGY 2020; 184:1549-1562. [PMID: 32938743 PMCID: PMC7608172 DOI: 10.1104/pp.20.00587] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/09/2020] [Indexed: 05/11/2023]
Abstract
Shade triggers important adaptive responses such as the shade-avoidance syndrome, which enable plants to respond to the depletion of photosynthetically active light. The basic helix-loop-helix transcription factors PHYTOCHROME INTERACTING FACTORS (PIFs) play a key role in the shade-avoidance syndrome network by regulating the biosynthesis of multiple phytohormones and the expression of cell expansion-related genes. Although much has been learned about the regulation of PIFs in response to shade at the protein level, relatively little is known about the PIF-dependent transcriptional regulation of shade-responsive genes. Mediator is an evolutionarily conserved transcriptional coactivator complex that bridges gene-specific transcription factors with the RNA polymerase II (Pol II) machinery to regulate gene transcription. Here, we report that tomato (Solanum lycopersicum) PIF4 plays an important role in shade-induced hypocotyl elongation by regulating the expression of genes that encode auxin biosynthesis and auxin signaling proteins. During this process, Mediator subunit25 (MED25) physically interacts with PIF4 at the promoter regions of PIF4 target genes and also recruits Pol II to induce gene transcription. Thus, MED25 directly bridges the communication between PIF4 and Pol II general transcriptional machinery to regulate shade-induced hypocotyl elongation. Overall, our results reveal a novel role of MED25 in PIF4-mediated transcriptional regulation under shade.
Collapse
Affiliation(s)
- Wenjing Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hongyu Han
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanlong Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiran Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lihao Lin
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Panrong Ren
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiuhai Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Abstract
Gene transcription by RNA polymerase II (Pol II) is the first step in the expression of the eukaryotic genome and a focal point for cellular regulation during development, differentiation, and responses to the environment. Two decades after the determination of the structure of Pol II, the mechanisms of transcription have been elucidated with studies of Pol II complexes with nucleic acids and associated proteins. Here we provide an overview of the nearly 200 available Pol II complex structures and summarize how these structures have elucidated promoter-dependent transcription initiation, promoter-proximal pausing and release of Pol II into active elongation, and the mechanisms that Pol II uses to navigate obstacles such as nucleosomes and DNA lesions. We predict that future studies will focus on how Pol II transcription is interconnected with chromatin transitions, RNA processing, and DNA repair.
Collapse
Affiliation(s)
- Sara Osman
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;,
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;,
| |
Collapse
|
14
|
Zhai Q, Deng L, Li C. Mediator subunit MED25: at the nexus of jasmonate signaling. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:78-86. [PMID: 32777679 DOI: 10.1016/j.pbi.2020.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 05/26/2023]
Abstract
Upon perception by plant cells, the immunity hormone jasmonate (JA) triggers a genome-wide transcriptional program, which is largely regulated by the master transcription factor MYC2. The function of MYC2 depends on its physical and functional interaction with MED25, a subunit of the Mediator transcriptional co-activator complex. In addition to interacting with MYC2 and RNA polymerase II for preinitiation complex formation, MED25 also interacts with multiple genetic and epigenetic regulators and controls almost every step of MYC2-dependent transcription, including nuclear hormone receptor activation, epigenetic regulation, mRNA processing, transcriptional termination, and chromatin loop formation. These diversified functions have ascribed MED25 to a signal-processing and signal-integrating center during JA-regulated gene transcription. This review is focused on the interactions of MED25 with diverse transcriptional regulators and how these mechanistic interactions contribute to the initiation, amplification, and fine tuning of the transcriptional output of JA signaling.
Collapse
Affiliation(s)
- Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Basu S, Nandy A, Biswas D. Keeping RNA polymerase II on the run: Functions of MLL fusion partners in transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194563. [PMID: 32348849 DOI: 10.1016/j.bbagrm.2020.194563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Since the identification of key MLL fusion partners as transcription elongation factors regulating expression of HOX cluster genes during hematopoiesis, extensive work from the last decade has resulted in significant progress in our overall mechanistic understanding of role of MLL fusion partner proteins in transcriptional regulation of diverse set of genes beyond just the HOX cluster. In this review, we are going to detail overall understanding of role of MLL fusion partner proteins in transcriptional regulation and thus provide mechanistic insights into possible MLL fusion protein-mediated transcriptional misregulation leading to aberrant hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Subham Basu
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Arijit Nandy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
16
|
Abstract
RNA polymerase II (Pol II) transcribes all protein-coding genes and many noncoding RNAs in eukaryotic genomes. Although Pol II is a complex, 12-subunit enzyme, it lacks the ability to initiate transcription and cannot consistently transcribe through long DNA sequences. To execute these essential functions, an array of proteins and protein complexes interact with Pol II to regulate its activity. In this review, we detail the structure and mechanism of over a dozen factors that govern Pol II initiation (e.g., TFIID, TFIIH, and Mediator), pausing, and elongation (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis for Pol II transcription regulation has advanced rapidly in the past decade, largely due to technological innovations in cryoelectron microscopy. Here, we summarize a wealth of structural and functional data that have enabled a deeper understanding of Pol II transcription mechanisms; we also highlight mechanistic questions that remain unanswered or controversial.
Collapse
Affiliation(s)
- Allison C Schier
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|
17
|
Páhi ZG, Borsos BN, Pantazi V, Ujfaludi Z, Pankotai T. PARylation During Transcription: Insights into the Fine-Tuning Mechanism and Regulation. Cancers (Basel) 2020; 12:cancers12010183. [PMID: 31940791 PMCID: PMC7017041 DOI: 10.3390/cancers12010183] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/19/2019] [Accepted: 01/09/2020] [Indexed: 01/31/2023] Open
Abstract
Transcription is a multistep, tightly regulated process. During transcription initiation, promoter recognition and pre-initiation complex (PIC) formation take place, in which dynamic recruitment or exchange of transcription activators occur. The precise coordination of the recruitment and removal of transcription factors, as well as chromatin structural changes, are mediated by post-translational modifications (PTMs). Poly(ADP-ribose) polymerases (PARPs) are key players in this process, since they can modulate DNA-binding activities of specific transcription factors through poly-ADP-ribosylation (PARylation). PARylation can regulate the transcription at three different levels: (1) by directly affecting the recruitment of specific transcription factors, (2) by triggering chromatin structural changes during initiation and as a response to cellular stresses, or (3) by post-transcriptionally modulating the stability and degradation of specific mRNAs. In this review, we principally focus on these steps and summarise the recent findings, demonstrating the mechanisms through which PARylation plays a potential regulatory role during transcription and DNA repair.
Collapse
|
18
|
Decker TM, Forné I, Straub T, Elsaman H, Ma G, Shah N, Imhof A, Eick D. Analog-sensitive cell line identifies cellular substrates of CDK9. Oncotarget 2019; 10:6934-6943. [PMID: 31857848 PMCID: PMC6916755 DOI: 10.18632/oncotarget.27334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/07/2019] [Indexed: 11/25/2022] Open
Abstract
Transcriptional cyclin-dependent kinases regulate all phases of transcription. Cyclin-dependent kinase 9 (CDK9) has been implicated in the regulation of promoter-proximal pausing of RNA polymerase II and more recently in transcription termination. Study of the substrates of CDK9 has mostly been limited to in vitro approaches that lack a quantitative assessment of CDK9 activity. Here we analyzed the cellular phosphoproteome upon inhibition of CDK9 by combining analog-sensitive kinase technology with quantitative phosphoproteomics in Raji B-cells. Our analysis revealed the activity of CDK9 on 1102 phosphosites quantitatively, and we identified 120 potential cellular substrates. Furthermore, a substantial number of CDK9 substrates were described as splicing factors, highlighting the role of CDK9 in transcription-coupled splicing events. Based on comparison to in vitro data, our findings suggest that cellular context fundamentally impacts the activity of CDK9 and specific selection of its substrates.
Collapse
Affiliation(s)
- Tim-Michael Decker
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Germany.,Present address: Department of Biochemistry, University of Colorado, Boulder, USA
| | - Ignasi Forné
- Biomedical Center Munich, ZFP, Ludwig-Maximilian University Munich, Germany
| | - Tobias Straub
- Bioinformatic Unit, Biomedical Center Munich, Ludwig-Maximilian University Munich, Planegg-Martinsried, Germany
| | - Hesham Elsaman
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Germany
| | - Guoli Ma
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Germany
| | - Nilay Shah
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Germany.,Present address: Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Axel Imhof
- Biomedical Center Munich, ZFP, Ludwig-Maximilian University Munich, Germany
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Germany
| |
Collapse
|
19
|
Maji S, Dahiya P, Waseem M, Dwivedi N, Bhat DS, Dar TH, Thakur JK. Interaction map of Arabidopsis Mediator complex expounding its topology. Nucleic Acids Res 2019; 47:3904-3920. [PMID: 30793213 PMCID: PMC6486561 DOI: 10.1093/nar/gkz122] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/04/2019] [Accepted: 02/20/2019] [Indexed: 01/28/2023] Open
Abstract
Understanding of mechanistic details of Mediator functioning in plants is impeded as the knowledge of subunit organization and structure is lacking. In this study, an interaction map of Arabidopsis Mediator complex was analyzed to understand the arrangement of the subunits in the core part of the complex. Combining this interaction map with homology-based modeling, probable structural topology of core part of the Arabidopsis Mediator complex was deduced. Though the overall topology of the complex was similar to that of yeast, several differences were observed. Many interactions discovered in this study are not yet reported in other systems. AtMed14 and AtMed17 emerged as the key component providing important scaffold for the whole complex. AtMed6 and AtMed10 were found to be important for linking head with middle and middle with tail, respectively. Some Mediator subunits were found to form homodimers and some were found to possess transactivation property. Subcellular localization suggested that many of the Mediator subunits might have functions beyond the process of transcription. Overall, this study reveals role of individual subunits in the organization of the core complex, which can be an important resource for understanding the molecular mechanism of functioning of Mediator complex and its subunits in plants.
Collapse
Affiliation(s)
- Sourobh Maji
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pradeep Dahiya
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mohd Waseem
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nidhi Dwivedi
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Divya S Bhat
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Tanvir H Dar
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitendra K Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
20
|
Zhai Q, Li C. The plant Mediator complex and its role in jasmonate signaling. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3415-3424. [PMID: 31089685 PMCID: PMC6609880 DOI: 10.1093/jxb/erz233] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/07/2019] [Indexed: 05/20/2023]
Abstract
The Mediator complex is an essential, multisubunit transcriptional coactivator that is highly conserved in eukaryotes. Mediator interacts with gene-specific transcription factors, the RNA polymerase II transcriptional machinery, as well as several other factors involved in transcription, and acts as an integral hub to regulate various aspects of transcription. Recent studies of the plant Mediator complex have established that it functions in diverse aspects of plant development and fitness. Jasmonate (JA) is an oxylipin-derived plant hormone that regulates plant immunity and development. The basic helix-loop-helix transcription factor MYC2, which is a master regulator of JA signaling, orchestrates genome-wide transcriptional reprogramming of plant cells to coordinate defense- and growth-related processes. Here, we review the function of the plant Mediator complex in regulating JA signaling. We focus on the multifunctional Mediator subunit MED25, which emerges as an integrative hub for the transcriptional regulation of jasmonate signaling.
Collapse
Affiliation(s)
- Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Correspondence:
| |
Collapse
|
21
|
Abstract
In all living organisms, the flow of genetic information is a two-step process: first DNA is transcribed into RNA, which is subsequently used as template for protein synthesis during translation. In bacteria, archaea and eukaryotes, transcription is carried out by multi-subunit RNA polymerases (RNAPs) sharing a conserved architecture of the RNAP core. RNAPs catalyse the highly accurate polymerisation of RNA from NTP building blocks, utilising DNA as template, being assisted by transcription factors during the initiation, elongation and termination phase of transcription. The complexity of this highly dynamic process is reflected in the intricate network of protein-protein and protein-nucleic acid interactions in transcription complexes and the substantial conformational changes of the RNAP as it progresses through the transcription cycle.In this chapter, we will first briefly describe the early work that led to the discovery of multisubunit RNAPs. We will then discuss the three-dimensional organisation of RNAPs from the bacterial, archaeal and eukaryotic domains of life, highlighting the conserved nature, but also the domain-specific features of the transcriptional apparatus. Another section will focus on transcription factors and their role in regulating the RNA polymerase throughout the different phases of the transcription cycle. This includes a discussion of the molecular mechanisms and dynamic events that govern transcription initiation, elongation and termination.
Collapse
|
22
|
Twenty years of Mediator complex structural studies. Biochem Soc Trans 2019; 47:399-410. [PMID: 30733343 PMCID: PMC6393861 DOI: 10.1042/bst20180608] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 11/18/2022]
Abstract
Mediator is a large multiprotein complex conserved in all eukaryotes that plays an essential role in transcriptional regulation. Mediator comprises 25 subunits in yeast and 30 subunits in humans that form three main modules and a separable four-subunit kinase module. For nearly 20 years, because of its size and complexity, Mediator has posed a formidable challenge to structural biologists. The first two-dimensional electron microscopy (EM) projection map of Mediator leading to the canonical view of its division in three topological modules named Head, Middle and Tail, was published in 1999. Within the last few years, optimization of Mediator purification combined with technical and methodological advances in cryo-electron microscopy (cryo-EM) have revealed unprecedented details of Mediator subunit organization, interactions with RNA polymerase II and parts of its core structure at high resolution. To celebrate the twentieth anniversary of the first Mediator EM reconstruction, we look back on the structural studies of Mediator complex from a historical perspective and discuss them in the light of our current understanding of its role in transcriptional regulation.
Collapse
|
23
|
Abstract
Supercoiling is a fundamental property of DNA, generated by polymerases and other DNA-binding proteins as a consequence of separating/bending the DNA double helix. DNA supercoiling plays a key role in gene expression and genome organization, but has proved difficult to study in eukaryotes because of the large, complex and chromatinized genomes. Key approaches to study DNA supercoiling in eukaryotes are (1) centrifugation-based or electrophoresis-based techniques in which supercoiled plasmids extracted from eukaryotic cells form a compacted writhed structure that migrates at a rate proportional to the level of DNA supercoiling; (2) in vivo approaches based on the preferential intercalation of psoralen molecules into under-wound DNA. Here, we outline the principles behind these techniques and discuss key discoveries, which have confirmed the presence and functional potential of unconstrained DNA supercoiling in eukaryotic genomes.
Collapse
|
24
|
Abstract
Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.
Collapse
Affiliation(s)
- Julie Soutourina
- Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, Commissariat à l'énergie Atomique et aux énergies alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), University Paris Sud, University Paris Saclay, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
25
|
Abstract
In eukaryotes, RNA polymerase II (pol II) transcribes all protein-coding genes and many noncoding RNAs. Whereas many factors contribute to the regulation of pol II activity, the Mediator complex is required for expression of most, if not all, pol II transcripts. Structural characterization of Mediator is challenging due to its large size (∼20 subunits in yeast and 26 subunits in humans) and conformational flexibility. However, recent studies have revealed structural details at higher resolution. Here, we summarize recent findings and place in context with previous results, highlighting regions within Mediator that are important for regulating its structure and function.
Collapse
Affiliation(s)
- Thomas M Harper
- From the Department of Biochemistry, University of Colorado, Boulder, Colorado 80303
| | - Dylan J Taatjes
- From the Department of Biochemistry, University of Colorado, Boulder, Colorado 80303
| |
Collapse
|
26
|
Discovery of potent and selective CDK8 inhibitors through FBDD approach. Bioorg Med Chem Lett 2017; 27:4488-4492. [DOI: 10.1016/j.bmcl.2017.07.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 01/08/2023]
|
27
|
A Kinase-Independent Role for Cyclin-Dependent Kinase 19 in p53 Response. Mol Cell Biol 2017; 37:MCB.00626-16. [PMID: 28416637 PMCID: PMC5472832 DOI: 10.1128/mcb.00626-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
The human Mediator complex regulates RNA polymerase II transcription genome-wide. A general factor that regulates Mediator function is the four-subunit kinase module, which contains either cyclin-dependent kinase 8 (CDK8) or CDK19. Whereas CDK8 is linked to specific signaling cascades and oncogenesis, the cellular roles of its paralog, CDK19, are poorly studied. We discovered that osteosarcoma cells (SJSA) are naturally depleted of CDK8 protein. Whereas stable CDK19 knockdown was tolerated in SJSA cells, proliferation was reduced. Notably, proliferation defects were rescued upon the reexpression of wild-type or kinase-dead CDK19. Comparative RNA sequencing analyses showed reduced expression of mitotic genes and activation of genes associated with cholesterol metabolism and the p53 pathway in CDK19 knockdown cells. SJSA cells treated with 5-fluorouracil, which induces metabolic and genotoxic stress and activates p53, further implicated CDK19 in p53 target gene expression. To better probe the p53 response, SJSA cells (shCDK19 versus shCTRL) were treated with the p53 activator nutlin-3. Remarkably, CDK19 was required for SJSA cells to return to a proliferative state after nutlin-3 treatment, and this effect was kinase independent. These results implicate CDK19 as a regulator of p53 stress responses and suggest a role for CDK19 in cellular resistance to nutlin-3.
Collapse
|
28
|
Abstract
Eukaryotic gene transcription requires the assembly at the promoter of a large preinitiation complex (PIC) that includes RNA polymerase II (Pol II) and the general transcription factors TFIID, TFIIA, TFIIB, TFIIF, TFIIE, and TFIIH. The size and complexity of Pol II, TFIID, and TFIIH have precluded their reconstitution from heterologous systems, and purification relies on scarce endogenous sources. Together with their conformational flexibility and the transient nature of their interactions, these limitations had precluded structural characterization of the PIC. In the last few years, however, progress in cryo-electron microscopy (cryo-EM) has made possible the visualization, at increasingly better resolution, of large PIC assemblies in different functional states. These structures can now be interpreted in near-atomic detail and provide an exciting structural framework for past and future functional studies, giving us unique mechanistic insight into the complex process of transcription initiation.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department and QB3 Institute, University of California, Berkeley, California 94720-3220
- Howard Hughes Medical Institute, Berkeley, California 94720-3220
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, California 94720-3220;
| | - Robert K Louder
- Biophysics Graduate Group, University of California, Berkeley, California 94720-3220
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208-3500
| |
Collapse
|
29
|
Papageorgiou L, Megalooikonomou V, Vlachakis D. Genetic and structural study of DNA-directed RNA polymerase II of Trypanosoma brucei, towards the designing of novel antiparasitic agents. PeerJ 2017; 5:e3061. [PMID: 28265521 PMCID: PMC5335688 DOI: 10.7717/peerj.3061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 02/03/2017] [Indexed: 11/21/2022] Open
Abstract
Trypanosoma brucei brucei (TBB) belongs to the unicellular parasitic protozoa organisms, specifically to the Trypanosoma genus of the Trypanosomatidae class. A variety of different vertebrate species can be infected by TBB, including humans and animals. Under particular conditions, the TBB can be hosted by wild and domestic animals; therefore, an important reservoir of infection always remains available to transmit through tsetse flies. Although the TBB parasite is one of the leading causes of death in the most underdeveloped countries, to date there is neither vaccination available nor any drug against TBB infection. The subunit RPB1 of the TBB DNA-directed RNA polymerase II (DdRpII) constitutes an ideal target for the design of novel inhibitors, since it is instrumental role is vital for the parasite’s survival, proliferation, and transmission. A major goal of the described study is to provide insights for novel anti-TBB agents via a state-of-the-art drug discovery approach of the TBB DdRpII RPB1. In an attempt to understand the function and action mechanisms of this parasite enzyme related to its molecular structure, an in-depth evolutionary study has been conducted in parallel to the in silico molecular designing of the 3D enzyme model, based on state-of-the-art comparative modelling and molecular dynamics techniques. Based on the evolutionary studies results nine new invariant, first-time reported, highly conserved regions have been identified within the DdRpII family enzymes. Consequently, those patches have been examined both at the sequence and structural level and have been evaluated in regard to their pharmacological targeting appropriateness. Finally, the pharmacophore elucidation study enabled us to virtually in silico screen hundreds of compounds and evaluate their interaction capabilities with the enzyme. It was found that a series of chlorine-rich set of compounds were the optimal inhibitors for the TBB DdRpII RPB1 enzyme. All-in-all, herein we present a series of new sites on the TBB DdRpII RPB1 of high pharmacological interest, alongside the construction of the 3D model of the enzyme and the suggestion of a new in silico pharmacophore model for fast screening of potential inhibiting agents.
Collapse
Affiliation(s)
- Louis Papageorgiou
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece; Computational Biology & Medicine Group, Biomedical Research Foundation, Academy of Athens, Athens, Greece; Computer Engineering and Informatics Department, University of Patras, Patra, Greece
| | | | - Dimitrios Vlachakis
- Computational Biology & Medicine Group, Biomedical Research Foundation, Academy of Athens, Athens, Greece; Computer Engineering and Informatics Department, University of Patras, Patra, Greece
| |
Collapse
|
30
|
Weikum ER, Knuesel MT, Ortlund EA, Yamamoto KR. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol 2017; 18:159-174. [PMID: 28053348 PMCID: PMC6257982 DOI: 10.1038/nrm.2016.152] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The glucocorticoid receptor (GR) is a constitutively expressed transcriptional regulatory factor (TRF) that controls many distinct gene networks, each uniquely determined by particular cellular and physiological contexts. The precision of GR-mediated responses seems to depend on combinatorial, context-specific assembly of GR-nucleated transcription regulatory complexes at genomic response elements. In turn, evidence suggests that context-driven plasticity is conferred by the integration of multiple signals, each serving as an allosteric effector of GR conformation, a key determinant of regulatory complex composition and activity. This structural and mechanistic perspective on GR regulatory specificity is likely to extend to other eukaryotic TRFs.
Collapse
Affiliation(s)
- Emily R Weikum
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| | - Matthew T Knuesel
- Department of Cellular and Molecular Pharmacology, University of California San Francisco School of Medicine, 600 16th Street, San Francisco, California 94143, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| | - Keith R Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California San Francisco School of Medicine, 600 16th Street, San Francisco, California 94143, USA
| |
Collapse
|
31
|
Babiychuk E, Hoang KT, Vandepoele K, Van De Slijke E, Geelen D, De Jaeger G, Obokata J, Kushnir S. The mutation nrpb1-A325V in the largest subunit of RNA polymerase II suppresses compromised growth of Arabidopsis plants deficient in a function of the general transcription factor IIF. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:730-745. [PMID: 27862530 DOI: 10.1111/tpj.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
The evolutionarily conserved 12-subunit RNA polymerase II (Pol II) is a central catalytic component that drives RNA synthesis during the transcription cycle that consists of transcription initiation, elongation, and termination. A diverse set of general transcription factors, including a multifunctional TFIIF, govern Pol II selectivity, kinetic properties, and transcription coupling with posttranscriptional processes. Here, we show that TFIIF of Arabidopsis (Arabidopsis thaliana) resembles the metazoan complex that is composed of the TFIIFα and TFIIFβ polypeptides. Arabidopsis has two TFIIFβ subunits, of which TFIIFβ1/MAN1 is essential and TFIIFβ2/MAN2 is not. In the partial loss-of-function mutant allele man1-1, the winged helix domain of Arabidopsis TFIIFβ1/MAN1 was dispensable for plant viability, whereas the cellular organization of the shoot and root apical meristems were abnormal. Forward genetic screening identified an epistatic interaction between the largest Pol II subunit nrpb1-A325V variant and the man1-1 mutation. The suppression of the man1-1 mutant developmental defects by a mutation in Pol II suggests a link between TFIIF functions in Arabidopsis transcription cycle and the maintenance of cellular organization in the shoot and root apical meristems.
Collapse
Affiliation(s)
- Elena Babiychuk
- Vale Institute of Technology Sustainable Development, 66055-090, Belém, Pará, Brazil
| | - Khai Trinh Hoang
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- Department of Agriculture and Applied Sciences, Can Tho Technical Economic College, Can Tho, Vietnam
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Junichi Obokata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 606-8522, Japan
| | - Sergei Kushnir
- Vale Institute of Technology Sustainable Development, 66055-090, Belém, Pará, Brazil
| |
Collapse
|
32
|
Hantsche M, Cramer P. Strukturelle Grundlage der Transkription: 10 Jahre nach dem Chemie-Nobelpreis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Merle Hantsche
- Abteilung für Molekularbiologie; Max-Planck-Institut für biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
| | - Patrick Cramer
- Abteilung für Molekularbiologie; Max-Planck-Institut für biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
| |
Collapse
|
33
|
Singh SK, Qiao Z, Song L, Jani V, Rice W, Eng E, Coleman RA, Liu WL. Structural visualization of the p53/RNA polymerase II assembly. Genes Dev 2016; 30:2527-2537. [PMID: 27920087 PMCID: PMC5159667 DOI: 10.1101/gad.285692.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/18/2016] [Indexed: 01/03/2023]
Abstract
Singh et al. dissected the human p53/Pol II interaction via single-particle cryo-electron microscopy, structural docking, and biochemical analyses. These findings indicate that p53 may structurally regulate DNA-binding functions of Pol II via the clamp domain, thereby providing insights into p53-regulated Pol II transcription. The master tumor suppressor p53 activates transcription in response to various cellular stresses in part by facilitating recruitment of the transcription machinery to DNA. Recent studies have documented a direct yet poorly characterized interaction between p53 and RNA polymerase II (Pol II). Therefore, we dissected the human p53/Pol II interaction via single-particle cryo-electron microscopy, structural docking, and biochemical analyses. This study reveals that p53 binds Pol II via the Rpb1 and Rpb2 subunits, bridging the DNA-binding cleft of Pol II proximal to the upstream DNA entry site. In addition, the key DNA-binding surface of p53, frequently disrupted in various cancers, remains exposed within the assembly. Furthermore, the p53/Pol II cocomplex displays a closed conformation as defined by the position of the Pol II clamp domain. Notably, the interaction of p53 and Pol II leads to increased Pol II elongation activity. These findings indicate that p53 may structurally regulate DNA-binding functions of Pol II via the clamp domain, thereby providing insights into p53-regulated Pol II transcription.
Collapse
Affiliation(s)
- Sameer K Singh
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Zhen Qiao
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Lihua Song
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Vijay Jani
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - William Rice
- New York Structural Biology Center, Manhattan, New York 10027, USA
| | - Edward Eng
- New York Structural Biology Center, Manhattan, New York 10027, USA
| | - Robert A Coleman
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Wei-Li Liu
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
34
|
Hantsche M, Cramer P. The Structural Basis of Transcription: 10 Years After the Nobel Prize in Chemistry. Angew Chem Int Ed Engl 2016; 55:15972-15981. [DOI: 10.1002/anie.201608066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Merle Hantsche
- Abteilung für Molekularbiologie; Max Planck Institut für biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Germany
| | - Patrick Cramer
- Abteilung für Molekularbiologie; Max Planck Institut für biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Germany
| |
Collapse
|
35
|
Kim MJ, Jang IC, Chua NH. The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor. PLANT PHYSIOLOGY 2016; 171:1951-64. [PMID: 27246098 PMCID: PMC4936590 DOI: 10.1104/pp.16.00664] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/30/2016] [Indexed: 05/20/2023]
Abstract
The Mediator complex is known to be a master coordinator of transcription by RNA polymerase II, and this complex is recruited by transcription factors (TFs) to target promoters for gene activation or repression. The plant-specific TF WRINKLED1 (WRI1) activates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. However, no Mediator subunit has yet been identified that mediates WRI1 transcriptional activity. Promoter-β-glucuronidase fusion experiments showed that MEDIATOR15 (MED15) is expressed in the same cells in the embryo as WRI1. We found that the Arabidopsis (Arabidopsis thaliana) MED15 subunit of the Mediator complex interacts directly with WRI1 in the nucleus. Overexpression of MED15 or WRI1 increased transcript levels of WRI1 target genes involved in glycolysis and fatty acid biosynthesis; these genes were down-regulated in wild-type or WRI1-overexpressing plants by silencing of MED15 However, overexpression of MED15 in the wri1 mutant also increased transcript levels of WRI1 target genes, suggesting that MED15 also may act with other TFs to activate downstream lipid-related genes. Chromatin immunoprecipitation assays confirmed the association of MED15 with six WRI1 target gene promoters. Additionally, silencing of MED15 resulted in reduced fatty acid content in seedlings and mature seeds, whereas MED15 overexpression increased fatty acid content in both developmental stages. Similar results were found in wri1 mutant and WRI1 overexpression lines. Together, our results indicate that the WRI1/MED15 complex transcriptionally regulates glycolysis-related and fatty acid biosynthetic genes during embryogenesis.
Collapse
Affiliation(s)
- Mi Jung Kim
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604 (M.J.K., I.-C.J.); andLaboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065 (N.-H.C.)
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604 (M.J.K., I.-C.J.); andLaboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065 (N.-H.C.)
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604 (M.J.K., I.-C.J.); andLaboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065 (N.-H.C.)
| |
Collapse
|
36
|
Eukaryotic Transcription Regulation: Getting to the Heart of the Matter: Commentary on Mediator Architecture and RNA Polymerase II Function by Plaschka et al. J Mol Biol 2016; 428:2575-2580. [DOI: 10.1016/j.jmb.2016.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 11/18/2022]
|
37
|
Plaschka C, Nozawa K, Cramer P. Mediator Architecture and RNA Polymerase II Interaction. J Mol Biol 2016; 428:2569-2574. [PMID: 26851380 DOI: 10.1016/j.jmb.2016.01.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/18/2022]
Abstract
Integrated structural biology recently elucidated the architecture of Mediator and its position on RNA polymerase II. Here we summarize these achievements and list open questions on Mediator structure and mechanism.
Collapse
Affiliation(s)
- Clemens Plaschka
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077, Göttingen, Germany
| | - Kayo Nozawa
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077, Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
38
|
Carlsten JO, Zhu X, Dávila López M, Samuelsson T, Gustafsson CM. Loss of the Mediator subunit Med20 affects transcription of tRNA and other non-coding RNA genes in fission yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:339-47. [DOI: 10.1016/j.bbagrm.2015.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022]
|
39
|
Bernecky C, Herzog F, Baumeister W, Plitzko JM, Cramer P. Structure of transcribing mammalian RNA polymerase II. Nature 2016; 529:551-4. [DOI: 10.1038/nature16482] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022]
|
40
|
Luse DS. The RNA polymerase II preinitiation complex. Through what pathway is the complex assembled? Transcription 2015; 5:e27050. [PMID: 25764109 DOI: 10.4161/trns.27050] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The general transcription factors required for the assembly of the RNA polymerase II preinitiation complex at TATA-dependent promoters are well known. However, recent studies point to two quite distinct pathways for assembly of these components into functional transcription complexes. In this review, the two pathways are compared and potential implications for gene regulatory mechanisms are discussed.
Collapse
Affiliation(s)
- Donal S Luse
- a Department of Molecular Genetics; Lerner Research Institute; Cleveland Clinic; Cleveland, OH USA
| |
Collapse
|
41
|
Fuzzy complexes: Specific binding without complete folding. FEBS Lett 2015; 589:2533-42. [PMID: 26226339 DOI: 10.1016/j.febslet.2015.07.022] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 12/17/2022]
Abstract
Specific molecular recognition is assumed to require a well-defined set of contacts and devoid of conformational and interaction ambiguities. Growing experimental evidence demonstrates however, that structural multiplicity or dynamic disorder can be retained in protein complexes, termed as fuzziness. Fuzzy regions establish alternative contacts between specific partners usually via transient interactions. Nature often tailors the dynamic properties of these segments via post-translational modifications or alternative splicing to fine-tune affinity. Most experimentally characterized fuzzy complexes are involved in regulation of gene-expression, signal transduction and cell-cycle regulation. Fuzziness is also characteristic to viral protein complexes, cytoskeleton structure, and surprisingly in a few metabolic enzymes. A plausible role of fuzzy complexes in increasing half-life of intrinsically disordered proteins is also discussed.
Collapse
|
42
|
Clark AD, Oldenbroek M, Boyer TG. Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol 2015; 50:393-426. [PMID: 26182352 DOI: 10.3109/10409238.2015.1064854] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.
Collapse
Affiliation(s)
- Alison D Clark
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Marieke Oldenbroek
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Thomas G Boyer
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| |
Collapse
|
43
|
Allen BL, Taatjes DJ. The Mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 2015; 16:155-66. [PMID: 25693131 DOI: 10.1038/nrm3951] [Citation(s) in RCA: 657] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The RNA polymerase II (Pol II) enzyme transcribes all protein-coding and most non-coding RNA genes and is globally regulated by Mediator - a large, conformationally flexible protein complex with a variable subunit composition (for example, a four-subunit cyclin-dependent kinase 8 module can reversibly associate with it). These biochemical characteristics are fundamentally important for Mediator's ability to control various processes that are important for transcription, including the organization of chromatin architecture and the regulation of Pol II pre-initiation, initiation, re-initiation, pausing and elongation. Although Mediator exists in all eukaryotes, a variety of Mediator functions seem to be specific to metazoans, which is indicative of more diverse regulatory requirements.
Collapse
Affiliation(s)
- Benjamin L Allen
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Dylan J Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|
44
|
Abstract
Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtained. Although mechanistic details await elucidation, available data outline how Pol II cooperates with the general transcription factors to bind to and open promoter DNA, and how Pol II directs RNA synthesis and escapes from the promoter.
Collapse
|
45
|
Plaschka C, Larivière L, Wenzeck L, Seizl M, Hemann M, Tegunov D, Petrotchenko EV, Borchers CH, Baumeister W, Herzog F, Villa E, Cramer P. Architecture of the RNA polymerase II-Mediator core initiation complex. Nature 2015; 518:376-80. [PMID: 25652824 DOI: 10.1038/nature14229] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/14/2015] [Indexed: 12/12/2022]
Abstract
The conserved co-activator complex Mediator enables regulated transcription initiation by RNA polymerase (Pol) II. Here we reconstitute an active 15-subunit core Mediator (cMed) comprising all essential Mediator subunits from Saccharomyces cerevisiae. The cryo-electron microscopic structure of cMed bound to a core initiation complex was determined at 9.7 Å resolution. cMed binds Pol II around the Rpb4-Rpb7 stalk near the carboxy-terminal domain (CTD). The Mediator head module binds the Pol II dock and the TFIIB ribbon and stabilizes the initiation complex. The Mediator middle module extends to the Pol II foot with a 'plank' that may influence polymerase conformation. The Mediator subunit Med14 forms a 'beam' between the head and middle modules and connects to the tail module that is predicted to bind transcription activators located on upstream DNA. The Mediator 'arm' and 'hook' domains contribute to a 'cradle' that may position the CTD and TFIIH kinase to stimulate Pol II phosphorylation.
Collapse
Affiliation(s)
- C Plaschka
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - L Larivière
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - L Wenzeck
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - M Seizl
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - M Hemann
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - D Tegunov
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - E V Petrotchenko
- Department of Biochemistry and Microbiology, Genome British Columbia Protein Centre, University of Victoria, 3101-4464 Markham Street, Victoria, British Columbia V8Z7X8, Canada
| | - C H Borchers
- Department of Biochemistry and Microbiology, Genome British Columbia Protein Centre, University of Victoria, 3101-4464 Markham Street, Victoria, British Columbia V8Z7X8, Canada
| | - W Baumeister
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - F Herzog
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - E Villa
- 1] Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany [2] Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - P Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
46
|
Fuxreiter M, Tóth-Petróczy Á, Kraut DA, Matouschek AT, Lim RYH, Xue B, Kurgan L, Uversky VN. Disordered proteinaceous machines. Chem Rev 2014; 114:6806-43. [PMID: 24702702 PMCID: PMC4350607 DOI: 10.1021/cr4007329] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Monika Fuxreiter
- MTA-DE
Momentum Laboratory of Protein Dynamics, Department of Biochemistry
and Molecular Biology, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Ágnes Tóth-Petróczy
- Department
of Biological Chemistry, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Daniel A. Kraut
- Department
of Chemistry, Villanova University, 800 East Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - Andreas T. Matouschek
- Section
of Molecular Genetics and Microbiology, Institute for Cellular &
Molecular Biology, The University of Texas
at Austin, 2506 Speedway, Austin, Texas 78712, United States
| | - Roderick Y. H. Lim
- Biozentrum
and the Swiss Nanoscience Institute, University
of Basel, Klingelbergstrasse
70, CH-4056 Basel, Switzerland
| | - Bin Xue
- Department of Cell Biology,
Microbiology and Molecular Biology, College
of Fine Arts and Sciences, and Department of Molecular Medicine and USF Health
Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Lukasz Kurgan
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Vladimir N. Uversky
- Department of Cell Biology,
Microbiology and Molecular Biology, College
of Fine Arts and Sciences, and Department of Molecular Medicine and USF Health
Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute
for Biological Instrumentation, Russian
Academy of Sciences, 142290 Pushchino, Moscow Region 119991, Russia
| |
Collapse
|
47
|
Tsai KL, Tomomori-Sato C, Sato S, Conaway RC, Conaway JW, Asturias FJ. Subunit architecture and functional modular rearrangements of the transcriptional mediator complex. Cell 2014; 157:1430-1444. [PMID: 24882805 DOI: 10.1016/j.cell.2014.05.015] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/18/2014] [Accepted: 05/10/2014] [Indexed: 11/16/2022]
Abstract
The multisubunit Mediator, comprising ∼30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA-binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism.
Collapse
Affiliation(s)
- Kuang-Lei Tsai
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Shigeo Sato
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ronald C Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry & Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Joan W Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry & Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Francisco J Asturias
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
48
|
Pai DA, Kaplan CD, Kweon HK, Murakami K, Andrews PC, Engelke DR. RNAs nonspecifically inhibit RNA polymerase II by preventing binding to the DNA template. RNA (NEW YORK, N.Y.) 2014; 20:644-655. [PMID: 24614752 PMCID: PMC3988566 DOI: 10.1261/rna.040444.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
Many RNAs are known to act as regulators of transcription in eukaryotes, including certain small RNAs that directly inhibit RNA polymerases both in prokaryotes and eukaryotes. We have examined the potential for a variety of RNAs to directly inhibit transcription by yeast RNA polymerase II (Pol II) and find that unstructured RNAs are potent inhibitors of purified yeast Pol II. Inhibition by RNA is achieved by blocking binding of the DNA template and requires binding of the RNA to Pol II prior to open complex formation. RNA is not able to displace a DNA template that is already stably bound to Pol II, nor can RNA inhibit elongating Pol II. Unstructured RNAs are more potent inhibitors than highly structured RNAs and can also block specific transcription initiation in the presence of basal transcription factors. Crosslinking studies with ultraviolet light show that unstructured RNA is most closely associated with the two large subunits of Pol II that comprise the template binding cleft, but the RNA has contacts in a basic residue channel behind the back wall of the active site. These results are distinct from previous observations of specific inhibition by small, structured RNAs in that they demonstrate a sensitivity of the holoenzyme to inhibition by unstructured RNA products that bind to a surface outside the DNA cleft. These results are discussed in terms of the need to prevent inhibition by RNAs, either though sequestration of nascent RNA or preemptive interaction of Pol II with the DNA template.
Collapse
Affiliation(s)
- Dave A. Pai
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Craig D. Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Hye Kyong Kweon
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kenji Murakami
- Department of Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Philip C. Andrews
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - David R. Engelke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
49
|
Guo J, Turek ME, Price DH. Regulation of RNA polymerase II termination by phosphorylation of Gdown1. J Biol Chem 2014; 289:12657-65. [PMID: 24634214 PMCID: PMC4007455 DOI: 10.1074/jbc.m113.537662] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Gdown1 is a substoichiometric subunit of RNA polymerase II (Pol II) that has been recently demonstrated to be involved in stabilizing promoter-proximal paused Pol II. It was shown to inhibit termination of Pol II by transcription termination factor 2 (TTF2) as well as block elongation stimulation by transcription factor IIF (TFIIF). Here, using in vitro transcription assays, we identified two functional domains in Gdown1. Although both are required to maintain a tight association with Pol II, the N- and C-terminal domains are responsible for blocking TTF2 and TFIIF, respectively. A highly conserved LPDKG motif found in the N-terminal domain of Gdown1 is also highly conserved in TTF2. Deletion of this motif eliminated the TTF2 inhibitory activity of Gdown1. We identified a phosphorylated form of Gdown1 with altered mobility in SDS-PAGE that appears during mitosis. A kinase in HeLa nuclear extract that caused the shift was partially purified. In vitro, Gdown1 phosphorylated by this kinase demonstrated reduced activity in blocking both TTF2 and TFIIF because of its reduced affinity for Pol II. Mass spectrometry identified Ser-270 as the site of this phosphorylation. An S270A mutation was not phosphorylated by the partially purified kinase, and an S270E mutation partially mimicked the properties of phospho-Gdown1. Gdown1 Ser-270 phosphorylation occurs predominately during mitosis, and we suggest that this would enable TTF2 to terminate all Pol II even if it is associated with Gdown1.
Collapse
Affiliation(s)
- Jiannan Guo
- From the Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242
| | | | | |
Collapse
|
50
|
Mullen Davis MA, Guo J, Price DH, Luse DS. Functional interactions of the RNA polymerase II-interacting proteins Gdown1 and TFIIF. J Biol Chem 2014; 289:11143-11152. [PMID: 24596085 DOI: 10.1074/jbc.m113.544395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gdown1, the substoichiometric 13th subunit of RNA polymerase II (pol II), has an important role in pausing during the initial stage of transcript elongation. However, Gdown1 quantitatively displaces the essential initiation factor TFIIF from free pol II and elongating pol II. Thus, it is not clear how or even if pol II can initiate in the presence of Gdown1. Using an in vitro transcription system with purified factors and pol II lacking Gdown1, we found that although Gdown1 is strongly inhibitory to transcription when prebound to pol II, a fraction of complexes do remain active. Surprisingly, when Gdown1 is added to complete preinitiation complexes (PICs), it does not inhibit initiation or functionally associate with the PICs. Gdown1 does associate with pol II during the early stage of transcript elongation but this association is competitive with TFIIF. By phosphorylating TFIIF, PICs can be assembled that do not retain TFIIF. Gdown1 also fails to functionally associate with these TFIIF-less PICs, but once polymerase enters transcript elongation, complexes lacking TFIIF quantitatively bind Gdown1. Our results provide a partial resolution of the paradox of the competition between Gdown1 and TFIIF for association with pol II. Although Gdown1 completely displaces TFIIF from free pol II and elongation complexes, Gdown1 does not functionally associate with the PIC. Gdown1 can enter the transcription complex immediately after initiation. Modification of TFIIF provides one pathway through which efficient Gdown1 loading can occur early in elongation, allowing downstream pausing to be regulated.
Collapse
Affiliation(s)
- Melissa A Mullen Davis
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | | | - David H Price
- Department of Biochemistry and; Molecular and Cellular Biology Program, University of Iowa, Iowa City, Iowa 52242
| | - Donal S Luse
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and.
| |
Collapse
|