1
|
Amisano F, Mercuri P, Fanara S, Verlaine O, Motte P, Frère JM, Hanikenne M, Galleni M. Outer membrane permeability of Pseudomonas aeruginosa through β-lactams: new evidence on the role of OprD and OpdP porins in antibiotic resistance. Microbiol Spectr 2025; 13:e0049524. [PMID: 40035575 PMCID: PMC11960084 DOI: 10.1128/spectrum.00495-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/19/2024] [Indexed: 03/05/2025] Open
Abstract
Gram-negative bacteria are a major concern for public health, particularly due to the continuous rise of antibiotic resistance. A major factor that helps the development of resistance is the outer membrane that is essential since it acts as a strong permeability barrier to many antibiotics that are effective against other bacteria. In this study, we determine the specific permeability coefficients for various antibiotics in Pseudomonas aeruginosa strains, which differ from each other for their porin expressions. We showed that OprD and OpdP porins contribute both to internalize meropenem and biapenem. Using qRT-PCR, we demonstrated that their expression is dependent of the various phases of cellular growth. We were able to show how the OpdP porin is less expressed in exponential growth phases, while it tends to be produced when the bacterial culture enters into the latent phase, in an inversely proportional way compared to the OprD porin. The deletion of the OpdP porin, in the presence of meropenem at concentrations equivalent to the MIC values, contributes to the selection of carbapenem-resistant strains. Therefore, the presence of mutations/deletions of the OpdP porin should receive greater consideration from a clinical point of view as the use of meropenem at nonoptimal concentrations could lead to the appearance of resistance phenotypes.IMPORTANCECarbapenem-resistant strains of Pseudomonas aeruginosa are among the major threats to public health. The permeability of the outer membrane for the β-lactam antibiotics is one of the major factors that reduce the activity of the antibiotics. In this study, we measure the low permeability coefficient of the P. aeruginosa outer membrane to β-lactams. The methodology we develop to determine the permeability can be applied to other antibiotic families and/or pathogens.
Collapse
Affiliation(s)
- Francesco Amisano
- InBioS, Center for Protein Engineering, Biological Macromolecules, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Paola Mercuri
- InBioS, Center for Protein Engineering, Biological Macromolecules, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Steven Fanara
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging and Centre for Assistance in Technology of Microscopy (CAREm), University of Liège, Liège, Belgium
| | - Olivier Verlaine
- InBioS, Center for Protein Engineering, Biological Macromolecules, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Patrick Motte
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging and Centre for Assistance in Technology of Microscopy (CAREm), University of Liège, Liège, Belgium
| | - Jean Marie Frère
- InBioS, Center for Protein Engineering, Biological Macromolecules, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Marc Hanikenne
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging and Centre for Assistance in Technology of Microscopy (CAREm), University of Liège, Liège, Belgium
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Liège, Belgium
| | - Moreno Galleni
- InBioS, Center for Protein Engineering, Biological Macromolecules, Department of Life Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Getz LJ, Robinson OS, Thomas NA. Functional genomics of chitin degradation by Vibrio parahaemolyticus reveals finely integrated metabolic contributions to support environmental fitness. PLoS Genet 2025; 21:e1011370. [PMID: 40029889 PMCID: PMC11906056 DOI: 10.1371/journal.pgen.1011370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 03/13/2025] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
Vibrio species are marine prokaryotes that inhabit diverse ecological niches, colonizing abiotic and biotic surfaces. These bacteria are vital players in the global carbon cycle, assimilating billions of tonnes of chitin for carbon (and nitrogen) metabolites. Many bacterial proteins involved in the process-including chitinases, sugar transporters, and modifying enzymes-have been well studied. However, the genetic functional interplay and key drivers of Vibrio competitive survival in the presence of chitin as the dominant carbon source is not understood. To address this question, we carried out transposon sequencing (Tn-seq) to determine the genetic fitness of Vibrio parahaemolyticus mutants grown on chitin as a sole carbon source. Along with validating known Vibrio genes associated with chitin metabolism, our data newly identified vital roles for an unclassified OprD-like import chitoporin and a HexR family transcriptional regulator. Furthermore, we functionally implicated HexR in regulating multiple physiological processes involved in V. parahaemolyticus environmental survival including carbon assimilation and cell growth, biofilm formation, and cell motility. Under nutrient limiting conditions, our data revealed a requirement for HexR in filamentous cell morphology, a critical trait for V. parahaemolyticus environmental fitness. Therefore, a vital import porin and genomic regulation mediated by HexR support multiple physiological processes for Vibrio chitinolytic growth and environmental fitness.
Collapse
Affiliation(s)
- Landon J. Getz
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Oriana S. Robinson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nikhil A. Thomas
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine (Infectious Diseases), Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
3
|
Mammeri H, Sereme Y, Toumi E, Faury H, Skurnik D. Interplay between porin deficiency, fitness, and virulence in carbapenem-non-susceptible Pseudomonas aeruginosa and Enterobacteriaceae. PLoS Pathog 2025; 21:e1012902. [PMID: 39919103 PMCID: PMC11805372 DOI: 10.1371/journal.ppat.1012902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025] Open
Abstract
The increasing resistance of Gram-negative bacteria to last resort antibiotics, such as carbapenems, is particularly of concern as it is a significant cause of global health threat. In this context, there is an urgent need for better understanding underlying mechanisms leading to antimicrobial resistance in order to limit its diffusion and develop new therapeutic strategies. In this review, we focus on the specific role of porins in carbapenem-resistance in Enterobacteriaceae and Pseudomonas aeruginosa, which are major human pathogens. Porins are outer membrane proteins, which play a key role in the bacterial permeability to allow nutrients to enter and toxic waste to leave. However, these channels are also "Achilles' heel" of bacteria as antibiotics can also pass through them to reach their target and kill the bacteria. After describing normal structures and pathways regulating the expression of porins, we discuss strategies implemented by bacteria to limit the access of carbapenems to their cytoplasmic target. We further examine the real impact of changes in porins on carbapenems susceptibility. Finally, we decipher what is the effect of such changes on bacterial fitness and virulence. Our goal is to integrate all these findings to give a global overview of how bacteria modify their porins to face antibiotic selective pressure trying to not induce fitness cost.
Collapse
Affiliation(s)
- Hedi Mammeri
- Service de Bactériologie, Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Site Cochin, Paris, France
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Youssouf Sereme
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Eya Toumi
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Hélène Faury
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
- Laboratoire de Microbiologie Clinique, AP-HP Centre, Hôpital Necker Enfants Malades, Paris, France
| | - David Skurnik
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
- Laboratoire de Microbiologie Clinique, AP-HP Centre, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
4
|
Szczepaniak J, Webby MN. The Tol Pal system integrates maintenance of the three layered cell envelope. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:46. [PMID: 39843782 PMCID: PMC11721397 DOI: 10.1038/s44259-024-00065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/19/2024] [Indexed: 01/24/2025]
Abstract
The rapid emergence of antibiotic-resistant superbugs poses a significant global health threat. Gram-negative bacteria are the primary culprits due to their robust, tripartite cell envelope. This review explores the emerging role of the trans-envelope Tol-Pal system in maintaining envelope integrity, by connecting envelope layers and serving as a protein interaction hub. Targeting the Tol-Pal system offers a promising approach for the development of novel envelope-disrupting antimicrobials.
Collapse
Affiliation(s)
- Joanna Szczepaniak
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK
| | - Melissa N Webby
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
5
|
Yin C, Alam MZ, Fallon JT, Huang W. Advances in Development of Novel Therapeutic Strategies against Multi-Drug Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2024; 13:119. [PMID: 38391505 PMCID: PMC10885988 DOI: 10.3390/antibiotics13020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) with multi-drug resistance (MDR) is a major cause of serious healthcare-associated infections, leading to high morbidity and mortality. This opportunistic pathogen is responsible for various infectious diseases, such as those seen in cystic fibrosis, ventilator-associated pneumonia, urinary tract infection, otitis externa, and burn and wound injuries. Due to its relatively large genome, P. aeruginosa has great diversity and can use various molecular mechanisms for antimicrobial resistance. For example, outer membrane permeability can contribute to antimicrobial resistance and is determined by lipopolysaccharide (LPS) and porin proteins. Recent findings on the regulatory interaction between peptidoglycan and LPS synthesis provide additional clues against pathogenic P. aeruginosa. This review focuses on recent advances in antimicrobial agents and inhibitors targeting LPS and porin proteins. In addition, we explore current and emerging treatment strategies for MDR P. aeruginosa, including phages, vaccines, nanoparticles, and their combinatorial therapies. Novel strategies and their corresponding therapeutic agents are urgently needed for combating MDR pathogens.
Collapse
Affiliation(s)
- Changhong Yin
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Md Zahidul Alam
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - John T Fallon
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Weihua Huang
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
6
|
Abstract
Gram-negative bacteria are intrinsically resistant to many antibiotics, due in large part to the permeability barrier formed by their cell envelope. The complex and synergistic interplay of the two Gram-negative membranes and active efflux prevents the accumulation of a diverse range of compounds that are effective against Gram-positive bacteria. A lack of detailed information on how components of the cell envelope contribute to this has been identified as a key barrier to the rational development of new antibiotics with efficacy against Gram-negative species. This review describes the current understanding of the role of the different components of the Gram-negative cell envelope in preventing compound accumulation and the state of efforts to describe properties that allow compounds to overcome this barrier and apply them to the development of new broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Claire Maher
- College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Karl A. Hassan
- College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
7
|
Mayse LA, Movileanu L. Gating of β-Barrel Protein Pores, Porins, and Channels: An Old Problem with New Facets. Int J Mol Sci 2023; 24:12095. [PMID: 37569469 PMCID: PMC10418385 DOI: 10.3390/ijms241512095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
β barrels are ubiquitous proteins in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria. These transmembrane proteins (TMPs) execute a wide variety of tasks. For example, they can serve as transporters, receptors, membrane-bound enzymes, as well as adhesion, structural, and signaling elements. In addition, multimeric β barrels are common structural scaffolds among many pore-forming toxins. Significant progress has been made in understanding the functional, structural, biochemical, and biophysical features of these robust and versatile proteins. One frequently encountered fundamental trait of all β barrels is their voltage-dependent gating. This process consists of reversible or permanent conformational transitions between a large-conductance, highly permeable open state and a low-conductance, solute-restrictive closed state. Several intrinsic molecular mechanisms and environmental factors modulate this universal property of β barrels. This review article outlines the typical signatures of voltage-dependent gating. Moreover, we discuss recent developments leading to a better qualitative understanding of the closure dynamics of these TMPs.
Collapse
Affiliation(s)
- Lauren A. Mayse
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244, USA;
- Department of Biomedical and Chemical Engineering, Syracuse University, 223 Link Hall, Syracuse, NY 13244, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244, USA;
- Department of Biomedical and Chemical Engineering, Syracuse University, 223 Link Hall, Syracuse, NY 13244, USA
- The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
8
|
Draveny M, Rose C, Pinet A, Ferrié L, Figadère B, Brunel JM, Masi M. Scope and Limitations of Exploiting the Ability of the Chemosensitizer NV716 to Enhance the Activity of Tetracycline Derivatives against Pseudomonas aeruginosa. Molecules 2023; 28:molecules28114262. [PMID: 37298737 DOI: 10.3390/molecules28114262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The spread of antibiotic resistance is an urgent threat to global health that requires new therapeutic approaches. Treatments for pathogenic Gram-negative bacteria are particularly challenging to identify due to the robust OM permeability barrier in these organisms. One strategy is to use antibiotic adjuvants, a class of drugs that have no significant antibacterial activity on their own but can act synergistically with certain antibiotics. Previous studies described the discovery and development of polyaminoisoprenyl molecules as antibiotic adjuvants with an OM effect. In particular, the compound NV716 has been shown to sensitize Pseudomonas aeruginosa to tetracycline antibiotics such as doxycycline. Here, we sought to explore the disruption of OM to sensitize P. aeruginosa to otherwise inactive antimicrobials using a series of tetracycline derivatives in the presence of NV716. We found that OM disruption expands the hydrophobicity threshold consistent with antibacterial activity to include hydrophobic molecules, thereby altering permeation rules in Gram-negative bacteria.
Collapse
Affiliation(s)
- Margot Draveny
- MCT, INSERM U1261, UMR_MD1, Aix-Marseille Univ. & IRBA SSA, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Clémence Rose
- BioCIS, Bâtiment H. Moissan, Université Paris-Saclay, CNRS, 91400 Orsay, France
| | - Alexis Pinet
- BioCIS, Bâtiment H. Moissan, Université Paris-Saclay, CNRS, 91400 Orsay, France
| | - Laurent Ferrié
- BioCIS, Bâtiment H. Moissan, Université Paris-Saclay, CNRS, 91400 Orsay, France
| | - Bruno Figadère
- BioCIS, Bâtiment H. Moissan, Université Paris-Saclay, CNRS, 91400 Orsay, France
| | - Jean-Michel Brunel
- MCT, INSERM U1261, UMR_MD1, Aix-Marseille Univ. & IRBA SSA, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Muriel Masi
- MCT, INSERM U1261, UMR_MD1, Aix-Marseille Univ. & IRBA SSA, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| |
Collapse
|
9
|
Darby EM, Trampari E, Siasat P, Gaya MS, Alav I, Webber MA, Blair JMA. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol 2023; 21:280-295. [PMID: 36411397 DOI: 10.1038/s41579-022-00820-y] [Citation(s) in RCA: 487] [Impact Index Per Article: 243.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
Abstract
Antibiotic resistance is a global health emergency, with resistance detected to all antibiotics currently in clinical use and only a few novel drugs in the pipeline. Understanding the molecular mechanisms that bacteria use to resist the action of antimicrobials is critical to recognize global patterns of resistance and to improve the use of current drugs, as well as for the design of new drugs less susceptible to resistance development and novel strategies to combat resistance. In this Review, we explore recent advances in understanding how resistance genes contribute to the biology of the host, new structural details of relevant molecular events underpinning resistance, the identification of new resistance gene families and the interactions between different resistance mechanisms. Finally, we discuss how we can use this information to develop the next generation of antimicrobial therapies.
Collapse
Affiliation(s)
- Elizabeth M Darby
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Pauline Siasat
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Ilyas Alav
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.
| |
Collapse
|
10
|
Salvà-Serra F, Jaén-Luchoro D, Marathe NP, Adlerberth I, Moore ERB, Karlsson R. Responses of carbapenemase-producing and non-producing carbapenem-resistant Pseudomonas aeruginosa strains to meropenem revealed by quantitative tandem mass spectrometry proteomics. Front Microbiol 2023; 13:1089140. [PMID: 36845973 PMCID: PMC9948630 DOI: 10.3389/fmicb.2022.1089140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with increasing incidence of multidrug-resistant strains, including resistance to last-resort antibiotics, such as carbapenems. Resistances are often due to complex interplays of natural and acquired resistance mechanisms that are enhanced by its large regulatory network. This study describes the proteomic responses of two carbapenem-resistant P. aeruginosa strains of high-risk clones ST235 and ST395 to subminimal inhibitory concentrations (sub-MICs) of meropenem by identifying differentially regulated proteins and pathways. Strain CCUG 51971 carries a VIM-4 metallo-β-lactamase or 'classical' carbapenemase; strain CCUG 70744 carries no known acquired carbapenem-resistance genes and exhibits 'non-classical' carbapenem-resistance. Strains were cultivated with different sub-MICs of meropenem and analyzed, using quantitative shotgun proteomics based on tandem mass tag (TMT) isobaric labeling, nano-liquid chromatography tandem-mass spectrometry and complete genome sequences. Exposure of strains to sub-MICs of meropenem resulted in hundreds of differentially regulated proteins, including β-lactamases, proteins associated with transport, peptidoglycan metabolism, cell wall organization, and regulatory proteins. Strain CCUG 51971 showed upregulation of intrinsic β-lactamases and VIM-4 carbapenemase, while CCUG 70744 exhibited a combination of upregulated intrinsic β-lactamases, efflux pumps, penicillin-binding proteins and downregulation of porins. All components of the H1 type VI secretion system were upregulated in strain CCUG 51971. Multiple metabolic pathways were affected in both strains. Sub-MICs of meropenem cause marked changes in the proteomes of carbapenem-resistant strains of P. aeruginosa exhibiting different resistance mechanisms, involving a wide range of proteins, many uncharacterized, which might play a role in the susceptibility of P. aeruginosa to meropenem.
Collapse
Affiliation(s)
- Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden,Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain,*Correspondence: Francisco Salvà-Serra, ✉
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | | | - Ingegerd Adlerberth
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden,Nanoxis Consulting AB, Gothenburg, Sweden,Roger Karlsson, ✉
| |
Collapse
|
11
|
Swain A, Pan A. Protein Therapeutic Target Candidates Against Acinetobacter baumannii, a Pathogen of Concern to Planetary Health: A Network-Based Integrative Omics Drug Discovery Approach. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:62-74. [PMID: 36735546 DOI: 10.1089/omi.2022.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Acinetobacter baumannii, an opportunistic gram-negative pathogen responsible for several nosocomial infections, has developed resistance to various antibiotics. Proteins involved in the two-component system (TCS), virulence, and antibiotic resistance (AR), help this pathogen in regulating antibiotic susceptibility and virulence mechanisms. The present study reports a network-based integrative omics approach to drug discovery to identify key regulatory proteins as therapeutic candidates against A. baumannii. We collected data on the TCS, virulence, and AR proteins from various databases (P2CS, VFDB, ARDB, and PAIDB), which were subjected to network, host-pathogen, and gene expression data analysis. Network analysis identified 43 hubs, and 10 proteins were found to be interacting with human proteins associated with vital pathways. Of the 53 (43 + 10) pathogen proteins, 46 had no orthologs in the human host. Twelve proteins, namely, RpfC, Wzc, OmpR, EnvZ, BfmS, PilG, histidine kinase, ABC 3 transport family protein, outer membrane porin OprD family, CsuD, Pgm, and LpxA, were differentially expressed in the resistant strain. We propose these proteins as key regulators that warrant evaluation as therapeutic target candidates in the future. Furthermore, structure prediction of ABC 3 transport family protein was performed as a case study. The findings from this study are poised to facilitate and inform drug discovery and development against A. baumannii.
Collapse
Affiliation(s)
- Aishwarya Swain
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Archana Pan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
12
|
Biggel M, Johler S, Roloff T, Tschudin-Sutter S, Bassetti S, Siegemund M, Egli A, Stephan R, Seth-Smith HMB. PorinPredict: In Silico Identification of OprD Loss from WGS Data for Improved Genotype-Phenotype Predictions of P. aeruginosa Carbapenem Resistance. Microbiol Spectr 2023; 11:e0358822. [PMID: 36715510 PMCID: PMC10100854 DOI: 10.1128/spectrum.03588-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/29/2022] [Indexed: 01/31/2023] Open
Abstract
The increasing integration of genomics into routine clinical diagnostics requires reliable computational tools to identify determinants of antimicrobial resistance (AMR) from whole-genome sequencing data. Here, we developed PorinPredict, a bioinformatic tool that predicts defects of the Pseudomonas aeruginosa outer membrane porin OprD, which are strongly associated with reduced carbapenem susceptibility. PorinPredict relies on a database of intact OprD variants and reports inactivating mutations in the coding or promoter region. PorinPredict was validated against 987 carbapenemase-negative P. aeruginosa genomes, of which OprD loss was predicted for 454 out of 522 (87.0%) meropenem-nonsusceptible and 46 out of 465 (9.9%) meropenem-susceptible isolates. OprD loss was also found to be common among carbapenemase-producing isolates, resulting in even further increased MICs. Chromosomal mutations in quinolone resistance-determining regions and OprD loss commonly co-occurred, likely reflecting the restricted use of carbapenems for multidrug-resistant infections as recommended in antimicrobial stewardship programs. In combination with available AMR gene detection tools, PorinPredict provides a robust and standardized approach to link P. aeruginosa phenotypes to genotypes. IMPORTANCE Pseudomonas aeruginosa is a major cause of multidrug-resistant nosocomial infections. The emergence and spread of clones exhibiting resistance to carbapenems, a class of critical last-line antibiotics, is therefore closely monitored. Carbapenem resistance is frequently mediated by chromosomal mutations that lead to a defective outer membrane porin OprD. Here, we determined the genetic diversity of OprD variants across the P. aeruginosa population and developed PorinPredict, a bioinformatic tool that enables the prediction of OprD loss from whole-genome sequencing data. We show a high correlation between predicted OprD loss and meropenem nonsusceptibility irrespective of the presence of carbapenemases, which are a second widespread determinant of carbapenem resistance. Isolates with resistance determinants to other antibiotics were disproportionally affected by OprD loss, possibly due to an increased exposure to carbapenems. Integration of PorinPredict into genomic surveillance platforms will facilitate a better understanding of the clinical impact of OprD modifications and transmission dynamics of resistant clones.
Collapse
Affiliation(s)
- Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sophia Johler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tim Roloff
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich
| | - Sarah Tschudin-Sutter
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Stefano Bassetti
- Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Martin Siegemund
- Intensive Care Unit, University Hospital Basel, Basel, Switzerland
| | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Helena M. B. Seth-Smith
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich
| |
Collapse
|
13
|
Awadelkareem AM, Al-Shammari E, Elkhalifa AO, Adnan M, Siddiqui AJ, Mahmood D, Azad ZRAA, Patel M, Mehmood K, Danciu C, Ashraf SA. Anti-Adhesion and Antibiofilm Activity of Eruca sativa Miller Extract Targeting Cell Adhesion Proteins of Food-Borne Bacteria as a Potential Mechanism: Combined In Vitro-In Silico Approach. PLANTS (BASEL, SWITZERLAND) 2022; 11:610. [PMID: 35270080 PMCID: PMC8912376 DOI: 10.3390/plants11050610] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 05/05/2023]
Abstract
Bacterial cells have the ability to form biofilm onto the surfaces of food matrixes and on food processing equipment, leading to a source of food contamination posing serious health implications. Therefore, our study aimed to determine the effect of Eruca sativa Miller (E. sativa) crude extract against biofilms of food-borne bacteria along with in silico approaches to investigate adhesion proteins responsible for biofilm activity against the identified phytochemicals. The antibacterial potential of crude extract was evaluated using agar well diffusion technique and combinations of light and scanning electron microscopy to assess the efficacy of crude extract against the developed biofilms. Our results showed that crude extract of E. sativa was active against all tested food-borne bacteria, exhibiting a rapid kinetics of killing bacteria in a time-dependent manner. MIC and MBC values of E. sativa crude extract were found to be ranging from 125 to 500 µg/mL and 250 to 1000 µg/mL respectively. Furthermore, inhibition of developed biofilm by E sativa was found to be ranging from 58.68% to 73.45% for all the tested strains. The crude extract also reduced the viability of bacterial cells within biofilms and amount of EPS (ranging 59.73-82.77%) in the biofilm matrix. Additionally, the microscopic images also revealed significant disruption in the structure of biofilms. A molecular docking analysis of E. sativa phytochemicals showed interaction with active site of adhesion proteins Sortase A, EspA, OprD, and type IV b pilin of S. aureus, E. coli, P. aeruginosa, and S. enterica ser. typhi, respectively. Thus, our findings represent the first demonstration of E. sativa crude extract's bioactivity and potency against food-borne bacteria in their planktonic forms, as well as against the developed biofilms. Therefore, a possible mechanistic approach for inhibition of biofilm via targeting adhesion proteins can be explored further to target biofilm producing food-borne bacterial pathogens.
Collapse
Affiliation(s)
- Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
| | - Eyad Al-Shammari
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
| | - AbdElmoneim O. Elkhalifa
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia; (M.A.); (A.J.S.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia; (M.A.); (A.J.S.)
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, P.O. Box 6688, Qassim 51452, Saudi Arabia;
| | - Z. R. Azaz Ahmad Azad
- Department of Post-Harvest Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India;
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India;
| | - Khalid Mehmood
- Department of Pharmaceutics, College of Pharmacy, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia;
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
| |
Collapse
|
14
|
Sulaima JE, Lam H. Proteomics in antibiotic resistance and tolerance research: Mapping the resistome and the tolerome of bacterial pathogens. Proteomics 2022; 22:e2100409. [PMID: 35143120 DOI: 10.1002/pmic.202100409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/12/2022]
Abstract
Antibiotic resistance, the ability of a microbial pathogen to evade the effects of antibiotics thereby allowing them to grow under elevated drug concentrations, is an alarming health problem worldwide and has attracted the attention of scientists for decades. On the other hand, the clinical importance of persistence and tolerance as alternative mechanisms for pathogens to survive prolonged lethal antibiotic doses has recently become increasingly appreciated. Persisters and high-tolerance populations are thought to cause the relapse of infectious diseases, and provide opportunities for the pathogens to evolve resistance during the course of antibiotic therapy. Although proteomics and other omics methodology have long been employed to study resistance, its applications in studying persistence and tolerance are still limited. However, due to the growing interest in the topic and recent progress in method developments to study them, there have been some proteomic studies that yield fresh insights into the phenomenon of persistence and tolerance. Combined with the studies on resistance, these collectively guide us to novel molecular targets for the potential drugs for the control of these dangerous pathogens. In this review, we surveyed previous proteomic studies to investigate resistance, persistence, and tolerance mechanisms, and discussed emerging experimental strategies for studying these phenotypes with a combination of adaptive laboratory evolution and high-throughput proteomics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jordy Evan Sulaima
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
15
|
Hermansen S, Linke D, Leo JC. Transmembrane β-barrel proteins of bacteria: From structure to function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:113-161. [PMID: 35034717 DOI: 10.1016/bs.apcsb.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The outer membrane of Gram-negative bacteria is a specialized organelle conferring protection to the cell against various environmental stresses and resistance to many harmful compounds. The outer membrane has a number of unique features, including an asymmetric lipid bilayer, the presence of lipopolysaccharides and an individual proteome. The vast majority of the integral transmembrane proteins in the outer membrane belongs to the family of β-barrel proteins. These evolutionarily related proteins share a cylindrical, anti-parallel β-sheet core fold spanning the outer membrane. The loops and accessory domains attached to the β-barrel allow for a remarkable versatility in function for these proteins, ranging from diffusion pores and transporters to enzymes and adhesins. We summarize the current knowledge on β-barrel structure and folding and give an overview of their functions, evolution, and potential as drug targets.
Collapse
Affiliation(s)
- Simen Hermansen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Antimicrobial resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom.
| |
Collapse
|
16
|
Rational design of a new antibiotic class for drug-resistant infections. Nature 2021; 597:698-702. [PMID: 34526714 DOI: 10.1038/s41586-021-03899-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 08/11/2021] [Indexed: 11/08/2022]
Abstract
The development of new antibiotics to treat infections caused by drug-resistant Gram-negative pathogens is of paramount importance as antibiotic resistance continues to increase worldwide1. Here we describe a strategy for the rational design of diazabicyclooctane inhibitors of penicillin-binding proteins from Gram-negative bacteria to overcome multiple mechanisms of resistance, including β-lactamase enzymes, stringent response and outer membrane permeation. Diazabicyclooctane inhibitors retain activity in the presence of β-lactamases, the primary resistance mechanism associated with β-lactam therapy in Gram-negative bacteria2,3. Although the target spectrum of an initial lead was successfully re-engineered to gain in vivo efficacy, its ability to permeate across bacterial outer membranes was insufficient for further development. Notably, the features that enhanced target potency were found to preclude compound uptake. An improved optimization strategy leveraged porin permeation properties concomitant with biochemical potency in the lead-optimization stage. This resulted in ETX0462, which has potent in vitro and in vivo activity against Pseudomonas aeruginosa plus all other Gram-negative ESKAPE pathogens, Stenotrophomonas maltophilia and biothreat pathogens. These attributes, along with a favourable preclinical safety profile, hold promise for the successful clinical development of the first novel Gram-negative chemotype to treat life-threatening antibiotic-resistant infections in more than 25 years.
Collapse
|
17
|
Outer membrane permeability: Antimicrobials and diverse nutrients bypass porins in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2021; 118:2107644118. [PMID: 34326266 PMCID: PMC8346889 DOI: 10.1073/pnas.2107644118] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Novel antibiotics are urgently needed to resolve the current antimicrobial resistance crisis. For critical pathogens, drug entry through the cell envelope is one of the major challenges in the development of effective novel antibiotics. Envelope proteins forming water-filled channels, so-called porins, are commonly thought to be essential for entry of hydrophilic molecules, but we show here for the critical pathogen Pseudomonas aeruginosa that almost all antibiotics and diverse hydrophilic nutrients bypass porins and instead permeate directly through the outer membrane lipid bilayer. However, carboxylate groups hinder bilayer penetration, and Pseudomonas thus needs porins for efficient utilization of carboxylate-containing nutrients such as succinate. The major porin-independent entry route might open opportunities for facilitating drug delivery into bacteria. Gram-negative bacterial pathogens have an outer membrane that restricts entry of molecules into the cell. Water-filled protein channels in the outer membrane, so-called porins, facilitate nutrient uptake and are thought to enable antibiotic entry. Here, we determined the role of porins in a major pathogen, Pseudomonas aeruginosa, by constructing a strain lacking all 40 identifiable porins and 15 strains carrying only a single unique type of porin and characterizing these strains with NMR metabolomics and antimicrobial susceptibility assays. In contrast to common assumptions, all porins were dispensable for Pseudomonas growth in rich medium and consumption of diverse hydrophilic nutrients. However, preferred nutrients with two or more carboxylate groups such as succinate and citrate permeated poorly in the absence of porins. Porins provided efficient translocation pathways for these nutrients with broad and overlapping substrate selectivity while efficiently excluding all tested antibiotics except carbapenems, which partially entered through OprD. Porin-independent permeation of antibiotics through the outer-membrane lipid bilayer was hampered by carboxylate groups, consistent with our nutrient data. Together, these results challenge common assumptions about the role of porins by demonstrating porin-independent permeation of the outer-membrane lipid bilayer as a major pathway for nutrient and drug entry into the bacterial cell.
Collapse
|
18
|
Rybenkov VV, Zgurskaya HI, Ganguly C, Leus IV, Zhang Z, Moniruzzaman M. The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux. Chem Rev 2021; 121:5597-5631. [PMID: 33596653 PMCID: PMC8369882 DOI: 10.1021/acs.chemrev.0c01137] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell envelope plays a dual role in the life of bacteria by simultaneously protecting it from a hostile environment and facilitating access to beneficial molecules. At the heart of this ability lie the restrictive properties of the cellular membrane augmented by efflux transporters, which preclude intracellular penetration of most molecules except with the help of specialized uptake mediators. Recently, kinetic properties of the cell envelope came into focus driven on one hand by the urgent need in new antibiotics and, on the other hand, by experimental and theoretical advances in studies of transmembrane transport. A notable result from these studies is the development of a kinetic formalism that integrates the Michaelis-Menten behavior of individual transporters with transmembrane diffusion and offers a quantitative basis for the analysis of intracellular penetration of bioactive compounds. This review surveys key experimental and computational approaches to the investigation of transport by individual translocators and in whole cells, summarizes key findings from these studies and outlines implications for antibiotic discovery. Special emphasis is placed on Gram-negative bacteria, whose envelope contains two separate membranes. This feature sets these organisms apart from Gram-positive bacteria and eukaryotic cells by providing them with full benefits of the synergy between slow transmembrane diffusion and active efflux.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Inga V Leus
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zhen Zhang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
19
|
Roumia AF, Tsirigos KD, Theodoropoulou MC, Tamposis IA, Hamodrakas SJ, Bagos PG. OMPdb: A Global Hub of Beta-Barrel Outer Membrane Proteins. FRONTIERS IN BIOINFORMATICS 2021; 1:646581. [PMID: 36303794 PMCID: PMC9581022 DOI: 10.3389/fbinf.2021.646581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/18/2021] [Indexed: 11/14/2022] Open
Abstract
OMPdb (www.ompdb.org) was introduced as a database for β-barrel outer membrane proteins from Gram-negative bacteria in 2011 and then included 69,354 entries classified into 85 families. The database has been updated continuously using a collection of characteristic profile Hidden Markov Models able to discriminate between the different families of prokaryotic transmembrane β-barrels. The number of families has increased ultimately to a total of 129 families in the current, second major version of OMPdb. New additions have been made in parallel with efforts to update existing families and add novel families. Here, we present the upgrade of OMPdb, which from now on aims to become a global repository for all transmembrane β-barrel proteins, both eukaryotic and bacterial.
Collapse
Affiliation(s)
- Ahmed F. Roumia
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | | | | | - Ioannis A. Tamposis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Stavros J. Hamodrakas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- *Correspondence: Pantelis G. Bagos
| |
Collapse
|
20
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|
21
|
Dai Y, Ma H, Wu M, Welsch TA, Vora SR, Ren D, Nangia S. Development of the computational antibiotic screening platform (CLASP) to aid in the discovery of new antibiotics. SOFT MATTER 2021; 17:2725-2736. [PMID: 33533373 DOI: 10.1039/d0sm02035d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial colonization of biotic and abiotic surfaces and antibiotic resistance are grand challenges with paramount societal impacts. However, in the face of increasing bacterial resistance to all known antibiotics, efforts to discover new classes of antibiotics have languished, creating an urgent need to accelerate the antibiotic discovery pipeline. A major deterrent in the discovering of new antibiotics is the limited permeability of molecules across the bacterial envelope. Notably, the Gram-negative bacteria have nutrient specific protein channels (or porins) that restrict the permeability of non-essential molecules, including antibiotics. Here, we have developed the Computational Antibiotic Screening Platform (CLASP) for screening of potential drug molecules through the porins. The CLASP takes advantage of coarse grain (CG) resolution, advanced sampling techniques, and a parallel computing environment to maximize its performance. The CLASP yields comprehensive thermodynamic and kinetic output data of a potential drug molecule within a few hours of wall-clock time. Its output includes the potential of mean force profile, energy barrier, the rate constant, and contact analysis of the molecule with the pore-lining residues, and the orientational analysis of the molecule in the porin channel. In our first CLASP application, we report the transport properties of six carbapenem antibiotics-biapenem, doripenem, ertapenem, imipenem, meropenem, and panipenem-through OccD3, a major channel for carbapenem uptake in Pseudomonas aeruginosa. The CLASP is designed to screen small molecule libraries with a fast turnaround time to yield structure-property relationships to discover antibiotics with high permeability. The CLASP will be freely distributed to enable accelerated antibiotic drug discovery.
Collapse
Affiliation(s)
- Yinghui Dai
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Huilin Ma
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Meishan Wu
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Tory Alane Welsch
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Soor Rajiv Vora
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| |
Collapse
|
22
|
Prajapati JD, Kleinekathöfer U, Winterhalter M. How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics. Chem Rev 2021; 121:5158-5192. [PMID: 33724823 DOI: 10.1021/acs.chemrev.0c01213] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite tremendous successes in the field of antibiotic discovery seen in the previous century, infectious diseases have remained a leading cause of death. More specifically, pathogenic Gram-negative bacteria have become a global threat due to their extraordinary ability to acquire resistance against any clinically available antibiotic, thus urging for the discovery of novel antibacterial agents. One major challenge is to design new antibiotics molecules able to rapidly penetrate Gram-negative bacteria in order to achieve a lethal intracellular drug accumulation. Protein channels in the outer membrane are known to form an entry route for many antibiotics into bacterial cells. Up until today, there has been a lack of simple experimental techniques to measure the antibiotic uptake and the local concentration in subcellular compartments. Hence, rules for translocation directly into the various Gram-negative bacteria via the outer membrane or via channels have remained elusive, hindering the design of new or the improvement of existing antibiotics. In this review, we will discuss the recent progress, both experimentally as well as computationally, in understanding the structure-function relationship of outer-membrane channels of Gram-negative pathogens, mainly focusing on the transport of antibiotics.
Collapse
Affiliation(s)
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| |
Collapse
|
23
|
Dogan Guzel F, Pletzer D, Norouz Dizaji A, Al-Nahas K, Bajrai M, Winterhalter M. Towards understanding single-channel characteristics of OccK8 purified from Pseudomonas aeruginosa. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:87-98. [PMID: 33481046 DOI: 10.1007/s00249-021-01498-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Antibiotic resistance in Gram-negative bacteria causes serious health issues worldwide. Bacteria employ several resistance mechanisms to cope with antimicrobials. One of their strategies is to reduce the permeability of antibiotics either through general diffusion porins or substrate-specific channels. In this study, one of the substrate-specific channels from Pseudomonas aeruginosa, OccK8 (also known as OprE), was investigated using single-channel electrophysiology. The study also includes the investigation of permeability properties of several amino acids with different charged groups (i.e. arginine, glycine and glutamic acid) through OccK8. We observed four different conformations of the same OccK8 channel when inserted in lipid bilayers. This is in contrast to previous studies where heterologous expressed OccK8 in E. coli showed only one conformation. We hypothesized that the difference in our study was due to the expression and purification of the native channel from P. aeruginosa. The single-channel uptake characteristics of the porin showed that negatively charged glutamic acid preferentially interacted with the channel while the positively charged arginine molecule showed infrequent interaction with OccK8. The neutral amino acid glycine did not show any interaction at the physiological conditions.
Collapse
Affiliation(s)
- Fatma Dogan Guzel
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Ankara Yildirim Beyazit University, 06010, Ankara, Turkey.
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.
| | - Daniel Pletzer
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Araz Norouz Dizaji
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Ankara Yildirim Beyazit University, 06010, Ankara, Turkey
| | - Kareem Al-Nahas
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Mawadah Bajrai
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Mathias Winterhalter
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| |
Collapse
|
24
|
Gabrielyan NI, Sharapchenko SО, Kisil ОV, Kormilitsina VG, Drabkina IV, Safonova ТB, Petrukhina МI, Saitgareev RS, Zakharevich VМ. [The problem of global development of antibiotic resistant nosocomial pathogens]. TERAPEVT ARKH 2020; 92:110-116. [PMID: 33720615 DOI: 10.26442/00403660.2020.11.000783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 11/22/2022]
Abstract
The problem of global expansion of multidrug-resistant nosocomial infections pathogens is under special attention at the moment. Antibiotic resistance increasing give us the limited treatment options. This problem is particularly acute for transplant clinics, because of patients need lifelong immunosuppressive therapy. From the one hand this ensures stable allograft functioning, but from the other increases the risk of severe infectious complications in the postoperative period. The purpose of this article is analysis carbapenem resistance dynamics of Klebsiella spp., Acinetobacter spp., Pseudomonas spp. and Staphylococcus spp. isolated from the blood of recipients of donor organs from 2009 to 2019 in the Shumakov National Medical Research Center of Transplantology and Artificial Organs. A significant annual decrease of carbapenem-sensitive strains of Klebsiella spp. and Acinetobacter spp. are shown. The study of a distinctive pathogen resistance profile specific to each institution can help one in selecting an adequate antimicrobial strategy and is an effective predictive tool for controlling the growth of multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- N I Gabrielyan
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - S О Sharapchenko
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | | | - V G Kormilitsina
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - I V Drabkina
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - Т B Safonova
- Russian Medical Academy of Continuous Professional Education
| | - М I Petrukhina
- Russian Medical Academy of Continuous Professional Education
| | - R S Saitgareev
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - V М Zakharevich
- Shumakov National Medical Research Center of Transplantology and Artificial Organs.,Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
25
|
Pira A, Scorciapino MA, Bodrenko IV, Bosin A, Acosta-Gutiérrez S, Ceccarelli M. Permeation of β-Lactamase Inhibitors through the General Porins of Gram-Negative Bacteria. Molecules 2020; 25:E5747. [PMID: 33291474 PMCID: PMC7730927 DOI: 10.3390/molecules25235747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Modern medicine relies upon antibiotics, but we have arrived to the point where our inability to come up with new effective molecules against resistant pathogens, together with the declining private investment, is resulting in the number of untreatable infections increasing worldwide at worrying pace. Among other pathogens, widely recognized institutions have indicated Gram-negative bacteria as particularly challenging, due to the presence of the outer membrane. The very first step in the action of every antibiotic or adjuvant is the permeation through this membrane, with small hydrophilic drugs usually crossing through protein channels. Thus, a detailed understanding of their properties at a molecular level is crucial. By making use of Molecular Dynamics simulations, we compared the two main porins of four members of the Enterobacteriaceae family, and, in this paper, we show their shared geometrical and electrostatic characteristics. Then, we used metadynamics simulations to reconstruct the free energy for permeation of selected diazobicyclooctans through OmpF. We demonstrate how porins features are coupled to those of the translocating species, modulating their passive permeation. In particular, we show that the minimal projection area of a molecule is a better descriptor than its molecular mass or the volume. Together with the magnitude and orientation of the electric dipole moment, these are the crucial parameters to gain an efficient compensation between the entropic and enthalpic contributions to the free energy barrier required for permeation. Our results confirm the possibility to predict the permeability of molecules through porins by using a few molecular parameters and bolster the general model according to which the free energy increase is mostly due to the decrease of conformational entropy, and this can be compensated by a favorable alignment of the electric dipole with respect to the channel intrinsic electric field.
Collapse
Affiliation(s)
- Alessandro Pira
- Department of Physics, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (A.P.); (A.B.)
| | - Mariano Andrea Scorciapino
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy;
| | - Igor V. Bodrenko
- CNR/IOM Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy;
| | - Andrea Bosin
- Department of Physics, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (A.P.); (A.B.)
| | | | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (A.P.); (A.B.)
- CNR/IOM Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy;
| |
Collapse
|
26
|
Hogenkamp F, Hilgers F, Knapp A, Klaus O, Bier C, Binder D, Jaeger KE, Drepper T, Pietruszka J. Effect of Photocaged Isopropyl β-d-1-thiogalactopyranoside Solubility on the Light Responsiveness of LacI-controlled Expression Systems in Different Bacteria. Chembiochem 2020; 22:539-547. [PMID: 32914927 PMCID: PMC7894499 DOI: 10.1002/cbic.202000377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/31/2020] [Indexed: 01/02/2023]
Abstract
Photolabile protecting groups play a significant role in controlling biological functions and cellular processes in living cells and tissues, as light offers high spatiotemporal control, is non‐invasive as well as easily tuneable. In the recent past, photo‐responsive inducer molecules such as 6‐nitropiperonyl‐caged IPTG (NP‐cIPTG) have been used as optochemical tools for Lac repressor‐controlled microbial expression systems. To further expand the applicability of the versatile optochemical on‐switch, we have investigated whether the modulation of cIPTG water solubility can improve the light responsiveness of appropriate expression systems in bacteria. To this end, we developed two new cIPTG derivatives with different hydrophobicity and demonstrated both an easy applicability for the light‐mediated control of gene expression and a simple transferability of this optochemical toolbox to the biotechnologically relevant bacteria Pseudomonas putida and Bacillus subtilis. Notably, the more water‐soluble cIPTG derivative proved to be particularly suitable for light‐mediated gene expression in these alternative expression hosts.
Collapse
Affiliation(s)
- Fabian Hogenkamp
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Oliver Klaus
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Claus Bier
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Dennis Binder
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany.,Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany.,Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| |
Collapse
|
27
|
Sonnleitner E, Pusic P, Wolfinger MT, Bläsi U. Distinctive Regulation of Carbapenem Susceptibility in Pseudomonas aeruginosa by Hfq. Front Microbiol 2020; 11:1001. [PMID: 32528439 PMCID: PMC7264166 DOI: 10.3389/fmicb.2020.01001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022] Open
Abstract
Carbapenems are often the antibiotics of choice to combat life threatening infections caused by the opportunistic human pathogen Pseudomonas aeruginosa. The outer membrane porins OprD and OpdP serve as entry ports for carbapenems. Here, we report that the RNA chaperone Hfq governs post-transcriptional regulation of the oprD and opdP genes in a distinctive manner. Hfq together with the recently described small regulatory RNAs (sRNAs) ErsA and Sr0161 is shown to mediate translational repression of oprD, whereas opdP appears not to be regulated by sRNAs. At variance, our data indicate that opdP is translationally repressed by a regulatory complex consisting of Hfq and the catabolite repression protein Crc, an assembly known to be key to carbon catabolite repression in P. aeruginosa. The regulatory RNA CrcZ, which is up-regulated during growth of P. aeruginosa on less preferred carbon sources, is known to sequester Hfq, which relieves Hfq-mediated translational repression of genes. The differential carbapenem susceptibility during growth on different carbon sources can thus be understood in light of Hfq-dependent oprD/opdP regulation and of the antagonizing function of the CrcZ RNA on Hfq regulatory complexes.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna, Vienna, Austria
| | - Petra Pusic
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna, Vienna, Austria
| | - Michael T Wolfinger
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.,Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Adnan M, Patel M, Deshpande S, Alreshidi M, Siddiqui AJ, Reddy MN, Emira N, De Feo V. Effect of Adiantum philippense Extract on Biofilm Formation, Adhesion With Its Antibacterial Activities Against Foodborne Pathogens, and Characterization of Bioactive Metabolites: An in vitro-in silico Approach. Front Microbiol 2020; 11:823. [PMID: 32477292 PMCID: PMC7237743 DOI: 10.3389/fmicb.2020.00823] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Adiantum philippense (A. philippense), an ethnomedicinally important fern, has become an interesting herb in the search for novel bioactive metabolites, which can also be used as therapeutic agents. Primarily, in this study, A. philippense crude extract was screened for its phytochemical constituents, antagonistic potential, and effect on bacterial adhesion and biofilm formation against common food pathogens. Phytochemical profiling of A. philippense was carried out by using High Resolution-Liquid Chromatography and Mass Spectroscopy (HR-LCMS) followed by antibacterial activity via agar cup/well diffusion, broth microdilution susceptibility methods, and growth curve analysis. Antibiofilm potency and efficacy were assessed on the development, formation, and texture of biofilms through light microscopy, fluorescent microscopy, scanning electron microscopy, and the assessment of exopolysaccharide production. Correspondingly, a checkerboard test was performed to evaluate the combinatorial effect of A. philippense and chloramphenicol. Lastly, molecular docking studies of identified phytochemicals with adhesin proteins of tested food pathogens, which helps the bacteria in surface attachment and leads to biofilm formation, were assessed. A. philippense crude extract was found to be active against all tested food pathogens, displaying the rapid time-dependent kinetics of bacterial killing. A. philippense crude extract also impedes the biofilm matrix by reducing the total content of exopolysaccharide, and, likewise, the microscopic images revealed a great extent of disruption in the architecture of biofilms. A synergy was observed between A. philippense crude extract and chloramphenicol for E. coli, S. aureus, and P. aeruginosa, whereas an additive effect was observed for S. flexneri. Various bioactive phytochemicals were categorized from A. philippense crude extract using HR-LCMS. The molecular docking of these identified phytochemicals was interrelated with the active site residues of adhesin proteins, IcsA, Sortase A, OprD, EspA, and FimH from S. flexneri, S. aureus, P. aeruginosa, and E. coli, respectively. Thus, our findings represent the bioactivity and potency of A. philippense crude extract against food pathogens not only in their planktonic forms but also against/in biofilms for the first time. We have also correlated these findings with the possible mechanism of biofilm inhibition via targeting adhesin proteins, which could be explored further to design new bioactive compounds against biofilm producing foodborne bacterial pathogens.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mitesh Patel
- Department of Biosciences, Bapalal Vaidya Botanical Research Centre, Veer Narmad South Gujarat University, Surat, India
| | - Sumukh Deshpande
- Central Biotechnology Services, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mandadi Narsimha Reddy
- Department of Biosciences, Bapalal Vaidya Botanical Research Centre, Veer Narmad South Gujarat University, Surat, India
| | - Noumi Emira
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, Italy
| |
Collapse
|
29
|
Copley SD. The physical basis and practical consequences of biological promiscuity. Phys Biol 2020; 17:10.1088/1478-3975/ab8697. [PMID: 32244231 PMCID: PMC9291633 DOI: 10.1088/1478-3975/ab8697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins interact with metabolites, nucleic acids, and other proteins to orchestrate the myriad catalytic, structural and regulatory functions that support life from the simplest microbes to the most complex multicellular organisms. These molecular interactions are often exquisitely specific, but never perfectly so. Adventitious "promiscuous" interactions are ubiquitous due to the thousands of macromolecules and small molecules crowded together in cells. Such interactions may perturb protein function at the molecular level, but as long as they do not compromise organismal fitness, they will not be removed by natural selection. Although promiscuous interactions are physiologically irrelevant, they are important because they can provide a vast reservoir of potential functions that can provide the starting point for evolution of new functions, both in nature and in the laboratory.
Collapse
Affiliation(s)
- Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, UNITED STATES
| |
Collapse
|
30
|
Mu Y, Chen Q, Parales RE, Lu Z, Hong Q, He J, Qiu J, Jiang J. Bacterial catabolism of nicotine: Catabolic strains, pathways and modules. ENVIRONMENTAL RESEARCH 2020; 183:109258. [PMID: 32311908 DOI: 10.1016/j.envres.2020.109258] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/22/2020] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
Nicotine, the major alkaloid in tobacco, is a toxic, carcinogenic, and addictive compound. In recent years, nicotine catabolism in prokaryotes, including the catabolic pathways for its degradation and the catabolic genes that encode the enzymes of these pathways, have been systemically investigated. In this review, the three known pathways for nicotine catabolism in bacteria are summarized: the pyridine pathway, the pyrrolidine pathway, and a variation of the pyridine and pyrrolidine pathway (VPP pathway). The three nicotine catabolic pathways appear to have evolved separately in three distantly related lineages of bacteria. However, the general mechanism for the breakdown of the nicotine molecule in all three pathways is conserved and can be divided into six major enzymatic steps or catabolic modules that involve hydroxylation of the pyridine ring, dehydrogenation of the pyrrolidine ring, cleavage of the side chain, cleavage of the pyridine ring, dehydrogenation of the side chain, and deamination of pyridine ring-lysis products. In addition to summarizing our current understanding of nicotine degradation pathways, we identified several potential nicotine-degrading bacteria whose genome sequences are in public databases by comparing the sequences of conserved catabolic enzymes. Finally, several uncharacterized genes that are colocalized with nicotine degradation genes and are likely to be involved in nicotine catabolism, including regulatory genes, methyl-accepting chemotaxis protein genes, transporter genes, and cofactor genes are discussed. This review provides a comprehensive overview of the catabolism of nicotine in prokaryotes and highlights aspects of the process that still require additional research.
Collapse
Affiliation(s)
- Yang Mu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China; Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Qing Chen
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277160, China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Zhenmei Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qing Hong
- Department of Microbiology, College of Life Sciences, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian He
- Department of Microbiology, College of Life Sciences, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiguo Qiu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
31
|
Fujita M, Mori K, Hara H, Hishiyama S, Kamimura N, Masai E. A TonB-dependent receptor constitutes the outer membrane transport system for a lignin-derived aromatic compound. Commun Biol 2019; 2:432. [PMID: 31799434 PMCID: PMC6874591 DOI: 10.1038/s42003-019-0676-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022] Open
Abstract
TonB-dependent receptors (TBDRs) mediate substrate-specific transport across the outer membrane, utilizing energy derived from the proton motive force transmitted from the TonB-ExbB-ExbD complex located in the inner membrane (TonB system). Although a number of TonB systems involved in the uptake of siderophores, vitamin B12 and saccharides have been identified, their involvement in the uptake and catabolism of aromatic compounds was previously unknown. Here, we show that the outer membrane transport of a biphenyl compound derived from lignin is mediated by the TonB system in a Gram-negative bacterium capable of degrading lignin-derived aromatic compounds, Sphingobium sp. strain SYK-6. Furthermore, we found that overexpression of the corresponding TBDR gene enhanced the uptake of this biphenyl compound, contributing to the improved rate of platform chemical production. Our results will provide an important basis for establishing engineered strains optimized for use in lignin valorisation.
Collapse
Affiliation(s)
- Masaya Fujita
- 1Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata Japan
| | - Kosuke Mori
- 1Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata Japan
| | - Hirofumi Hara
- 2Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Shojiro Hishiyama
- 3Forestry and Forest Products Research Institute, Tsukuba, Ibaraki Japan
| | - Naofumi Kamimura
- 1Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata Japan
| | - Eiji Masai
- 1Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata Japan
| |
Collapse
|
32
|
Beaton A, Lood C, Cunningham-Oakes E, MacFadyen A, Mullins AJ, Bestawy WE, Botelho J, Chevalier S, Coleman S, Dalzell C, Dolan SK, Faccenda A, Ghequire MGK, Higgins S, Kutschera A, Murray J, Redway M, Salih T, da Silva AC, Smith BA, Smits N, Thomson R, Woodcock S, Welch M, Cornelis P, Lavigne R, van Noort V, Tucker NP. Community-led comparative genomic and phenotypic analysis of the aquaculture pathogen Pseudomonas baetica a390T sequenced by Ion semiconductor and Nanopore technologies. FEMS Microbiol Lett 2019; 365:4951603. [PMID: 29579234 PMCID: PMC5909648 DOI: 10.1093/femsle/fny069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/21/2018] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas baetica strain a390T is the type strain of this recently described species and here we present its high-contiguity draft genome. To celebrate the 16th International Conference on Pseudomonas, the genome of P. baetica strain a390T was sequenced using a unique combination of Ion Torrent semiconductor and Oxford Nanopore methods as part of a collaborative community-led project. The use of high-quality Ion Torrent sequences with long Nanopore reads gave rapid, high-contiguity and -quality, 16-contig genome sequence. Whole genome phylogenetic analysis places P. baetica within the P. koreensis clade of the P. fluorescens group. Comparison of the main genomic features of P. baetica with a variety of other Pseudomonas spp. suggests that it is a highly adaptable organism, typical of the genus. This strain was originally isolated from the liver of a diseased wedge sole fish, and genotypic and phenotypic analyses show that it is tolerant to osmotic stress and to oxytetracycline.
Collapse
Affiliation(s)
- Ainsley Beaton
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Cédric Lood
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, bus 2460, Leuven B-3001, Belgium.,Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 20, bus 2460, Leuven B-3001, Belgium
| | - Edward Cunningham-Oakes
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Park Place, Cardiff CF10 3AX, UK
| | - Alison MacFadyen
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, Scotland, UK
| | - Alex J Mullins
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Park Place, Cardiff CF10 3AX, UK
| | - Walid El Bestawy
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - João Botelho
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228 Porto 4050-313, Portugal
| | - Sylvie Chevalier
- Laboratoire Microbiologie Signaux et Microenvironnement (LMSM), Université de Rouen, 55, rue St Germain, Evreux 27000, France
| | - Shannon Coleman
- Lower Mall Research Station, University of British Columbia, 2259 Lower Mall, Vancouver, BC V6T 1Z4, Canada
| | - Chloe Dalzell
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Stephen K Dolan
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Alberto Faccenda
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Maarten G K Ghequire
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, bus 2460, Leuven B-3001, Belgium
| | - Steven Higgins
- Department of Plant and Microbial Biology, University of Zürich, Zürich 8008, Switzerland
| | - Alexander Kutschera
- Department of Phytopathology, Center of Life and Food Sciences, Technical University of Munich, Weihenstephan D-85354, Germany
| | - Jordan Murray
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Martha Redway
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Talal Salih
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Ana C da Silva
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Brian A Smith
- School of Plant Sciences, The University of Arizona, P.O. Box 210036, Forbes Building, 303 Tucson, Arizona 85721-0036, USA
| | - Nathan Smits
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 20, bus 2460, Leuven B-3001, Belgium
| | - Ryan Thomson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Stuart Woodcock
- Department of Biological Chemistry, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Pierre Cornelis
- Laboratoire Microbiologie Signaux et Microenvironnement (LMSM), Université de Rouen, 55, rue St Germain, Evreux 27000, France
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 20, bus 2460, Leuven B-3001, Belgium
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, bus 2460, Leuven B-3001, Belgium
| | - Nicholas P Tucker
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| |
Collapse
|
33
|
Wu X, Siehnel RJ, Garudathri J, Staudinger BJ, Hisert KB, Ozer EA, Hauser AR, Eng JK, Manoil C, Singh PK, Bruce JE. In Vivo Proteome of Pseudomonas aeruginosa in Airways of Cystic Fibrosis Patients. J Proteome Res 2019; 18:2601-2612. [PMID: 31060355 DOI: 10.1021/acs.jproteome.9b00122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic airway infection with P. aeruginosa (PA) is a hallmark of cystic fibrosis (CF) disease. The mechanisms producing PA persistence in CF therapies remain poorly understood. To gain insight on PA physiology in patient airways and better understand how in vivo bacterial functioning differs from in vitro conditions, we investigated the in vivo proteomes of PA in 35 sputum samples from 11 CF patients. We developed a novel bacterial-enrichment method that relies on differential centrifugation and detergent treatment to enrich for bacteria to improve identification of PA proteome with CF sputum samples. Using two nonredundant peptides as a cutoff, a total of 1304 PA proteins were identified directly from CF sputum samples. The in vivo PA proteomes were compared with the proteomes of ex vivo-grown PA populations from the same patient sample. Label-free quantitation and proteome comparison revealed the in vivo up-regulation of siderophore TonB-dependent receptors, remodeling in central carbon metabolism including glyoxylate cycle and lactate utilization, and alginate overproduction. Knowledge of these in vivo proteome differences or others derived using the presented methodology could lead to future treatment strategies aimed at altering PA physiology in vivo to compromise infectivity or improve antibiotic efficacy.
Collapse
|
34
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
35
|
Wilson J, Sarthak K, Si W, Gao L, Aksimentiev A. Rapid and Accurate Determination of Nanopore Ionic Current Using a Steric Exclusion Model. ACS Sens 2019; 4:634-644. [PMID: 30821441 DOI: 10.1021/acssensors.8b01375] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanopore sensing has emerged as a versatile approach to detection and identification of biomolecules. Presently, researchers rely on experience and intuition for choosing or modifying the nanopores to detect a target analyte. The field would greatly benefit from a computational method that could relate the atomic-scale geometry of the nanopores and analytes to the blockade nanopore currents they produce. Existing computational methods are either computationally too expensive to be used routinely in experimental laboratories or not sensitive enough to account for the atomic structure of the pore and the analytes. Here, we demonstrate a robust and inexpensive computational approach-the steric exclusion model (SEM) of nanopore conductance-that is orders of magnitude more efficient than all-atom MD and yet is sensitive enough to account for the atomic structure of the nanopore and the analyte. The method combines the computational efficiency of a finite element solver with the atomic precision of a nanopore conductance map to yield unprecedented speed and accuracy of ionic current prediction. We validate our SEM approach through comparison with the current blockades computed using the all-atom molecular dynamics method for a range of proteins confined to a solid-state nanopore, biological channels embedded in a lipid bilayer membranes, and blockade currents produced by DNA homopolymers in MspA. We illustrate potential applications of SEM by computing blockade currents produced by nucleosome proteins in a solid-state nanopore, individual amino acids in MspA, and by testing the effect of point mutations on amino acid distinguishability. We expect our SEM approach to become an integral part of future development of the nanopore sensing field.
Collapse
Affiliation(s)
| | | | - Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing, 210096, China
| | | | | |
Collapse
|
36
|
Samsudin F, Khalid S. Movement of Arginine through OprD: The Energetics of Permeation and the Role of Lipopolysaccharide in Directing Arginine to the Protein. J Phys Chem B 2019; 123:2824-2832. [DOI: 10.1021/acs.jpcb.9b00063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Firdaus Samsudin
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| |
Collapse
|
37
|
Iyer R, Moussa SH, Tommasi R, Miller AA. Role of the Klebsiella pneumoniae TolC porin in antibiotic efflux. Res Microbiol 2019; 170:112-116. [DOI: 10.1016/j.resmic.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 12/11/2022]
|
38
|
Bhamidimarri SP, Zahn M, Prajapati JD, Schleberger C, Söderholm S, Hoover J, West J, Kleinekathöfer U, Bumann D, Winterhalter M, van den Berg B. A Multidisciplinary Approach toward Identification of Antibiotic Scaffolds for Acinetobacter baumannii. Structure 2019; 27:268-280.e6. [DOI: 10.1016/j.str.2018.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/19/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022]
|
39
|
Golla VK, Sans-Serramitjana E, Pothula KR, Benier L, Bafna JA, Winterhalter M, Kleinekathöfer U. Fosfomycin Permeation through the Outer Membrane Porin OmpF. Biophys J 2019; 116:258-269. [PMID: 30616836 PMCID: PMC6350074 DOI: 10.1016/j.bpj.2018.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/21/2018] [Accepted: 12/03/2018] [Indexed: 01/14/2023] Open
Abstract
Fosfomycin is a frequently prescribed drug in the treatment of acute urinary tract infections. It enters the bacterial cytoplasm and inhibits the biosynthesis of peptidoglycans by targeting the MurA enzyme. Despite extensive pharmacological studies and clinical use, the permeability of fosfomycin across the bacterial outer membrane is largely unexplored. Here, we investigate the fosfomycin permeability across the outer membrane of Gram-negative bacteria by electrophysiology experiments as well as by all-atom molecular dynamics simulations including free-energy and applied-field techniques. Notably, in an electrophysiological zero-current assay as well as in the molecular simulations, we found that fosfomycin can rapidly permeate the abundant Escherichia coli porin OmpF. Furthermore, two triple mutants in the constriction region of the porin have been investigated. The permeation rates through these mutants are slightly lower than that of the wild type but fosfomycin can still permeate. Altogether, this work unravels molecular details of fosfomycin permeation through the outer membrane porin OmpF of E. coli and moreover provides hints for understanding the translocation of phosphonic acid antibiotics through other outer membrane pores.
Collapse
Affiliation(s)
- Vinaya Kumar Golla
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany
| | | | | | - Lorraine Benier
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Jayesh Arun Bafna
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany.
| |
Collapse
|
40
|
Iyer R, Moussa SH, Tommasi R, Miller AA. Titrating Levels of TolC in E. coli: A Sensitive Approach to Quantifying Efflux. ACS Infect Dis 2019; 5:49-54. [PMID: 30489063 DOI: 10.1021/acsinfecdis.8b00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The susceptibility of small molecules to Gram-negative bacterial efflux is typically evaluated using an antibacterial activity-based efflux ratio, which is computed as the ratio of the antibacterial activity for a wild-type strain and its isogenic efflux mutant (typically lacking genes encoding major efflux pumps). The magnitude of the ratio is often used as an efflux index. However, early in drug discovery, hits with suboptimal physicochemical properties often lack whole cell inhibition against wild-type strains, which makes efflux ratios indeterminable. To address this gap, we developed an assay to titrate levels of total efflux by varying the TolC expression using an arabinose-inducible promoter (pBAD) in an Escherichia coli Δ tolC strain. We provide a proof of concept for the assay using sets of related compounds from two antibiotic classes and show that the TolC titration provides a sensitive method for rank ordering compounds with respect to their efflux susceptibility.
Collapse
Affiliation(s)
- Ramkumar Iyer
- Entasis Therapeutics Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Samir H. Moussa
- Entasis Therapeutics Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ruben Tommasi
- Entasis Therapeutics Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Alita A. Miller
- Entasis Therapeutics Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
41
|
In silico proteomic and phylogenetic analysis of the outer membrane protein repertoire of gastric Helicobacter species. Sci Rep 2018; 8:15453. [PMID: 30337679 PMCID: PMC6194013 DOI: 10.1038/s41598-018-32476-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/03/2018] [Indexed: 12/16/2022] Open
Abstract
Helicobacter (H.) pylori is an important risk factor for gastric malignancies worldwide. Its outer membrane proteome takes an important role in colonization of the human gastric mucosa. However, in zoonotic non-H. pylori helicobacters (NHPHs) also associated with human gastric disease, the composition of the outer membrane (OM) proteome and its relative contribution to disease remain largely unknown. By means of a comprehensive survey of the diversity and distribution of predicted outer membrane proteins (OMPs) identified in all known gastric Helicobacter species with fully annotated genome sequences, we found genus- and species-specific families known or thought to be implicated in virulence. Hop adhesins, part of the Helicobacter-specific family 13 (Hop, Hor and Hom) were restricted to the gastric species H. pylori, H. cetorum and H. acinonychis. Hof proteins (family 33) were putative adhesins with predicted Occ- or MOMP-family like 18-stranded β-barrels. They were found to be widespread amongst all gastric Helicobacter species only sporadically detected in enterohepatic Helicobacter species. These latter are other members within the genus Helicobacter, although ecologically and genetically distinct. LpxR, a lipopolysaccharide remodeling factor, was also detected in all gastric Helicobacter species but lacking as well from the enterohepatic species H. cinaedi, H. equorum and H. hepaticus. In conclusion, our systemic survey of Helicobacter OMPs points to species and infection-site specific members that are interesting candidates for future virulence and colonization studies.
Collapse
|
42
|
Samanta S, Bodrenko I, Acosta-Gutiérrez S, D’Agostino T, Pathania M, Ghai I, Schleberger C, Bumann D, Wagner R, Winterhalter M, van den Berg B, Ceccarelli M. Getting Drugs through Small Pores: Exploiting the Porins Pathway in Pseudomonas aeruginosa. ACS Infect Dis 2018; 4:1519-1528. [PMID: 30039960 DOI: 10.1021/acsinfecdis.8b00149] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Understanding molecular properties of outer membrane channels of Gram-negative bacteria is of fundamental significance as they are the entry point of polar antibiotics into bacteria. Outer membrane proteomics revealed OccK8 (OprE) to be among the five most expressed substrate specific channels of the clinically important Pseudomonas aeruginosa. The high-resolution X-ray structure and electrophysiology highlighted a very narrow pore. However, experimental in vitro methods showed the transport of natural amino acids and antibiotics, among them ceftazidime. We used molecular dynamics simulations to reveal the importance of the physicochemical properties of ceftazidime in modulating the translocation through OccK8, proposing a structure-function relationship. As in general porins, the internal electric field favors the translocation of polar molecules by gainful energy compensation in the central constriction region. Importantly, the comparatively narrow OccK8 pore can undergo a substrate-induced expansion to accommodate relatively large-sized substrates.
Collapse
Affiliation(s)
- Susruta Samanta
- Department of Physics, University of Cagliari, SP Monserrato-Sestu Km 0.8, Monserrato, 09042, Italy
- Department of Chemistry, Manipal University Jaipur, VPO Dehmi Kalan, Jaipur, Rajasthan 303007, India
| | - Igor Bodrenko
- Department of Physics, University of Cagliari, SP Monserrato-Sestu Km 0.8, Monserrato, 09042, Italy
| | - Silvia Acosta-Gutiérrez
- Department of Physics, University of Cagliari, SP Monserrato-Sestu Km 0.8, Monserrato, 09042, Italy
| | - Tommaso D’Agostino
- Department of Physics, University of Cagliari, SP Monserrato-Sestu Km 0.8, Monserrato, 09042, Italy
| | - Monisha Pathania
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Ishan Ghai
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany
| | - Christian Schleberger
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Dirk Bumann
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Richard Wagner
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany
| | - Bert van den Berg
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, SP Monserrato-Sestu Km 0.8, Monserrato, 09042, Italy
| |
Collapse
|
43
|
Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, Bodrenko I, Zahn M, Winterhalter M, Stavenger RA, Pagès JM, Naismith JH, van den Berg B, Page MGP, Ceccarelli M. Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins. ACS Infect Dis 2018; 4:1487-1498. [PMID: 29962203 DOI: 10.1021/acsinfecdis.8b00108] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Small, hydrophilic molecules, including most important antibiotics in clinical use, cross the Gram-negative outer membrane through the water-filled channels provided by porins. We have determined the X-ray crystal structures of the principal general porins from three species of Enterobacteriaceae, namely Enterobacter aerogenes, Enterobacter cloacae, and Klebsiella pneumoniae, and determined their antibiotic permeabilities as well as those of the orthologues from Escherichia coli. Starting from the structure of the porins and molecules, we propose a physical mechanism underlying transport and condense it in a computationally efficient scoring function. The scoring function shows good agreement with in vitro penetration data and will enable the screening of virtual databases to identify molecules with optimal permeability through porins and help to guide the optimization of antibiotics with poor permeation.
Collapse
Affiliation(s)
- Silvia Acosta-Gutiérrez
- Department of Physics, University of Cagliari, Cittadella Universitaria di Monserrato, SP Monserrato-Sestu Km 0.8, Monserrato, 09042, Italy
| | - Luana Ferrara
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9RH, United Kingdom
| | - Monisha Pathania
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Muriel Masi
- UMR_MD1 Inserm U1261, Membranes et Cibles Thérapeutiques, Aix-Marseille Université, Facultés de Pharmacie et de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Jiajun Wang
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany
| | - Igor Bodrenko
- Department of Physics, University of Cagliari, Cittadella Universitaria di Monserrato, SP Monserrato-Sestu Km 0.8, Monserrato, 09042, Italy
| | - Michael Zahn
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany
| | - Robert A. Stavenger
- Antibacterial DPU, GlaxoSmithKline, 1250 Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Jean-Marie Pagès
- UMR_MD1 Inserm U1261, Membranes et Cibles Thérapeutiques, Aix-Marseille Université, Facultés de Pharmacie et de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - James H. Naismith
- Division of Structural Biology, Nuffield Department of Medicine, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
- Research Complex at Harwell, Rutherford Laboratory, Didcot, OX11 0FA, United Kingdom
| | - Bert van den Berg
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Malcolm G. P. Page
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, Cittadella Universitaria di Monserrato, SP Monserrato-Sestu Km 0.8, Monserrato, 09042, Italy
| |
Collapse
|
44
|
Lee J, Pothula KR, Kleinekathöfer U, Im W. Simulation Study of Occk5 Functional Properties in Pseudomonas aeruginosa Outer Membranes. J Phys Chem B 2018; 122:8185-8192. [DOI: 10.1021/acs.jpcb.8b07109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Joonseong Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Karunakar R. Pothula
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
45
|
Löwe H, Sinner P, Kremling A, Pflüger-Grau K. Engineering sucrose metabolism in Pseudomonas putida highlights the importance of porins. Microb Biotechnol 2018; 13:97-106. [PMID: 29808622 PMCID: PMC6922520 DOI: 10.1111/1751-7915.13283] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
Using agricultural wastes as a substrate for biotechnological processes is of great interest in industrial biotechnology. A prerequisite for using these wastes is the ability of the industrially relevant microorganisms to metabolize the sugars present therein. Therefore, many metabolic engineering approaches are directed towards widening the substrate spectrum of the workhorses of industrial biotechnology like Escherichia coli, yeast or Pseudomonas putida. For instance, neither xylose or arabinose from cellulosic residues, nor sucrose, the main sugar in waste molasses, can be metabolized by most E. coli and P. putida wild types. We evaluated a new, so far uncharacterized gene cluster for sucrose metabolism from Pseudomonas protegens Pf‐5 and showed that it enables P. putida to grow on sucrose as the sole carbon and energy source. Even when integrated into the genome of P. putida, the resulting strain grew on sucrose at rates similar to the rate of the wild type on glucose – making it the fastest growing, plasmid‐free P. putida strain known so far using sucrose as substrate. Next, we elucidated the role of the porin, an orthologue of the sucrose porin ScrY, in the gene cluster and found that in P. putida, a porin is needed for sucrose transport across the outer membrane. Consequently, native porins were not sufficient to allow unlimited growth on sucrose. Therefore, we concluded that the outer membrane can be a considerable barrier for substrate transport, depending on strain, genotype and culture conditions, all of which should be taken into account in metabolic engineering approaches. We additionally showed the potential of the engineered P. putida strains by growing them on molasses with efficiencies twice as high as obtained with the wild‐type P. putida. This can be seen as a further step towards the production of low‐value chemicals and biofuels with P. putida from alternative and more affordable substrates in the future.
Collapse
Affiliation(s)
- Hannes Löwe
- Systems Biotechnology, Technical University of Munich, 85748, Garching, Germany
| | - Peter Sinner
- Systems Biotechnology, Technical University of Munich, 85748, Garching, Germany
| | - Andreas Kremling
- Systems Biotechnology, Technical University of Munich, 85748, Garching, Germany
| | | |
Collapse
|
46
|
Abstract
Collective antibiotic drug resistance is a global threat, especially with respect to Gram-negative bacteria. The low permeability of the bacterial outer cell wall has been identified as a challenging barrier that prevents a sufficient antibiotic effect to be attained at low doses of the antibiotic. The Gram-negative bacterial cell envelope comprises an outer membrane that delimits the periplasm from the exterior milieu. The crucial mechanisms of antibiotic entry via outer membrane includes general diffusion porins (Omps) responsible for hydrophilic antibiotics and lipid-mediated pathway for hydrophobic antibiotics. The protein and lipid arrangements of the outer membrane have had a strong impact on the understanding of bacteria and their resistance to many types of antibiotics. Thus, one of the current challenges is effective interpretation at the molecular basis of the outer membrane permeability. This review attempts to develop a state of knowledge pertinent to Omps and their effective role in solute influx. Moreover, it aims toward further understanding and exploration of prospects to improve our knowledge of physicochemical limitations that direct the translocation of antibiotics via bacterial outer membrane.
Collapse
Affiliation(s)
- Ishan Ghai
- School of Engineering and Life Sciences, Jacobs University, Bremen, Germany.,Consultation Division, RSGBIOGEN, New Delhi, India
| | | |
Collapse
|
47
|
Iyer R, Moussa SH, Durand-Réville TF, Tommasi R, Miller A. Acinetobacter baumannii OmpA Is a Selective Antibiotic Permeant Porin. ACS Infect Dis 2018; 4:373-381. [PMID: 29260856 DOI: 10.1021/acsinfecdis.7b00168] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OmpAAb is a conserved, abundantly expressed outer membrane porin in Acinetobacter baumannii whose presumed role in antibiotic permeation has not been clearly demonstrated. In this report, we use a titratable heterologous expression system to express OmpAAb in isolation and demonstrate selective passage of small molecule antibiotics through OmpAAb. ETX2514, a recently discovered broad-spectrum β-lactamase inhibitor, in combination with sulbactam, is currently in clinical testing for the treatment of drug-resistant A. baumannii infections. We demonstrate that ETX2514 permeates OmpAAb and potentiates the activity of sulbactam in an OmpAAb-dependent manner. In addition, we show that small modifications in the structure of ETX2514 differentially affect its passage through OmpAAb, revealing unique structure-porin-permeation relationships. Finally, we confirm the contribution of OmpAAb to bacterial fitness using a murine thigh model of A. baumannii infection. These results, combined with the high sequence homology of OmpA across Acinetobacter spp., suggest that optimization of antibiotic entry through OmpAAb may prove to be a feasible medicinal chemistry design strategy for future antibacterial discovery efforts.
Collapse
Affiliation(s)
- Ramkumar Iyer
- Entasis Therapeutics, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Samir H. Moussa
- Entasis Therapeutics, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | | | - Ruben Tommasi
- Entasis Therapeutics, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Alita Miller
- Entasis Therapeutics, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
48
|
Shin KS, Lee SK. Increasing Extracellular Free Fatty Acid Production in Escherichia coli by Disrupting Membrane Transport Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11243-11250. [PMID: 29188707 DOI: 10.1021/acs.jafc.7b04521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Transposon mutagenesis was used to identify three mutants of E. coli that exhibited increased free fatty acid (FFA) production, which resulted from the disruption of genes related to membrane transport. Deletion of envR, gusC, and mdlA individually in a recombinant E. coli strain resulted in 1.4-, 1.8-, and 1.2-fold increases in total FFA production, respectively. In particular, deletion of envR increased the percentage of extracellular FFA to 46%, compared with 29% for the control strain. Multiple deletion of envR, gusC, mdlA, ompF, and fadL had a synergistic effect on FFA production, resulting in high extracellular FFA production, comprising up to 50% of total FFA production. This study has identified new membrane proteins involved in FFA production and showed that genetic engineering targeting these membrane transporters is important to increase both total FFA and extracellular FFA production.
Collapse
Affiliation(s)
- Kwang Soo Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Sung Kuk Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| |
Collapse
|
49
|
Chevalier S, Bouffartigues E, Bodilis J, Maillot O, Lesouhaitier O, Feuilloley MGJ, Orange N, Dufour A, Cornelis P. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol Rev 2017; 41:698-722. [PMID: 28981745 DOI: 10.1093/femsre/fux020] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/24/2017] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium belonging to the γ-proteobacteria. Like other members of the Pseudomonas genus, it is known for its metabolic versatility and its ability to colonize a wide range of ecological niches, such as rhizosphere, water environments and animal hosts, including humans where it can cause severe infections. Another particularity of P. aeruginosa is its high intrinsic resistance to antiseptics and antibiotics, which is partly due to its low outer membrane permeability. In contrast to Enterobacteria, pseudomonads do not possess general diffusion porins in their outer membrane, but rather express specific channel proteins for the uptake of different nutrients. The major outer membrane 'porin', OprF, has been extensively investigated, and displays structural, adhesion and signaling functions while its role in the diffusion of nutrients is still under discussion. Other porins include OprB and OprB2 for the diffusion of glucose, the two small outer membrane proteins OprG and OprH, and the two porins involved in phosphate/pyrophosphate uptake, OprP and OprO. The remaining nineteen porins belong to the so-called OprD (Occ) family, which is further split into two subfamilies termed OccD (8 members) and OccK (11 members). In the past years, a large amount of information concerning the structure, function and regulation of these porins has been published, justifying why an updated review is timely.
Collapse
Affiliation(s)
- Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Josselin Bodilis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Nicole Orange
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Alain Dufour
- IUEM, Laboratoire de Biotechnologie et Chimie Marines EA 3884, Université de Bretagne-Sud (UEB), 56321 Lorient, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| |
Collapse
|
50
|
Abstract
One of the main fundamental mechanisms of antibiotic resistance in Gram-negative bacteria comprises an effective change in the membrane permeability to antibiotics. The Gram-negative bacterial complex cell envelope comprises an outer membrane that delimits the periplasm from the exterior environment. The outer membrane contains numerous protein channels, termed as porins or nanopores, which are mainly involved in the influx of hydrophilic compounds, including antibiotics. Bacterial adaptation to reduce influx through these outer membrane proteins (Omps) is one of the crucial mechanisms behind antibiotic resistance. Thus to interpret the molecular basis of the outer membrane permeability is the current challenge. This review attempts to develop a state of knowledge pertinent to Omps and their effective role in antibiotic influx. Further, it aims to study the bacterial response to antibiotic membrane permeability and hopefully provoke a discussion toward understanding and further exploration of prospects to improve our knowledge on physicochemical parameters that direct the translocation of antibiotics through the bacterial membrane protein channels.
Collapse
Affiliation(s)
- Ishan Ghai
- School of Engineering and Life Sciences, Jacobs University, Bremen
| | | |
Collapse
|