1
|
Heiman MG, Bülow HE. Dendrite morphogenesis in Caenorhabditis elegans. Genetics 2024; 227:iyae056. [PMID: 38785371 PMCID: PMC11151937 DOI: 10.1093/genetics/iyae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Since the days of Ramón y Cajal, the vast diversity of neuronal and particularly dendrite morphology has been used to catalog neurons into different classes. Dendrite morphology varies greatly and reflects the different functions performed by different types of neurons. Significant progress has been made in our understanding of how dendrites form and the molecular factors and forces that shape these often elaborately sculpted structures. Here, we review work in the nematode Caenorhabditis elegans that has shed light on the developmental mechanisms that mediate dendrite morphogenesis with a focus on studies investigating ciliated sensory neurons and the highly elaborated dendritic trees of somatosensory neurons. These studies, which combine time-lapse imaging, genetics, and biochemistry, reveal an intricate network of factors that function both intrinsically in dendrites and extrinsically from surrounding tissues. Therefore, dendrite morphogenesis is the result of multiple tissue interactions, which ultimately determine the shape of dendritic arbors.
Collapse
Affiliation(s)
- Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
2
|
Lim HK, Kim K, Son YK, Nah SY, Ahn SM, Song M. Gintonin stimulates dendritic growth in striatal neurons by activating Akt and CREB. Front Mol Neurosci 2022; 15:1014497. [PMID: 36385759 PMCID: PMC9643712 DOI: 10.3389/fnmol.2022.1014497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 09/26/2023] Open
Abstract
Gintonin, a glycolipid protein conjugated with lysophosphatidic acid (LPA), is a newly identified compound extracted from Korean ginseng. LPA receptor isotypes exhibit high affinity for gintonin and mediate intracellular calcium signaling in various animal cell models. In this study, we found that gintonin induced the activation of Akt and cAMP-response element binding protein (CREB) in mouse striatal neurons, and chronic treatment with gintonin potently induced dendritic growth and filopodia formation. Gintonin-induced Akt/CREB activation and dendritic development were significantly impaired by LPA receptor (LPAR1/3) inhibition with Ki16425. Intriguingly, prolonged treatment with gintonin ameliorated the reduction in dendritic formation caused by Shank3 and Slitrk5 deficiency in the striatal neurons. In addition, gintonin and brain-derived neurotrophic factor (BDNF) had a synergistic effect on AKT/CREB activation and dendritic growth at suboptimal concentrations. These findings imply that gintonin-stimulated LPA receptors play a role in dendritic growth in striatal neurons and that they may act synergistically with BDNF, which is known to play a role in dendritogenesis.
Collapse
Affiliation(s)
- Hye Kyung Lim
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Kitaek Kim
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Youn Kyoung Son
- National Institute of Biological Resources, Incheon, South Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Soo Min Ahn
- Department of Pediatric Surgery, Metabolic and Bariatric Surgery Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
3
|
Chen Y, Qin Q, Zhao W, Luo D, Huang Y, Liu G, Kuang Y, Cao Y, Chen Y. Carnosol Reduced Pathogenic Protein Aggregation and Cognitive Impairment in Neurodegenerative Diseases Models via Improving Proteostasis and Ameliorating Mitochondrial Disorders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10490-10505. [PMID: 35973126 DOI: 10.1021/acs.jafc.2c02665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, and Huntington's disease are incurable diseases with progressive loss of neural function and require urgent development of effective treatments. Carnosol (CL) reportedly has a pharmacological effect in the prevention of dementia. Nevertheless, the mechanisms of CL's neuroprotection are not entirely clear. The present study aimed to investigate the effects and mechanisms of CL-mediated neuroprotection through Caenorhabditis elegans models. First, CL restored ND protein homeostasis via inhibiting the IIS pathway, regulating MAPK signaling, and simultaneously activating molecular chaperone, thus inhibiting amyloid peptide (Aβ), polyglutamine (polyQ), and α-synuclein (α-syn) deposition and reducing protein disruption-mediated behavioral and cognitive impairments as well as neuronal damages. Furthermore, CL could repair mitochondrial structural damage via improving the mitochondrial membrane protein function and mitochondrial structural homeostasis and improve mitochondrial functional defects via increasing adenosine triphosphate contents, mitochondrial membrane potential, and reactive oxygen species levels, suggesting that CL could improve the ubiquitous mitochondrial defects in NDs. More importantly, we found that CL activated mitochondrial kinetic homeostasis related genes to improve the mitochondrial homeostasis and dysfunction in NDs. Meanwhile, CL up-regulated unc-17, cho-1, and cha-1 genes to alleviate Aβ-mediated cholinergic neurological disorders and activated Notch signaling and the Wnt pathway to diminish polyQ- and α-syn-induced ASH neurons as well as dopaminergic neuron damages. Overall, our study clarified the beneficial anti-ND neuroprotective effects of CL in different aspects and provided new insights into developing CL into products with preventive and therapeutic effects on NDs.
Collapse
Affiliation(s)
- Yun Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Qiao Qin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Wen Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Danxia Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Yingyin Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Yong Kuang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| |
Collapse
|
4
|
Godini R, Fallahi H, Pocock R. The regulatory landscape of neurite development in Caenorhabditis elegans. Front Mol Neurosci 2022; 15:974208. [PMID: 36090252 PMCID: PMC9453034 DOI: 10.3389/fnmol.2022.974208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Neuronal communication requires precise connectivity of neurite projections (axons and dendrites). Developing neurites express cell-surface receptors that interpret extracellular cues to enable correct guidance toward, and connection with, target cells. Spatiotemporal regulation of neurite guidance molecule expression by transcription factors (TFs) is critical for nervous system development and function. Here, we review how neurite development is regulated by TFs in the Caenorhabditis elegans nervous system. By collecting publicly available transcriptome and ChIP-sequencing data, we reveal gene expression dynamics during neurite development, providing insight into transcriptional mechanisms governing construction of the nervous system architecture.
Collapse
Affiliation(s)
- Rasoul Godini
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- *Correspondence: Rasoul Godini,
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Roger Pocock
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Roger Pocock,
| |
Collapse
|
5
|
Cell polarity control by Wnt morphogens. Dev Biol 2022; 487:34-41. [DOI: 10.1016/j.ydbio.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023]
|
6
|
Nechipurenko I, Lavrentyeva S, Sengupta P. GRDN-1/Girdin regulates dendrite morphogenesis and cilium position in two specialized sensory neuron types in C. elegans. Dev Biol 2021; 472:38-51. [PMID: 33460640 DOI: 10.1016/j.ydbio.2020.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Primary cilia are located at the dendritic tips of sensory neurons and house the molecular machinery necessary for detection and transduction of sensory stimuli. The mechanisms that coordinate dendrite extension with cilium position during sensory neuron development are not well understood. Here, we show that GRDN-1, the Caenorhabditis elegans ortholog of the highly conserved scaffold and signaling protein Girdin/GIV, regulates both cilium position and dendrite extension in the postembryonic AQR and PQR gas-sensing neurons. Mutations in grdn-1 disrupt dendrite outgrowth and mislocalize cilia to the soma or proximal axonal segments in AQR, and to a lesser extent, in PQR. GRDN-1 is localized to the basal body and regulates localization of HMR-1/Cadherin to the distal AQR dendrite. However, knockdown of HMR-1 and/or loss of SAX-7/LICAM, molecules previously implicated in sensory dendrite development in C. elegans, do not alter AQR dendrite morphology or cilium position. We find that GRDN-1 localization in AQR is regulated by UNC-116/Kinesin-1, and that correspondingly, unc-116 mutants exhibit severe AQR dendrite outgrowth and cilium positioning defects. In contrast, GRDN-1 and cilium localization in PQR is modulated by LIN-44/Wnt signaling. Together, these findings identify upstream regulators of GRDN-1, and describe new cell-specific roles for this multifunctional protein in sensory neuron development.
Collapse
Affiliation(s)
- Inna Nechipurenko
- Department of Biology, Brandeis University, Waltham, MA, USA; Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA.
| | | | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
7
|
Lin TY, Chen PJ, Yu HH, Hsu CP, Lee CH. Extrinsic Factors Regulating Dendritic Patterning. Front Cell Neurosci 2021; 14:622808. [PMID: 33519386 PMCID: PMC7838386 DOI: 10.3389/fncel.2020.622808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Stereotypic dendrite arborizations are key morphological features of neuronal identity, as the size, shape and location of dendritic trees determine the synaptic input fields and how information is integrated within developed neural circuits. In this review, we focus on the actions of extrinsic intercellular communication factors and their effects on intrinsic developmental processes that lead to dendrite patterning. Surrounding neurons or supporting cells express adhesion receptors and secreted proteins that respectively, act via direct contact or over short distances to shape, size, and localize dendrites during specific developmental stages. The different ligand-receptor interactions and downstream signaling events appear to direct dendrite morphogenesis by converging on two categorical mechanisms: local cytoskeletal and adhesion modulation and global transcriptional regulation of key dendritic growth components, such as lipid synthesis enzymes. Recent work has begun to uncover how the coordinated signaling of multiple extrinsic factors promotes complexity in dendritic trees and ensures robust dendritic patterning.
Collapse
Affiliation(s)
- Tzu-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Ju Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Hsiang Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Hon Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
LeBoeuf B, Chen X, Garcia LR. WNT regulates programmed muscle remodeling through PLC-β and calcineurin in Caenorhabditis elegans males. Development 2020; 147:dev181305. [PMID: 32317273 PMCID: PMC10679511 DOI: 10.1242/dev.181305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 03/31/2020] [Indexed: 11/29/2023]
Abstract
The ability of a muscle to break down and reform fibers is vital for development; however, if unregulated, abnormal muscle remodeling can occur, such as in the heart following cardiac infarction. To study how normal developmental remodeling is mediated, we used fluorescently tagged actin, mutant analyses, Ca2+ imaging and controlled Ca2+ release to determine the mechanisms regulating a conspicuous muscle change that occurs in Caenorhabditis elegans males. In hermaphrodites and larval males, the single cell anal depressor muscle, used for waste expulsion, contains bilateral dorsal-ventral sarcomeres. However, prior to male adulthood, the muscle sex-specifically remodels its sarcomeres anteriorly-posteriorly to promote copulation behavior. Although WNT signaling and calcineurin have been implicated separately in muscle remodeling, we unexpectedly found that they participate in the same pathway. We show that WNT signaling through Gαo and PLC-β results in sustained Ca2+ release via IP3 and ryanodine receptors to activate calcineurin. These results highlight the utility of this new model in identifying additional molecules involved in muscle remodeling.
Collapse
Affiliation(s)
- Brigitte LeBoeuf
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Xin Chen
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Luis Rene Garcia
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Luo J, Ting CY, Li Y, McQueen P, Lin TY, Hsu CP, Lee CH. Antagonistic regulation by insulin-like peptide and activin ensures the elaboration of appropriate dendritic field sizes of amacrine neurons. eLife 2020; 9:50568. [PMID: 32175842 PMCID: PMC7075694 DOI: 10.7554/elife.50568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/05/2020] [Indexed: 01/09/2023] Open
Abstract
Establishing appropriate sizes and shapes of dendritic arbors is critical for proper wiring of the central nervous system. Here we report that Insulin-like Peptide 2 (DILP2) locally activates transiently expressed insulin receptors in the central dendrites of Drosophila Dm8 amacrine neurons to positively regulate dendritic field elaboration. We found DILP2 was expressed in L5 lamina neurons, which have axonal terminals abutting Dm8 dendrites. Proper Dm8 dendrite morphogenesis and synapse formation required insulin signaling through TOR (target of rapamycin) and SREBP (sterol regulatory element-binding protein), acting in parallel with previously identified negative regulation by Activin signaling to provide robust control of Dm8 dendrite elaboration. A simulation of dendritic growth revealed trade-offs between dendritic field size and robustness when branching and terminating kinetic parameters were constant, but dynamic modulation of the parameters could mitigate these trade-offs. We suggest that antagonistic DILP2 and Activin signals from different afferents appropriately size Dm8 dendritic fields.
Collapse
Affiliation(s)
- Jiangnan Luo
- Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Chun-Yuan Ting
- Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Yan Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Philip McQueen
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, United States
| | - Tzu-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chi-Hon Lee
- Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
10
|
Long-term activity drives dendritic branch elaboration of a C. elegans sensory neuron. Dev Biol 2020; 461:66-74. [PMID: 31945343 PMCID: PMC7170766 DOI: 10.1016/j.ydbio.2020.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Neuronal activity often leads to alterations in gene expression and cellular architecture. The nematode Caenorhabditis elegans, owing to its compact translucent nervous system, is a powerful system in which to study conserved aspects of the development and plasticity of neuronal morphology. Here we focus on one pair of sensory neurons, termed URX, which the worm uses to sense and avoid high levels of environmental oxygen. Previous studies have reported that the URX neuron pair has variable branched endings at its dendritic sensory tip. By controlling oxygen levels and analyzing mutants, we found that these microtubule-rich branched endings grow over time as a consequence of neuronal activity in adulthood. We also find that the growth of these branches correlates with an increase in cellular sensitivity to particular ranges of oxygen that is observable in the behavior of older worms. Given the strengths of C. elegans as a model organism, URX may serve as a potent system for uncovering genes and mechanisms involved in activity-dependent morphological changes in neurons and possible adaptive changes in the aging nervous system. The dendritic tip of an oxygen-sensing neuron grows elaborate microtubule-rich processes in adult C. elegans. Dendritic tip elaboration depends on the long-term activity of the neuron and calcium. The elaboration correlates with increased sensitivity of the neuron to certain ranges of oxygen as well as higher avoidance of oxygen during bordering behavior. The dendritic tip changes may reflect adaptive changes in physiology and behavior during adulthood.
Collapse
|
11
|
Yoong LF, Pai YJ, Moore AW. Stages and transitions in dendrite arbor differentiation. Neurosci Res 2019; 138:70-78. [DOI: 10.1016/j.neures.2018.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022]
|
12
|
He CW, Liao CP, Pan CL. Wnt signalling in the development of axon, dendrites and synapses. Open Biol 2018; 8:rsob.180116. [PMID: 30282660 PMCID: PMC6223216 DOI: 10.1098/rsob.180116] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Wnts are a highly conserved family of secreted glycoproteins that play essential roles in the morphogenesis and body patterning during the development of metazoan species. In recent years, mounting evidence has revealed important functions of Wnt signalling in diverse aspects of neural development, including neuronal polarization, guidance and branching of the axon and dendrites, as well as synapse formation and its structural remodelling. In contrast to Wnt signalling in cell proliferation and differentiation, which mostly acts through β-catenin-dependent pathways, Wnts engage a diverse array of non-transcriptional cascades in neuronal development, such as the planar cell polarity, cytoskeletal or calcium signalling pathways. In this review, we summarize recent advances in the mechanisms of Wnt signalling in the development of axon, dendrite and synapse formation.
Collapse
Affiliation(s)
- Chun-Wei He
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| | - Chien-Po Liao
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| | - Chun-Liang Pan
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| |
Collapse
|
13
|
Saied-Santiago K, Townley RA, Attonito JD, da Cunha DS, Díaz-Balzac CA, Tecle E, Bülow HE. Coordination of Heparan Sulfate Proteoglycans with Wnt Signaling To Control Cellular Migrations and Positioning in Caenorhabditis elegans. Genetics 2017; 206:1951-1967. [PMID: 28576860 PMCID: PMC5560800 DOI: 10.1534/genetics.116.198739] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/20/2017] [Indexed: 11/18/2022] Open
Abstract
Heparan sulfates (HS) are linear polysaccharides with complex modification patterns, which are covalently bound via conserved attachment sites to core proteins to form heparan sulfate proteoglycans (HSPGs). HSPGs regulate many aspects of the development and function of the nervous system, including cell migration, morphology, and network connectivity. HSPGs function as cofactors for multiple signaling pathways, including the Wnt-signaling molecules and their Frizzled receptors. To investigate the functional interactions among the HSPG and Wnt networks, we conducted genetic analyses of each, and also between these networks using five cellular migrations in the nematode Caenorhabditis elegans We find that HSPG core proteins act genetically in a combinatorial fashion dependent on the cellular contexts. Double mutant analyses reveal distinct redundancies among HSPGs for different migration events, and different cellular migrations require distinct heparan sulfate modification patterns. Our studies reveal that the transmembrane HSPG SDN-1/Syndecan functions within the migrating cell to promote cellular migrations, while the GPI-linked LON-2/Glypican functions cell nonautonomously to establish the final cellular position. Genetic analyses with the Wnt-signaling system show that (1) a given HSPG can act with different Wnts and Frizzled receptors, and that (2) a given Wnt/Frizzled pair acts with different HSPGs in a context-dependent manner. Lastly, we find that distinct HSPG and Wnt/Frizzled combinations serve separate functions to promote cellular migration and establish position of specific neurons. Our studies suggest that HSPGs use structurally diverse glycans in coordination with Wnt-signaling pathways to control multiple cellular behaviors, including cellular and axonal migrations and, cellular positioning.
Collapse
Affiliation(s)
| | - Robert A Townley
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - John D Attonito
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Dayse S da Cunha
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Carlos A Díaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Eillen Tecle
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
14
|
Regulation of WNT Signaling at the Neuromuscular Junction by the Immunoglobulin Superfamily Protein RIG-3 in Caenorhabditis elegans. Genetics 2017; 206:1521-1534. [PMID: 28515212 PMCID: PMC5500148 DOI: 10.1534/genetics.116.195297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 05/11/2017] [Indexed: 12/17/2022] Open
Abstract
Perturbations in synaptic function could affect the normal behavior of an animal, making it important to understand the regulatory mechanisms of synaptic signaling. Previous work has shown that in Caenorhabditis elegans an immunoglobulin superfamily protein, RIG-3, functions in presynaptic neurons to maintain normal acetylcholine receptor levels at the neuromuscular junction (NMJ). In this study, we elucidate the molecular and functional mechanism of RIG-3. We demonstrate by genetic and BiFC (Bi-molecular Fluorescence Complementation) assays that presynaptic RIG-3 functions by directly interacting with the immunoglobulin domain of the nonconventional Wnt receptor, ROR receptor tyrosine kinase (RTK), CAM-1, which functions in postsynaptic body-wall muscles. This interaction in turn inhibits Wnt/LIN-44 signaling through the ROR/CAM-1 receptor, and allows for maintenance of normal acetylcholine receptor, AChR/ACR-16, levels at the neuromuscular synapse. Further, this work reveals that RIG-3 and ROR/CAM-1 function through the β-catenin/HMP-2 at the NMJ. Taken together, our results demonstrate that RIG-3 functions as an inhibitory molecule of the Wnt/LIN-44 signaling pathway through the RTK, CAM-1.
Collapse
|
15
|
Wnt Ligands Differentially Regulate Toxicity and Translocation of Graphene Oxide through Different Mechanisms in Caenorhabditis elegans. Sci Rep 2016; 6:39261. [PMID: 27958363 PMCID: PMC5153639 DOI: 10.1038/srep39261] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/22/2016] [Indexed: 01/24/2023] Open
Abstract
In this study, we investigated the possible involvement of Wnt signals in the control of graphene oxide (GO) toxicity using the in vivo assay system of Caenorhabditis elegans. In nematodes, the Wnt ligands, CWN-1, CWN-2, and LIN-44, were found to be involved in the control of GO toxicity. Mutation of cwn-1 or lin-44 gene induced a resistant property to GO toxicity and resulted in the decreased accumulation of GO in the body of nematodes, whereas mutation of cwn-2 gene induces a susceptible property to GO toxicity and an enhanced accumulation of GO in the body of nematodes. Genetic interaction assays demonstrated that mutation of cwn-1 or lin-44 was able to suppress the susceptibility to GO toxicity shown in the cwn-2 mutants. Loss-of-function mutations in all three of these Wnt ligand genes resulted in the resistance of nematodes to GO toxicity. Moreover, the Wnt ligands might differentially regulate the toxicity and translocation of GO through different mechanisms. These findings could be important in understanding the function of Wnt signals in the regulation of toxicity from environmental nanomaterials.
Collapse
|
16
|
Chisholm AD, Hutter H, Jin Y, Wadsworth WG. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans. Genetics 2016; 204:849-882. [PMID: 28114100 PMCID: PMC5105865 DOI: 10.1534/genetics.115.186262] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment.
Collapse
Affiliation(s)
| | - Harald Hutter
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, and
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, Chevy Chase, Maryland, and
| | - William G Wadsworth
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
17
|
Li X, Wang Y, Wang H, Liu T, Guo J, Yi W, Li Y. Epithelia-derived wingless regulates dendrite directional growth of drosophila ddaE neuron through the Fz-Fmi-Dsh-Rac1 pathway. Mol Brain 2016; 9:46. [PMID: 27129721 PMCID: PMC4850637 DOI: 10.1186/s13041-016-0228-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/21/2016] [Indexed: 11/23/2022] Open
Abstract
Background Proper dendrite patterning is critical for the receiving and processing of information in the nervous system. Cell-autonomous molecules have been extensively studied in dendrite morphogenesis; however, the regulatory mechanisms of environmental factors in dendrite growth remain to be elucidated. Results By evaluating the angle between two primary dendrites (PD-Angle), we found that the directional growth of the primary dendrites of a Drosophila periphery sensory neuron ddaE is regulated by the morphogen molecule Wingless (Wg). During the early stage of dendrite growth, Wg is expressed in a group of epithelial cells posteriorly adjacent to ddaE. When Wg expression is reduced or shifted anteriorly, the PD-Angle is markedly decreased. Furthermore, Wg receptor Frizzled functions together with Flamingo and Dishevelled in transducing the Wg signal into ddaE neuron, and the downstream signal is mediated by non-canonical Wnt pathway through Rac1. Conclusions In conclusion, we reveal that epithelia-derived Wg plays a repulsive role in regulating the directional growth of dendrites through the non-canonical Wnt pathway. Thus, our findings provide strong in vivo evidence on how environmental signals serve as spatial cues for dendrite patterning. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0228-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoting Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huan Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongtong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Guo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Yi
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
18
|
Dishevelled attenuates the repelling activity of Wnt signaling during neurite outgrowth in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2015; 112:13243-8. [PMID: 26460008 DOI: 10.1073/pnas.1518686112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wnt proteins regulate axonal outgrowth along the anterior-posterior axis, but the intracellular mechanisms that modulate the strength of Wnt signaling in axon guidance are largely unknown. Using the Caenorhabditis elegans mechanosensory PLM neurons, we found that posteriorly enriched LIN-44/Wnt acts as a repellent to promote anteriorly directed neurite outgrowth through the LIN-17/Frizzled receptor, instead of controlling neuronal polarity as previously thought. Dishevelled (Dsh) proteins DSH-1 and MIG-5 redundantly mediate the repulsive activity of the Wnt signals to induce anterior outgrowth, whereas DSH-1 also provides feedback inhibition to attenuate the signaling to allow posterior outgrowth against the Wnt gradient. This inhibitory function of DSH-1, which requires its dishevelled, Egl-10, and pleckstrin (DEP) domain, acts by promoting LIN-17 phosphorylation and is antagonized by planar cell polarity signaling components Van Gogh (VANG-1) and Prickle (PRKL-1). Our results suggest that Dsh proteins both respond to Wnt signals to shape neuronal projections and moderate its activity to fine-tune neuronal morphology.
Collapse
|
19
|
Schouteden C, Serwas D, Palfy M, Dammermann A. The ciliary transition zone functions in cell adhesion but is dispensable for axoneme assembly in C. elegans. J Cell Biol 2015; 210:35-44. [PMID: 26124290 PMCID: PMC4493997 DOI: 10.1083/jcb.201501013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/01/2015] [Indexed: 12/24/2022] Open
Abstract
C. elegans transition zone structures are dispensable for axoneme assembly but are required for cell–matrix interactions during neurite extension, revealing an unexpected role for the transition zone in cell adhesion. Cilia are cellular projections that perform sensory and motile functions. A key ciliary subdomain is the transition zone, which lies between basal body and axoneme. Previous work in Caenorhabditis elegans identified two ciliopathy-associated protein complexes or modules that direct assembly of transition zone Y-links. Here, we identify C. elegans CEP290 as a component of a third module required to form an inner scaffolding structure called the central cylinder. Co-inhibition of all three modules completely disrupted transition zone structure. Surprisingly, axoneme assembly was only mildly perturbed. However, dendrite extension by retrograde migration was strongly impaired, revealing an unexpected role for the transition zone in cell adhesion.
Collapse
Affiliation(s)
- Clementine Schouteden
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Daniel Serwas
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Mate Palfy
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Alexander Dammermann
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| |
Collapse
|
20
|
Hartin SN, Hudson ML, Yingling C, Ackley BD. A Synthetic Lethal Screen Identifies a Role for Lin-44/Wnt in C. elegans Embryogenesis. PLoS One 2015; 10:e0121397. [PMID: 25938228 PMCID: PMC4418752 DOI: 10.1371/journal.pone.0121397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/31/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The C. elegans proteins PTP-3/LAR-RPTP and SDN-1/Syndecan are conserved cell adhesion molecules. Loss-of-function (LOF) mutations in either ptp-3 or sdn-1 result in low penetrance embryonic developmental defects. Work from other systems has shown that syndecans can function as ligands for LAR receptors in vivo. We used double mutant analysis to test whether ptp-3 and sdn-1 function in a linear genetic pathway during C. elegans embryogenesis. RESULTS We found animals with LOF in both sdn-1 and ptp-3 exhibited a highly penetrant synthetic lethality (SynLet), with only a small percentage of animals surviving to adulthood. Analysis of the survivors demonstrated that these animals had a synergistic increase in the penetrance of embryonic developmental defects. Together, these data strongly suggested PTP-3 and SDN-1 function in parallel during embryogenesis. We subsequently used RNAi to knockdown ~3,600 genes predicted to encode secreted and/or transmembrane molecules to identify genes that interacted with ptp-3 or sdn-1. We found that the Wnt ligand, lin-44, was SynLet with sdn-1, but not ptp-3. We used 4-dimensional time-lapse analysis to characterize the interaction between lin-44 and sdn-1. We found evidence that loss of lin-44 caused defects in the polarization and migration of endodermal precursors during gastrulation, a previously undescribed role for lin-44 that is strongly enhanced by the loss of sdn-1. CONCLUSIONS PTP-3 and SDN-1 function in compensatory pathways during C. elegans embryonic and larval development, as simultaneous loss of both genes has dire consequences for organismal survival. The Wnt ligand lin-44 contributes to the early stages of gastrulation in parallel to sdn-1, but in a genetic pathway with ptp-3. Overall, the SynLet phenotype provides a robust platform to identify ptp-3 and sdn-1 interacting genes, as well as other genes that function in development, yet might be missed in traditional forward genetic screens.
Collapse
Affiliation(s)
- Samantha N. Hartin
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States of America
| | - Martin L. Hudson
- Department of Biology and Physics, Kennesaw State University, Kennesaw, GA, United States of America
| | - Curtis Yingling
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States of America
| | - Brian D. Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States of America
- * E-mail:
| |
Collapse
|
21
|
Bian WJ, Miao WY, He SJ, Wan ZF, Luo ZG, Yu X. A novel Wnt5a-Frizzled4 signaling pathway mediates activity-independent dendrite morphogenesis via the distal PDZ motif of Frizzled 4. Dev Neurobiol 2014; 75:805-22. [DOI: 10.1002/dneu.22250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 10/20/2014] [Accepted: 11/22/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Wen-Jie Bian
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200031 China
- University of Chinese Academy of Sciences; Shanghai 200031 China
| | - Wan-Ying Miao
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200031 China
| | - Shun-Ji He
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200031 China
| | - Zong-Fang Wan
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200031 China
| | - Zhen-Ge Luo
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200031 China
| | - Xiang Yu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200031 China
| |
Collapse
|
22
|
The Nesprin family member ANC-1 regulates synapse formation and axon termination by functioning in a pathway with RPM-1 and β-Catenin. PLoS Genet 2014; 10:e1004481. [PMID: 25010424 PMCID: PMC4091705 DOI: 10.1371/journal.pgen.1004481] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 05/16/2014] [Indexed: 01/08/2023] Open
Abstract
Mutations in Nesprin-1 and 2 (also called Syne-1 and 2) are associated with numerous diseases including autism, cerebellar ataxia, cancer, and Emery-Dreifuss muscular dystrophy. Nesprin-1 and 2 have conserved orthologs in flies and worms called MSP-300 and abnormal nuclear Anchorage 1 (ANC-1), respectively. The Nesprin protein family mediates nuclear and organelle anchorage and positioning. In the nervous system, the only known function of Nesprin-1 and 2 is in regulation of neurogenesis and neural migration. It remains unclear if Nesprin-1 and 2 regulate other functions in neurons. Using a proteomic approach in C. elegans, we have found that ANC-1 binds to the Regulator of Presynaptic Morphology 1 (RPM-1). RPM-1 is part of a conserved family of signaling molecules called Pam/Highwire/RPM-1 (PHR) proteins that are important regulators of neuronal development. We have found that ANC-1, like RPM-1, regulates axon termination and synapse formation. Our genetic analysis indicates that ANC-1 functions via the β-catenin BAR-1, and the ANC-1/BAR-1 pathway functions cell autonomously, downstream of RPM-1 to regulate neuronal development. Further, ANC-1 binding to the nucleus is required for its function in axon termination and synapse formation. We identify variable roles for four different Wnts (LIN-44, EGL-20, CWN-1 and CWN-2) that function through BAR-1 to regulate axon termination. Our study highlights an emerging, broad role for ANC-1 in neuronal development, and unveils a new and unexpected mechanism by which RPM-1 functions. The molecular mechanisms that underpin synapse formation and axon termination are central to forming a functional, fully connected nervous system. The PHR proteins are important regulators of neuronal development that function in axon outgrowth and termination, as well as synapse formation. Here we describe the discovery of a novel, conserved pathway that is positively regulated by the C. elegans PHR protein, RPM-1. This pathway is composed of RPM-1, ANC-1 (a Nesprin family protein), and BAR-1 (a canonical β-catenin). Nesprins, such as ANC-1, regulate nuclear anchorage and positioning in multinuclear cells. We now show that in neurons, ANC-1 regulates neuronal development by positively regulating BAR-1. Thus, Nesprins are multi-functional proteins that act through β-catenin to regulate neuronal development, and link the nucleus to the actin cytoskeleton in order to mediate nuclear anchorage and positioning in multi-nuclear cells.
Collapse
|
23
|
Clark CEJ, Richards LJ, Stacker SA, Cooper HM. Wnt5a induces Ryk-dependent and -independent effects on callosal axon and dendrite growth. Growth Factors 2014; 32:11-7. [PMID: 24471468 DOI: 10.3109/08977194.2013.875544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The non-canonical Wnt receptor, Ryk, promotes chemorepulsive axon guidance in the developing mouse brain and spinal cord in response to Wnt5a. Ryk has also been identified as a major suppressor of axonal regrowth after spinal cord injury. Thus, a comprehensive understanding of how growing axons and dendrites respond to Wnt5a-mediated Ryk activation is required if we are to overcome this detrimental activity. Here we undertook a detailed analysis of the effect of Wnt5a/Ryk interactions on axonal and dendritic growth in dissociated embryonic mouse cortical neuron cultures, focusing on callosal neurons known to be responsive to Ryk-induced chemorepulsion. We show that Ryk inhibits axonal growth in response to Wnt5a. We also show that Wnt5a inhibits dendrite growth independently of Ryk. However, this inhibition is relieved when Ryk is present. Therefore, Wnt5a-mediated Ryk activation triggers divergent responses in callosal axons and dendrites in the in vitro context.
Collapse
Affiliation(s)
- Charlotte E J Clark
- Queensland Brain Institute, The University of Queensland, St Lucia , Queensland , Australia
| | | | | | | |
Collapse
|
24
|
Mizumoto K, Shen K. Two Wnts instruct topographic synaptic innervation in C. elegans. Cell Rep 2013; 5:389-96. [PMID: 24139806 DOI: 10.1016/j.celrep.2013.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/18/2013] [Accepted: 09/09/2013] [Indexed: 11/26/2022] Open
Abstract
Gradients of topographic cues play essential roles in the organization of sensory systems by guiding axonal growth cones. Little is known about whether there are additional mechanisms for precise topographic mapping of synaptic connections. Whereas the C. elegans DA8 and DA9 neurons have similar axonal trajectories, their synapses are positioned in distinct but adjacent domains in the anterior-posterior axis. We found that two Wnts, LIN-44 and EGL-20, are responsible for this spatial organization of synapses. Both Wnts form putative posterior-high, anterior-low gradients. The posteriorly expressed LIN-44 inhibits synapse formation in both DA9 and DA8, and creates a synapse-free domain on both axons via LIN-17 /Frizzled. EGL-20, a more anteriorly expressed Wnt, inhibits synapse formation through MIG-1/Frizzled, which is expressed in DA8 but not in DA9. The Wnt-Frizzled specificity and selective Frizzled expression dictate the stereotyped, topographic positioning of synapses between these two neurons.
Collapse
Affiliation(s)
- Kota Mizumoto
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, CA 94305, USA
| | | |
Collapse
|
25
|
Rosso SB, Inestrosa NC. WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci 2013; 7:103. [PMID: 23847469 PMCID: PMC3701138 DOI: 10.3389/fncel.2013.00103] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/12/2013] [Indexed: 01/01/2023] Open
Abstract
The Wnt signaling pathway plays a role in the development of the central nervous system and growing evidence indicates that Wnts also regulates the structure and function of the adult nervous system. Wnt components are key regulators of a variety of developmental processes, including embryonic patterning, cell specification, and cell polarity. In the nervous system, Wnt signaling also regulates the formation and function of neuronal circuits by controlling neuronal differentiation, axon outgrowth and guidance, dendrite development, synaptic function, and neuronal plasticity. Wnt factors can signal through three very well characterized cascades: canonical or β-catenin pathway, planar cell polarity pathway and calcium pathway that control different processes. However, divergent downstream cascades have been identified to control neuronal morphogenesis. In the nervous system, the expression of Wnt proteins is a highly controlled process. In addition, deregulation of Wnt signaling has been associated with neurodegenerative diseases. Here, we will review different aspects of neuronal and dendrite maturation, including spinogenesis and synaptogenesis. Finally, the role of Wnt pathway components on Alzheimer’s disease will be revised.
Collapse
Affiliation(s)
- Silvana B Rosso
- Laboratorio de Toxicología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Rosario, Santa Fe, Argentina
| | | |
Collapse
|
26
|
C. elegans fmi-1/flamingo and Wnt pathway components interact genetically to control the anteroposterior neurite growth of the VD GABAergic neurons. Dev Biol 2013; 377:224-35. [PMID: 23376536 DOI: 10.1016/j.ydbio.2013.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 01/05/2013] [Accepted: 01/10/2013] [Indexed: 11/21/2022]
Abstract
Directed axonal growth is essential to establish neuronal networks. During the early development of the VD neurons, an anterior neurite that will become the VD axon extends along the anteroposterior (A/P) axis in the ventral nerve cord (VNC) in Caenorhabditis elegans. Little is known about the cellular and molecular mechanisms that are important for correct neurite growth in the VNC. In fmi-1/flamingo mutant animals, we observed that some postembryonically born VD neurons had a posterior neurite instead of a normal anterior neurite, which caused aberrant VD commissure patterning along the A/P axis. In addition, VD anterior neurites had underextension defects in the VNC in fmi-1 animals, whereas VD commissure growth along the dorsoventral (D/V) axis occurred normally in these animals, suggesting that fmi-1 is important for neurite growth along the A/P axis but not the D/V axis. We also uncovered unknown details of the early development of the VD neurons, indicating that the neurite defects arose during their early development. Interestingly, though fmi-1 is present at this time in the VNC, we did not observe FMI-1 in the VD neurons themselves, suggesting that fmi-1 might be working in a cell non-autonomous fashion. Furthermore, fmi-1 appears to be working in a novel pathway, independently from the planar cell polarity pathway and in parallel to lin-17/frizzled and dsh-1/dishevelled, to determine the direction of neurite growth. Our findings indicate that redundant developmental pathways regulate neurite growth in the VNC in C. elegans.
Collapse
|
27
|
Colavita A. Planar polarity genes and inhibition of supernumerary neurites. WORM 2012; 1:121-4. [PMID: 24058835 PMCID: PMC3670227 DOI: 10.4161/worm.19537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Planar cell polarity (PCP) genes have recently emerged as important players in sculpting neuronal connections. The bipolar VC neurons display stereotypical differences in axon extension along the anterior-posterior (AP) body axis: VC1–3 and VC6 polarize along the AP axis while VC4 and VC5 polarize along the orthogonal left-right (LR) axis generated by the developing vulva. vang-1 and prkl-1, the worm orthologs of Van Gogh and Prickle, are required to restrict the polarity of neurite emergence to a specific tissue axis. vang-1 and prkl-1 loss results in ectopic VC4 and VC5 neurites extending inappropriately along the AP axis. Conversely, prkl-1 overexpression in VC neurons suppresses neurite formation. These findings suggest that a PCP-like pathway acts to silence or antagonize neuronal responses to polarity cues that would otherwise be permissive for neurite growth.
Collapse
Affiliation(s)
- Antonio Colavita
- Ottawa Hospital Research Institute; Neuroscience Program; Heart and Stroke Foundation Centre for Stroke Recovery; University of Ottawa; Ottawa, ON Canada
| |
Collapse
|