1
|
Kang SW, Tran HT, Lee G, Ng JT, Lim SB, Kim EY. Drosophila peptidyl-prolyl cis/trans isomerase-like 4 regulates circadian rhythm by supporting high-amplitude oscillations of PERIOD. iScience 2025; 28:112457. [PMID: 40384934 PMCID: PMC12084006 DOI: 10.1016/j.isci.2025.112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/03/2025] [Accepted: 04/11/2025] [Indexed: 05/20/2025] Open
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases) accelerate proline peptide bond isomerization, affecting substrate protein function. In this study, through RNAi-based behavioral screening of PPIases in Drosophila melanogaster, we identified CG5808, termed Drosophila peptidyl-prolyl cis/trans isomerase-like 4 (dPPIL4), as crucial for circadian rhythm regulation. Knockdown of dppil4 in clock cells lengthened the circadian rhythm period and decreased rhythmicity, accompanied by a significant reduction of core clock protein PERIOD (PER). d ppil4 knockdown downregulated per transcription and reduced phosphorylation at Ser5 in the RNA polymerase II C-terminal domain, critical for transcription elongation. In addition, dPPIL4 stabilized Cullin1 of the Skp1-Cullin1-F-box protein complex, a key regulator of PER degradation. Our findings suggest that dPPIL4 supports high-amplitude PER oscillation by enhancing both synthesis and degradation processes in a timely manner. In conclusion, our study underscores the importance of high-amplitude PER oscillations in PER for robust circadian rhythms and highlights the critical role of dPPIL4 in this process.
Collapse
Affiliation(s)
- So Who Kang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Hong Thuan Tran
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Gaeun Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Jestlin Tianthing Ng
- Department of Biochemistry, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Su Bin Lim
- Department of Biochemistry, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Eun Young Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
| |
Collapse
|
2
|
Ghosh S, Suray C, Bozzolan F, Palazzo A, Monsempès C, Lecouvreur F, Chatterjee A. Pheromone-mediated command from the female to male clock induces and synchronizes circadian rhythms of the moth Spodoptera littoralis. Curr Biol 2024; 34:1414-1425.e5. [PMID: 38479388 DOI: 10.1016/j.cub.2024.02.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 04/11/2024]
Abstract
To extract any adaptive benefit, the circadian clock needs to be synchronized to the 24-h day-night cycles. We have investigated if it is a general property of the brain's circadian clock to recognize social interactions as external time givers. Sociosexual interactions with the opposite sex are universal, prevalent even in the lives of solitary animals. The solitary adult life of the Spodoptera littoralis moth is singularly dedicated to sex, offering an ideal context for exploring the impact of sociosexual cues on circadian timekeeping. We have identified specific olfactory cues responsible for social entrainment, revealing a surprisingly strong influence of pheromone-mediated remote sociosexual interactions on circadian rhythms. Males' free-running rhythms are induced and synchronized by the sex pheromone that the female releases in a rhythmic fashion, highlighting a hierarchical relation between the female and male circadian oscillators. Even a single pulse of the sex pheromone altered clock gene expression in the male brain, surpassing the effect of light on the clock. Our finding of a daytime-dependent, lasting impact of pheromone on male's courtship efficacy indicates that circadian timing in moths is a trait under sexual selection. We have identified specific components of the sex-pheromone blend that lack mate-attractive property but have powerful circadian effects, providing rationale for their continued retention by the female. We show that such volatiles, when shared across sympatric moth species, can trigger communal synchronization. Our results suggest that the sex pheromone released by female moths entrains males' behavioral activity rhythm to ensure synchronized timing of mating.
Collapse
Affiliation(s)
- Sagnik Ghosh
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France
| | - Caroline Suray
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France
| | - Antonio Palazzo
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France
| | - Christelle Monsempès
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France
| | - François Lecouvreur
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France
| | - Abhishek Chatterjee
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France.
| |
Collapse
|
3
|
Tabuloc CA, Cai YD, Kwok RS, Chan EC, Hidalgo S, Chiu JC. CLOCK and TIMELESS regulate rhythmic occupancy of the BRAHMA chromatin-remodeling protein at clock gene promoters. PLoS Genet 2023; 19:e1010649. [PMID: 36809369 PMCID: PMC9983840 DOI: 10.1371/journal.pgen.1010649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/03/2023] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Circadian clock and chromatin-remodeling complexes are tightly intertwined systems that regulate rhythmic gene expression. The circadian clock promotes rhythmic expression, timely recruitment, and/or activation of chromatin remodelers, while chromatin remodelers regulate accessibility of clock transcription factors to the DNA to influence expression of clock genes. We previously reported that the BRAHMA (BRM) chromatin-remodeling complex promotes the repression of circadian gene expression in Drosophila. In this study, we investigated the mechanisms by which the circadian clock feeds back to modulate daily BRM activity. Using chromatin immunoprecipitation, we observed rhythmic BRM binding to clock gene promoters despite constitutive BRM protein expression, suggesting that factors other than protein abundance are responsible for rhythmic BRM occupancy at clock-controlled loci. Since we previously reported that BRM interacts with two key clock proteins, CLOCK (CLK) and TIMELESS (TIM), we examined their effect on BRM occupancy to the period (per) promoter. We observed reduced BRM binding to the DNA in clk null flies, suggesting that CLK is involved in enhancing BRM occupancy to initiate transcriptional repression at the conclusion of the activation phase. Additionally, we observed reduced BRM binding to the per promoter in flies overexpressing TIM, suggesting that TIM promotes BRM removal from DNA. These conclusions are further supported by elevated BRM binding to the per promoter in flies subjected to constant light and experiments in Drosophila tissue culture in which the levels of CLK and TIM are manipulated. In summary, this study provides new insights into the reciprocal regulation between the circadian clock and the BRM chromatin-remodeling complex.
Collapse
Affiliation(s)
- Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Rosanna S. Kwok
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Elizabeth C. Chan
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| |
Collapse
|
4
|
Abdalla OHMH, Mascarenhas B, Cheng HYM. Death of a Protein: The Role of E3 Ubiquitin Ligases in Circadian Rhythms of Mice and Flies. Int J Mol Sci 2022; 23:ijms231810569. [PMID: 36142478 PMCID: PMC9502492 DOI: 10.3390/ijms231810569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
Circadian clocks evolved to enable organisms to anticipate and prepare for periodic environmental changes driven by the day–night cycle. This internal timekeeping mechanism is built on autoregulatory transcription–translation feedback loops that control the rhythmic expression of core clock genes and their protein products. The levels of clock proteins rise and ebb throughout a 24-h period through their rhythmic synthesis and destruction. In the ubiquitin–proteasome system, the process of polyubiquitination, or the covalent attachment of a ubiquitin chain, marks a protein for degradation by the 26S proteasome. The process is regulated by E3 ubiquitin ligases, which recognize specific substrates for ubiquitination. In this review, we summarize the roles that known E3 ubiquitin ligases play in the circadian clocks of two popular model organisms: mice and fruit flies. We also discuss emerging evidence that implicates the N-degron pathway, an alternative proteolytic system, in the regulation of circadian rhythms. We conclude the review with our perspectives on the potential for the proteolytic and non-proteolytic functions of E3 ubiquitin ligases within the circadian clock system.
Collapse
Affiliation(s)
- Osama Hasan Mustafa Hasan Abdalla
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Brittany Mascarenhas
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Correspondence:
| |
Collapse
|
5
|
Ukita Y, Okumura M, Chihara T. Ubiquitin proteasome system in circadian rhythm and sleep homeostasis: Lessons from Drosophila. Genes Cells 2022; 27:381-391. [PMID: 35438236 PMCID: PMC9322287 DOI: 10.1111/gtc.12935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
Abstract
Sleep is regulated by two main processes: the circadian clock and sleep homeostasis. Circadian rhythms have been well studied at the molecular level. In the Drosophila circadian clock neurons, the core clock proteins are precisely regulated by post-translational modifications and degraded via the ubiquitin-proteasome system (UPS). Sleep homeostasis, however, is less understood; nevertheless, recent reports suggest that proteasome-mediated degradation of core clock proteins or synaptic proteins contributes to the regulation of sleep amount. Here, we review the molecular mechanism of the UPS and summarize the role of protein degradation in the regulation of circadian clock and homeostatic sleep in Drosophila. Moreover, we discuss the potential interaction between circadian clock and homeostatic sleep regulation with a prime focus on E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Yumiko Ukita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Gao Z, Wang A, Zhao Y, Zhang X, Yuan X, Li N, Xu C, Wang S, Zhu Y, Zhu J, Guan J, Liu F, Yin S. Integrative Proteome and Ubiquitinome Analyses Reveal the Substrates of BTBD9 and Its Underlying Mechanism in Sleep Regulation. ACS OMEGA 2022; 7:11839-11852. [PMID: 35449961 PMCID: PMC9016840 DOI: 10.1021/acsomega.1c07262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitination is a major posttranslational modification of proteins that affects their stability, and E3 ligases play a key role in ubiquitination by specifically recognizing their substrates. BTBD9, an adaptor of the Cullin-RING ligase complex, is responsible for substrate recognition and is associated with sleep homeostasis. However, the substrates of BTBD9-mediated ubiquitination remain unknown. Here, we generated an SH-SY5Y cell line stably expressing BTBD9 and performed proteomic analysis combined with ubiquitinome analysis to identify the downstream targets of BTBD9. Through this approach, we identified four potential BTBD9-mediated ubiquitination substrates that are targeted for degradation. Among these candidate substrates, inosine monophosphate dehydrogenase (IMPDH2), a novel target of BTBD9-mediated degradation, is a potential risk gene for sleep dysregulation. In conclusion, these findings not only demonstrate that proteomic analysis can be a useful general approach for the systematic identification of E3 ligase substrates but also identify novel substrates of BTBD9, providing a resource for future studies of sleep regulation mechanisms.
Collapse
Affiliation(s)
- Zhenfei Gao
- Department
of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Otolaryngology Institute of Shanghai Jiao Tong University,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Yishan Road 600, Shanghai 200233, China
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai 200233, China
| | - Anzhao Wang
- Department
of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Otolaryngology Institute of Shanghai Jiao Tong University,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Yishan Road 600, Shanghai 200233, China
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai 200233, China
| | - Yongxu Zhao
- CAS
Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai
Institute of Nutrition and Health, Shanghai Institutes for Biological
Sciences, University of Chinese Academy of Sciences, Chinese Academy
of Sciences, Shanghai 200231, China
| | - Xiaoxu Zhang
- Department
of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Otolaryngology Institute of Shanghai Jiao Tong University,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Yishan Road 600, Shanghai 200233, China
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai 200233, China
| | - Xiangshan Yuan
- Department
of Anatomy and Histoembryology, School of Basic Medical Sciences,
State Key Laboratory of Medical Neurobiology and MOE Frontiers Center
for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200231, China
| | - Niannian Li
- Department
of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Otolaryngology Institute of Shanghai Jiao Tong University,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Yishan Road 600, Shanghai 200233, China
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai 200233, China
| | - Chong Xu
- Department
of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Otolaryngology Institute of Shanghai Jiao Tong University,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Yishan Road 600, Shanghai 200233, China
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai 200233, China
| | - Shenming Wang
- Department
of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Otolaryngology Institute of Shanghai Jiao Tong University,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Yishan Road 600, Shanghai 200233, China
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai 200233, China
| | - Yaxin Zhu
- Department
of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Otolaryngology Institute of Shanghai Jiao Tong University,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Yishan Road 600, Shanghai 200233, China
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai 200233, China
| | - Jingyu Zhu
- Department
of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Otolaryngology Institute of Shanghai Jiao Tong University,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Yishan Road 600, Shanghai 200233, China
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai 200233, China
| | - Jian Guan
- Department
of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Otolaryngology Institute of Shanghai Jiao Tong University,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Yishan Road 600, Shanghai 200233, China
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai 200233, China
| | - Feng Liu
- Department
of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Otolaryngology Institute of Shanghai Jiao Tong University,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Yishan Road 600, Shanghai 200233, China
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai 200233, China
| | - Shankai Yin
- Department
of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Otolaryngology Institute of Shanghai Jiao Tong University,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Yishan Road 600, Shanghai 200233, China
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai 200233, China
| |
Collapse
|
7
|
Wu J, Fang S, Lu KT, Kumar G, Reho JJ, Brozoski DT, Otanwa AJ, Hu C, Nair AR, Wackman KK, Agbor LN, Grobe JL, Sigmund CD. Endothelial Cullin3 Mutation Impairs Nitric Oxide-Mediated Vasodilation and Promotes Salt-Induced Hypertension. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac017. [PMID: 35493997 PMCID: PMC9045850 DOI: 10.1093/function/zqac017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/13/2023]
Abstract
Human hypertension caused by in-frame deletion of CULLIN3 exon-9 (Cul3∆9) is driven by renal and vascular mechanisms. We bred conditionally activatable Cul3∆9 transgenic mice with tamoxifen-inducible Tie2-CREERT2 mice to test the importance of endothelial Cul3. The resultant mice (E-Cul3∆9) trended towards elevated nighttime blood pressure (BP) correlated with increased nighttime activity, but displayed no difference in daytime BP or activity. Male and female E-Cul3∆9 mice together exhibited a decline in endothelial-dependent relaxation in carotid artery. Male but not female E-Cul3∆9 mice displayed severe endothelial dysfunction in cerebral basilar artery. There was no impairment in mesenteric artery and no difference in smooth muscle function, suggesting the effects of Cul3∆9 are arterial bed-specific and sex-dependent. Expression of Cul3∆9 in primary mouse aortic endothelial cells decreased endogenous Cul3 protein, phosphorylated (S1177) endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production. Protein phosphatase (PP) 2A, a known Cul3 substrate, dephosphorylates eNOS. Cul3∆9-induced impairment of eNOS activity was rescued by a selective PP2A inhibitor okadaic acid, but not by a PP1 inhibitor tautomycetin. Because NO deficiency contributes to salt-induced hypertension, we tested the salt-sensitivity of E-Cul3∆9 mice. While both male and female E-Cul3∆9 mice developed salt-induced hypertension and renal injury, the pressor effect of salt was greater in female mutants. The increased salt-sensitivity in female E-Cul3∆9 mice was associated with decreased renovascular relaxation and impaired natriuresis in response to a sodium load. Thus, CUL3 mutations in the endothelium may contribute to human hypertension in part through decreased endothelial NO bioavailability, renovascular dysfunction, and increased salt-sensitivity of BP.
Collapse
Affiliation(s)
- Jing Wu
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Shi Fang
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA,Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Ko-Ting Lu
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Gaurav Kumar
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - John J Reho
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Daniel T Brozoski
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Adokole J Otanwa
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Chunyan Hu
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Anand R Nair
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Kelsey K Wackman
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Larry N Agbor
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Justin L Grobe
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | | |
Collapse
|
8
|
The E3 ubiquitin ligase adaptor Tango10 links the core circadian clock to neuropeptide and behavioral rhythms. Proc Natl Acad Sci U S A 2021; 118:2110767118. [PMID: 34799448 PMCID: PMC8617488 DOI: 10.1073/pnas.2110767118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Circadian transcriptional timekeepers in pacemaker neurons drive profound daily rhythms in sleep and wake. Here we reveal a molecular pathway that links core transcriptional oscillators to neuronal and behavioral rhythms. Using two independent genetic screens, we identified mutants of Transport and Golgi organization 10 (Tango10) with poor behavioral rhythmicity. Tango10 expression in pacemaker neurons expressing the neuropeptide PIGMENT-DISPERSING FACTOR (PDF) is required for robust rhythms. Loss of Tango10 results in elevated PDF accumulation in nerve terminals even in mutants lacking a functional core clock. TANGO10 protein itself is rhythmically expressed in PDF terminals. Mass spectrometry of TANGO10 complexes reveals interactions with the E3 ubiquitin ligase CULLIN 3 (CUL3). CUL3 depletion phenocopies Tango10 mutant effects on PDF even in the absence of the core clock gene timeless Patch clamp electrophysiology in Tango10 mutant neurons demonstrates elevated spontaneous firing potentially due to reduced voltage-gated Shaker-like potassium currents. We propose that Tango10/Cul3 transduces molecular oscillations from the core clock to neuropeptide release important for behavioral rhythms.
Collapse
|
9
|
Cai YD, Chiu JC. Timeless in animal circadian clocks and beyond. FEBS J 2021; 289:6559-6575. [PMID: 34699674 PMCID: PMC9038958 DOI: 10.1111/febs.16253] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/09/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
TIMELESS (TIM) was first identified as a molecular cog in the Drosophila circadian clock. Almost three decades of investigations have resulted in an insightful model describing the critical role of Drosophila TIM (dTIM) in circadian timekeeping in insects, including its function in mediating light entrainment and temperature compensation of the molecular clock. Furthermore, exciting discoveries on its sequence polymorphism and thermosensitive alternative RNA splicing have also established its role in regulating seasonal biology. Although mammalian TIM (mTIM), its mammalian paralog, was first identified as a potential circadian clock component in 1990s due to sequence similarity to dTIM, its role in clock regulation has been more controversial. Mammalian TIM has now been characterized as a DNA replication fork component and has been shown to promote fork progression and participate in cell cycle checkpoint signaling in response to DNA damage. Despite defective circadian rhythms displayed by mtim mutants, it remains controversial whether the regulation of circadian clocks by mTIM is direct, especially given the interconnection between the cell cycle and circadian clocks. In this review, we provide a historical perspective on the identification of animal tim genes, summarize the roles of TIM proteins in biological timing and genomic stability, and draw parallels between dTIM and mTIM despite apparent functional divergence.
Collapse
Affiliation(s)
- Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, CA, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, CA, USA
| |
Collapse
|
10
|
Parnell AA, De Nobrega AK, Lyons LC. Translating around the clock: Multi-level regulation of post-transcriptional processes by the circadian clock. Cell Signal 2021; 80:109904. [PMID: 33370580 PMCID: PMC8054296 DOI: 10.1016/j.cellsig.2020.109904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
The endogenous circadian clock functions to maintain optimal physiological health through the tissue specific coordination of gene expression and synchronization between tissues of metabolic processes throughout the 24 hour day. Individuals face numerous challenges to circadian function on a daily basis resulting in significant incidences of circadian disorders in the United States and worldwide. Dysfunction of the circadian clock has been implicated in numerous diseases including cancer, diabetes, obesity, cardiovascular and hepatic abnormalities, mood disorders and neurodegenerative diseases. The circadian clock regulates molecular, metabolic and physiological processes through rhythmic gene expression via transcriptional and post-transcriptional processes. Mounting evidence indicates that post-transcriptional regulation by the circadian clock plays a crucial role in maintaining tissue specific biological rhythms. Circadian regulation affecting RNA stability and localization through RNA processing, mRNA degradation, and RNA availability for translation can result in rhythmic protein synthesis, even when the mRNA transcripts themselves do not exhibit rhythms in abundance. The circadian clock also targets the initiation and elongation steps of translation through multiple pathways. In this review, the influence of the circadian clock across the levels of post-transcriptional, translation, and post-translational modifications are examined using examples from humans to cyanobacteria demonstrating the phylogenetic conservation of circadian regulation. Lastly, we briefly discuss chronotherapies and pharmacological treatments that target circadian function. Understanding the complexity and levels through which the circadian clock regulates molecular and physiological processes is important for future advancement of therapeutic outcomes.
Collapse
Affiliation(s)
- Amber A Parnell
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
11
|
Tabuchi M, Coates KE, Bautista OB, Zukowski LH. Light/Clock Influences Membrane Potential Dynamics to Regulate Sleep States. Front Neurol 2021; 12:625369. [PMID: 33854471 PMCID: PMC8039321 DOI: 10.3389/fneur.2021.625369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
The circadian rhythm is a fundamental process that regulates the sleep-wake cycle. This rhythm is regulated by core clock genes that oscillate to create a physiological rhythm of circadian neuronal activity. However, we do not know much about the mechanism by which circadian inputs influence neurons involved in sleep-wake architecture. One possible mechanism involves the photoreceptor cryptochrome (CRY). In Drosophila, CRY is receptive to blue light and resets the circadian rhythm. CRY also influences membrane potential dynamics that regulate neural activity of circadian clock neurons in Drosophila, including the temporal structure in sequences of spikes, by interacting with subunits of the voltage-dependent potassium channel. Moreover, several core clock molecules interact with voltage-dependent/independent channels, channel-binding protein, and subunits of the electrogenic ion pump. These components cooperatively regulate mechanisms that translate circadian photoreception and the timing of clock genes into changes in membrane excitability, such as neural firing activity and polarization sensitivity. In clock neurons expressing CRY, these mechanisms also influence synaptic plasticity. In this review, we propose that membrane potential dynamics created by circadian photoreception and core clock molecules are critical for generating the set point of synaptic plasticity that depend on neural coding. In this way, membrane potential dynamics drive formation of baseline sleep architecture, light-driven arousal, and memory processing. We also discuss the machinery that coordinates membrane excitability in circadian networks found in Drosophila, and we compare this machinery to that found in mammalian systems. Based on this body of work, we propose future studies that can better delineate how neural codes impact molecular/cellular signaling and contribute to sleep, memory processing, and neurological disorders.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | | | | | | |
Collapse
|
12
|
Cai YD, Xue Y, Truong CC, Del Carmen-Li J, Ochoa C, Vanselow JT, Murphy KA, Li YH, Liu X, Kunimoto BL, Zheng H, Zhao C, Zhang Y, Schlosser A, Chiu JC. CK2 Inhibits TIMELESS Nuclear Export and Modulates CLOCK Transcriptional Activity to Regulate Circadian Rhythms. Curr Biol 2021; 31:502-514.e7. [PMID: 33217322 PMCID: PMC7878342 DOI: 10.1016/j.cub.2020.10.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 11/06/2022]
Abstract
Circadian clocks orchestrate daily rhythms in organismal physiology and behavior to promote optimal performance and fitness. In Drosophila, key pacemaker proteins PERIOD (PER) and TIMELESS (TIM) are progressively phosphorylated to perform phase-specific functions. Whereas PER phosphorylation has been extensively studied, systematic analysis of site-specific TIM phosphorylation is lacking. Here, we identified phosphorylation sites of PER-bound TIM by mass spectrometry, given the importance of TIM as a modulator of PER function in the pacemaker. Among the 12 TIM phosphorylation sites we identified, at least two of them are critical for circadian timekeeping as mutants expressing non-phosphorylatable mutations exhibit altered behavioral rhythms. In particular, we observed that CK2-dependent phosphorylation of TIM(S1404) promotes nuclear accumulation of PER-TIM heterodimers by inhibiting the interaction of TIM and nuclear export component, Exportin 1 (XPO1). We propose that proper level of nuclear PER-TIM accumulation is necessary to facilitate kinase recruitment for the regulation of daily phosphorylation rhythm and phase-specific transcriptional activity of CLOCK (CLK). Our results highlight the contribution of phosphorylation-dependent nuclear export of PER-TIM heterodimers to the maintenance of circadian periodicity and identify a new mechanism by which the negative elements of the circadian clock (PER-TIM) regulate the positive elements (CLK-CYC). Finally, because the molecular phenotype of tim(S1404A) non-phosphorylatable mutant exhibits remarkable similarity to that of a mutation in human timeless that underlies familial advanced sleep phase syndrome (FASPS), our results revealed an unexpected parallel between the functions of Drosophila and human TIM and may provide new insights into the molecular mechanisms underlying human FASPS. Organisms in all domains of life exhibit circadian rhythms. Cai et al. reveal that phosphorylation of TIMELESS modulates kinase accessibility to CLOCK in the nucleus. This mechanism is important in controlling daily phosphorylation rhythm of CLOCK, which is critical for its function as a key regulator of circadian rhythms.
Collapse
Affiliation(s)
- Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yongbo Xue
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Cindy C Truong
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jose Del Carmen-Li
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Christopher Ochoa
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jens T Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Wurzburg, Wurzburg, Germany
| | - Katherine A Murphy
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ying H Li
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ben L Kunimoto
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Wurzburg, Wurzburg, Germany
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
13
|
Ogueta M, Hardie RC, Stanewsky R. Light Sampling via Throttled Visual Phototransduction Robustly Synchronizes the Drosophila Circadian Clock. Curr Biol 2020; 30:2551-2563.e3. [PMID: 32502413 DOI: 10.1016/j.cub.2020.04.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 01/19/2023]
Abstract
The daily changes of light and dark exemplify a prominent cue for the synchronization of circadian clocks with the environment. The match between external and internal time is crucial for the fitness of organisms, and desynchronization has been linked to numerous physical and mental health problems. Organisms therefore developed complex and not fully understood mechanisms to synchronize their circadian clock to light. In mammals and in Drosophila, both the visual system and non-image-forming photoreceptors contribute to circadian clock resetting. In Drosophila, light-dependent degradation of the clock protein TIMELESS by the blue light photoreceptor Cryptochrome is considered the main mechanism for clock synchronization, although the visual system also contributes. To better understand the visual system contribution, we generated a genetic variant exhibiting extremely slow phototransduction kinetics, yet normal sensitivity. In this variant, the visual system is able to contribute its full share to circadian clock entrainment, both with regard to behavioral and molecular light synchronization. This function depends on an alternative phospholipase C-β enzyme, encoded by PLC21C, presumably playing a dedicated role in clock resetting. We show that this pathway requires the ubiquitin ligase CULLIN-3, possibly mediating CRY-independent degradation of TIMELESS during light:dark cycles. Our results suggest that the PLC21C-mediated contribution to circadian clock entrainment operates on a drastically slower timescale compared with fast, norpA-dependent visual phototransduction. Our findings are therefore consistent with the general idea that the visual system samples light over prolonged periods of time (h) in order to reliably synchronize their internal clocks with the external time.
Collapse
Affiliation(s)
- Maite Ogueta
- Institute of Neuro and Behavioral Biology, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Roger C Hardie
- Department of Physiology, Development, and Neuroscience, Cambridge University, Cambridge CB2 3EG, UK
| | - Ralf Stanewsky
- Institute of Neuro and Behavioral Biology, Westfälische Wilhelms University, 48149 Münster, Germany.
| |
Collapse
|
14
|
Wang C, Shui K, Ma S, Lin S, Zhang Y, Wen B, Deng W, Xu H, Hu H, Guo A, Xue Y, Zhang L. Integrated omics in Drosophila uncover a circadian kinome. Nat Commun 2020; 11:2710. [PMID: 32483184 PMCID: PMC7264355 DOI: 10.1038/s41467-020-16514-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Most organisms on the earth exhibit circadian rhythms in behavior and physiology, which are driven by endogenous clocks. Phosphorylation plays a central role in timing the clock, but how this contributes to overt rhythms is unclear. Here we conduct phosphoproteomics in conjunction with transcriptomic and proteomic profiling using fly heads. By developing a pipeline for integrating multi-omics data, we identify 789 (~17%) phosphorylation sites with circadian oscillations. We predict 27 potential circadian kinases to participate in phosphorylating these sites, including 7 previously known to function in the clock. We screen the remaining 20 kinases for effects on circadian rhythms and find an additional 3 to be involved in regulating locomotor rhythm. We re-construct a signal web that includes the 10 circadian kinases and identify GASKET as a potentially important regulator. Taken together, we uncover a circadian kinome that potentially shapes the temporal pattern of the entire circadian molecular landscapes. Phosphorylation plays an important role in the regulation of molecular circadian clocks. Here the authors utilize multi-omics data from flies to describe the circadian kinome and identify GASKET as a potentially important regulator within the circadian kinase network.
Collapse
Affiliation(s)
- Chenwei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ke Shui
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shanshan Ma
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shaofeng Lin
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Bo Wen
- Department of Molecular and Human Genetics, Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wankun Deng
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Haodong Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hui Hu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Anyuan Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China. .,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China. .,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
15
|
Maurer GW, Malita A, Nagy S, Koyama T, Werge TM, Halberg KA, Texada MJ, Rewitz K. Analysis of genes within the schizophrenia-linked 22q11.2 deletion identifies interaction of night owl/LZTR1 and NF1 in GABAergic sleep control. PLoS Genet 2020; 16:e1008727. [PMID: 32339168 PMCID: PMC7205319 DOI: 10.1371/journal.pgen.1008727] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 05/07/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
The human 22q11.2 chromosomal deletion is one of the strongest identified genetic risk factors for schizophrenia. Although the deletion spans a number of known genes, the contribution of each of these to the 22q11.2 deletion syndrome (DS) is not known. To investigate the effect of individual genes within this interval on the pathophysiology associated with the deletion, we analyzed their role in sleep, a behavior affected in virtually all psychiatric disorders, including the 22q11.2 DS. We identified the gene LZTR1 (night owl, nowl) as a regulator of night-time sleep in Drosophila. In humans, LZTR1 has been associated with Ras-dependent neurological diseases also caused by Neurofibromin-1 (Nf1) deficiency. We show that Nf1 loss leads to a night-time sleep phenotype nearly identical to that of nowl loss and that nowl negatively regulates Ras and interacts with Nf1 in sleep regulation. Furthermore, nowl is required for metabolic homeostasis, suggesting that LZTR1 may contribute to the genetic susceptibility to obesity associated with the 22q11.2 DS. Knockdown of nowl or Nf1 in GABA-responsive sleep-promoting neurons elicits the sleep phenotype, and this defect can be rescued by increased GABAA receptor signaling, indicating that Nowl regulates sleep through modulation of GABA signaling. Our results suggest that nowl/LZTR1 may be a conserved regulator of GABA signaling important for normal sleep that contributes to the 22q11.2 DS. Schizophrenia is a devastating mental disorder with a large genetic component to disease predisposition. One of the strongest genetic risk factors for this disorder is a relatively small genetic deletion of 43 genes on the 22nd chromosome, called 22q11.2, which confers about a 25% risk of schizophrenia development. However, it is likely that only some of these deleted genes affect disease risk, so we tested most of them individually. One of the main symptoms of schizophrenia is disturbed sleep. Sleep is an evolutionarily conserved behavior that can be easily studied in the fruit fly Drosophila melanogaster, so we investigated the effect on sleep of blocking expression of the fly homologs of most of the 22q11.2 genes and identified the gene LZTR1 (night owl, nowl) as an important sleep regulator. We found that Nowl/LZTR1 is required for inhibition of the Ras pathway and interacts genetically with the Ras inhibitor NF1. Nowl/LZTR1 appears to function in sleep by modulating inhibitory GABA signaling, which is affected in schizophrenia. Thus, this gene may underlie some of the phenotypes of the human schizophrenia-risk deletion.
Collapse
Affiliation(s)
- Gianna W. Maurer
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alina Malita
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas M. Werge
- Institute for Biological Psychiatry, Mental Health Centre Sct. Hans, Roskilde, Denmark
| | | | - Michael J. Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
16
|
Ubiquitylation Dynamics of the Clock Cell Proteome and TIMELESS during a Circadian Cycle. Cell Rep 2019; 23:2273-2282. [PMID: 29791839 DOI: 10.1016/j.celrep.2018.04.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 02/10/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Circadian clocks have evolved as time-measuring molecular devices to help organisms adapt their physiology to daily changes in light and temperature. Transcriptional oscillations account for a large fraction of rhythmic protein abundance. However, cycling of various posttranslational modifications, such as ubiquitylation, also contributes to shape the rhythmic protein landscape. In this study, we used an in vivo ubiquitin labeling assay to investigate the circadian ubiquitylated proteome of Drosophila melanogaster. We find that cyclic ubiquitylation affects MEGATOR (MTOR), a chromatin-associated nucleoporin that, in turn, feeds back to regulate the core molecular oscillator. Furthermore, we show that the ubiquitin ligase subunits CULLIN-3 (CUL-3) and SUPERNUMERARY LIMBS (SLMB) cooperate for ubiquitylating the TIMELESS protein. These findings stress the importance of ubiquitylation pathways in the Drosophila circadian clock and reveal a key component of this system.
Collapse
|
17
|
SUR-8 interacts with PP1-87B to stabilize PERIOD and regulate circadian rhythms in Drosophila. PLoS Genet 2019; 15:e1008475. [PMID: 31710605 PMCID: PMC6874087 DOI: 10.1371/journal.pgen.1008475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/21/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Circadian rhythms are generated by endogenous pacemakers that rely on transcriptional-translational feedback mechanisms conserved among species. In Drosophila, the stability of a key pacemaker protein PERIOD (PER) is tightly controlled by changes in phosphorylation status. A number of molecular players have been implicated in PER destabilization by promoting PER progressive phosphorylation. On the other hand, there have been few reports describing mechanisms that stabilize PER by delaying PER hyperphosphorylation. Here we report that the protein Suppressor of Ras (SUR-8) regulates circadian locomotor rhythms by stabilizing PER. Depletion of SUR-8 from circadian neurons lengthened the circadian period by about 2 hours and decreased PER abundance, whereas its overexpression led to arrhythmia and an increase in PER. Specifically SUR-8 promotes the stability of PER through phosphorylation regulation. Interestingly, downregulation of the protein phosphatase 1 catalytic subunit PP1-87B recapitulated the phenotypes of SUR-8 depletion. We found that SUR-8 facilitates interactions between PP1-87B and PER. Depletion of SUR-8 decreased the interaction of PER and PP1-87B, which supports the role of SUR-8 as a scaffold protein. Interestingly, the interaction between SUR-8 and PER is temporally regulated: SUR-8 has more binding to PER at night than morning. Thus, our results indicate that SUR-8 interacts with PP1-87B to control PER stability to regulate circadian rhythms. Circadian clocks govern daily rhythms in physiology and behavior. Conserved molecular machinery drives circadian clocks among animals. PERIOD is a key pacemaker protein in fruit flies that undergoes a series of post-translational modifications. Several kinases have been identified in destabilizing PER. Here we identify the role of SUR-8 in circadian locomotor rhythms. Depletion of SUR-8 in pacemaker neurons slows down circadian rhythms and reduces PER abundance. Indeed, SUR-8 promotes the stability of PER. Finally we characterize SUR-8 as a scaffold protein to bridge PER and a phosphatase (PP1-87B) together to regulate PER phosphorylation and abundance.
Collapse
|
18
|
Abstract
CRYPTOCHROMES (CRYs) are structurally related to ultraviolet (UV)/blue-sensitive DNA repair enzymes called photolyases but lack the ability to repair pyrimidine dimers generated by UV exposure. First identified in plants, CRYs have proven to be involved in light detection and various light-dependent processes in a broad range of organisms. In Drosophila, CRY's best understood role is the cell-autonomous synchronization of circadian clocks. However, CRY also contributes to the amplitude of circadian oscillations in a light-independent manner, controls arousal and UV avoidance, influences visual photoreception, and plays a key role in magnetic field detection. Here, we review our current understanding of the mechanisms underlying CRY's various circadian and noncircadian functions in fruit flies.
Collapse
Affiliation(s)
- Lauren E Foley
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
19
|
Nian X, Chen W, Bai W, Zhao Z, Zhang Y. miR-263b Controls Circadian Behavior and the Structural Plasticity of Pacemaker Neurons by Regulating the LIM-Only Protein Beadex. Cells 2019; 8:cells8080923. [PMID: 31426557 PMCID: PMC6721658 DOI: 10.3390/cells8080923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
: Circadian clocks drive rhythmic physiology and behavior to allow adaption to daily environmental changes. In Drosophila, the small ventral lateral neurons (sLNvs) are primary pacemakers that control circadian rhythms. Circadian changes are observed in the dorsal axonal projections of the sLNvs, but their physiological importance and the underlying mechanism are unclear. Here, we identified miR-263b as an important regulator of circadian rhythms and structural plasticity of sLNvs in Drosophila. Depletion of miR-263b (miR-263bKO) in flies dramatically impaired locomotor rhythms under constant darkness. Indeed, miR-263b is required for the structural plasticity of sLNvs. miR-263b regulates circadian rhythms through inhibition of expression of the LIM-only protein Beadex (Bx). Consistently, overexpression of Bx or loss-of-function mutation (BxhdpR26) phenocopied miR-263bKO and miR-263b overexpression in behavior and molecular characteristics. In addition, mutating the miR-263b binding sites in the Bx 3' UTR using CRISPR/Cas9 recapitulated the circadian phenotypes of miR-263bKO flies. Together, these results establish miR-263b as an important regulator of circadian locomotor behavior and structural plasticity.
Collapse
Affiliation(s)
- Xiaoge Nian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
| | - Wenfeng Chen
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
- Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China
| | - Weiwei Bai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Yong Zhang
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA.
| |
Collapse
|
20
|
Niu Y, Liu Z, Nian X, Xu X, Zhang Y. miR-210 controls the evening phase of circadian locomotor rhythms through repression of Fasciclin 2. PLoS Genet 2019; 15:e1007655. [PMID: 31356596 PMCID: PMC6687186 DOI: 10.1371/journal.pgen.1007655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 08/08/2019] [Accepted: 07/08/2019] [Indexed: 11/19/2022] Open
Abstract
Circadian clocks control the timing of animal behavioral and physiological rhythms. Fruit flies anticipate daily environmental changes and exhibit two peaks of locomotor activity around dawn and dusk. microRNAs are small non-coding RNAs that play important roles in post-transcriptional regulation. Here we identify Drosophila miR-210 as a critical regulator of circadian rhythms. Under light-dark conditions, flies lacking miR-210 (miR-210KO) exhibit a dramatic 2 hrs phase advance of evening anticipatory behavior. However, circadian rhythms and molecular pacemaker function are intact in miR-210KO flies under constant darkness. Furthermore, we identify that miR-210 determines the evening phase of activity through repression of the cell adhesion molecule Fasciclin 2 (Fas2). Ablation of the miR-210 binding site within the 3' UTR of Fas2 (Fas2ΔmiR-210) by CRISPR-Cas9 advances the evening phase as in miR-210KO. Indeed, miR-210 genetically interacts with Fas2. Moreover, Fas2 abundance is significantly increased in the optic lobe of miR-210KO. In addition, overexpression of Fas2 in the miR-210 expressing cells recapitulates the phase advance behavior phenotype of miR-210KO. Together, these results reveal a novel mechanism by which miR-210 regulates circadian locomotor behavior.
Collapse
Affiliation(s)
- Ye Niu
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
| | - Zhenxing Liu
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
| | - Xiaoge Nian
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xuehan Xu
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
| | - Yong Zhang
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
| |
Collapse
|
21
|
PERIOD-controlled deadenylation of the timeless transcript in the Drosophila circadian clock. Proc Natl Acad Sci U S A 2019; 116:5721-5726. [PMID: 30833404 DOI: 10.1073/pnas.1814418116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Drosophila circadian oscillator relies on a negative transcriptional feedback loop, in which the PERIOD (PER) and TIMELESS (TIM) proteins repress the expression of their own gene by inhibiting the activity of the CLOCK (CLK) and CYCLE (CYC) transcription factors. A series of posttranslational modifications contribute to the oscillations of the PER and TIM proteins but few posttranscriptional mechanisms have been described that affect mRNA stability. Here we report that down-regulation of the POP2 deadenylase, a key component of the CCR4-NOT deadenylation complex, alters behavioral rhythms. Down-regulating POP2 specifically increases TIM protein and tim mRNA but not tim pre-mRNA, supporting a posttranscriptional role. Indeed, reduced POP2 levels induce a lengthening of tim mRNA poly(A) tail. Surprisingly, such effects are lost in per 0 mutants, supporting a PER-dependent inhibition of tim mRNA deadenylation by POP2. We report a deadenylation mechanism that controls the oscillations of a core clock gene transcript.
Collapse
|
22
|
Chen W, Werdann M, Zhang Y. The auxin-inducible degradation system enables conditional PERIOD protein depletion in the nervous system of Drosophila melanogaster. FEBS J 2018; 285:4378-4393. [PMID: 30321477 DOI: 10.1111/febs.14677] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/26/2018] [Accepted: 10/11/2018] [Indexed: 01/07/2023]
Abstract
Tools that allow inducible and reversible depletion of target proteins are critical for biological studies. The plant-derived auxin-inducible degradation system (AID) enables the degradation of target proteins tagged with the AID motif. This system has been recently employed in mammalian cells as well as in Caenorhabditis elegans and Drosophila. To test the utility of the AID approach in the nervous system, we used circadian locomotor rhythms as a model and applied the AID method to temporally and spatially degrade PERIOD (PER), a critical pacemaker protein in Drosophila. We found that the period locus can be efficiently tagged with the AID motif by CRISPR/Cas9-based genome editing without disrupting PER function. Moreover, we demonstrated that the AID system could be used to induce rapid and efficient protein degradation in the nervous system as shown by effects on circadian and sleep behaviors. Furthermore, the protein degradation by AID was rapidly reversible after auxin removal. Together, our results show that the AID system provides a powerful tool for behavior studies in Drosophila.
Collapse
Affiliation(s)
- Wenfeng Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, China.,Department of Biology, University of Nevada Reno, NV, USA
| | | | - Yong Zhang
- Department of Biology, University of Nevada Reno, NV, USA
| |
Collapse
|
23
|
Ogueta M, Hardie RC, Stanewsky R. Non-canonical Phototransduction Mediates Synchronization of the Drosophila melanogaster Circadian Clock and Retinal Light Responses. Curr Biol 2018; 28:1725-1735.e3. [PMID: 29779871 PMCID: PMC5988559 DOI: 10.1016/j.cub.2018.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 12/28/2022]
Abstract
The daily light-dark cycles represent a key signal for synchronizing circadian clocks. Both insects and mammals possess dedicated "circadian" photoreceptors but also utilize the visual system for clock resetting. In Drosophila, circadian clock resetting is achieved by the blue-light photoreceptor cryptochrome (CRY), which is expressed within subsets of the brain clock neurons. In addition, rhodopsin-expressing photoreceptor cells contribute to light synchronization. Light resets the molecular clock by CRY-dependent degradation of the clock protein Timeless (TIM), although in specific subsets of key circadian pacemaker neurons, including the small ventral lateral neurons (s-LNvs), TIM and Period (PER) oscillations can be synchronized by light independent of CRY and canonical visual Rhodopsin phototransduction. Here, we show that at least three of the seven Drosophila rhodopsins can utilize an alternative transduction mechanism involving the same α-subunit of the heterotrimeric G protein operating in canonical visual phototransduction (Gq). Surprisingly, in mutants lacking the canonical phospholipase C-β (PLC-β) encoded by the no receptor potential A (norpA) gene, we uncovered a novel transduction pathway using a different PLC-β encoded by the Plc21C gene. This novel pathway is important for behavioral clock resetting to semi-natural light-dark cycles and mediates light-dependent molecular synchronization within the s-LNv clock neurons. The same pathway appears to be responsible for norpA-independent light responses in the compound eye. We show that Rhodopsin 5 (Rh5) and Rh6, present in the R8 subset of retinal photoreceptor cells, drive both the long-term circadian and rapid light responses in the eye.
Collapse
Affiliation(s)
- Maite Ogueta
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Roger C Hardie
- Department of Physiology, Development, and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, 48149 Münster, Germany.
| |
Collapse
|
24
|
Circadian Rhythms and Sleep in Drosophila melanogaster. Genetics 2017; 205:1373-1397. [PMID: 28360128 DOI: 10.1534/genetics.115.185157] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
The advantages of the model organism Drosophila melanogaster, including low genetic redundancy, functional simplicity, and the ability to conduct large-scale genetic screens, have been essential for understanding the molecular nature of circadian (∼24 hr) rhythms, and continue to be valuable in discovering novel regulators of circadian rhythms and sleep. In this review, we discuss the current understanding of these interrelated biological processes in Drosophila and the wider implications of this research. Clock genes period and timeless were first discovered in large-scale Drosophila genetic screens developed in the 1970s. Feedback of period and timeless on their own transcription forms the core of the molecular clock, and accurately timed expression, localization, post-transcriptional modification, and function of these genes is thought to be critical for maintaining the circadian cycle. Regulators, including several phosphatases and kinases, act on different steps of this feedback loop to ensure strong and accurately timed rhythms. Approximately 150 neurons in the fly brain that contain the core components of the molecular clock act together to translate this intracellular cycling into rhythmic behavior. We discuss how different groups of clock neurons serve different functions in allowing clocks to entrain to environmental cues, driving behavioral outputs at different times of day, and allowing flexible behavioral responses in different environmental conditions. The neuropeptide PDF provides an important signal thought to synchronize clock neurons, although the details of how PDF accomplishes this function are still being explored. Secreted signals from clock neurons also influence rhythms in other tissues. SLEEP is, in part, regulated by the circadian clock, which ensures appropriate timing of sleep, but the amount and quality of sleep are also determined by other mechanisms that ensure a homeostatic balance between sleep and wake. Flies have been useful for identifying a large set of genes, molecules, and neuroanatomic loci important for regulating sleep amount. Conserved aspects of sleep regulation in flies and mammals include wake-promoting roles for catecholamine neurotransmitters and involvement of hypothalamus-like regions, although other neuroanatomic regions implicated in sleep in flies have less clear parallels. Sleep is also subject to regulation by factors such as food availability, stress, and social environment. We are beginning to understand how the identified molecules and neurons interact with each other, and with the environment, to regulate sleep. Drosophila researchers can also take advantage of increasing mechanistic understanding of other behaviors, such as learning and memory, courtship, and aggression, to understand how sleep loss impacts these behaviors. Flies thus remain a valuable tool for both discovery of novel molecules and deep mechanistic understanding of sleep and circadian rhythms.
Collapse
|
25
|
Quasimodo mediates daily and acute light effects on Drosophila clock neuron excitability. Proc Natl Acad Sci U S A 2016; 113:13486-13491. [PMID: 27821737 DOI: 10.1073/pnas.1606547113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have characterized a light-input pathway regulating Drosophila clock neuron excitability. The molecular clock drives rhythmic electrical excitability of clock neurons, and we show that the recently discovered light-input factor Quasimodo (Qsm) regulates this variation, presumably via an Na+, K+, Cl- cotransporter (NKCC) and the Shaw K+ channel (dKV3.1). Because of light-dependent degradation of the clock protein Timeless (Tim), constant illumination (LL) leads to a breakdown of molecular and behavioral rhythms. Both overexpression (OX) and knockdown (RNAi) of qsm, NKCC, or Shaw led to robust LL rhythmicity. Whole-cell recordings of the large ventral lateral neurons (l-LNv) showed that altering Qsm levels reduced the daily variation in neuronal activity: qsmOX led to a constitutive less active, night-like state, and qsmRNAi led to a more active, day-like state. Qsm also affected daily changes in K+ currents and the GABA reversal potential, suggesting a role in modifying membrane currents and GABA responses in a daily fashion, potentially modulating light arousal and input to the clock. When directly challenged with blue light, wild-type l-LNvs responded with increased firing at night and no net response during the day, whereas altering Qsm, NKKC, or Shaw levels abolished these day/night differences. Finally, coexpression of ShawOX and NKCCRNAi in a qsm mutant background restored LL-induced behavioral arrhythmicity and wild-type neuronal activity patterns, suggesting that the three genes operate in the same pathway. We propose that Qsm affects both daily and acute light effects in l-LNvs probably acting on Shaw and NKCC.
Collapse
|
26
|
Eck S, Helfrich-Förster C, Rieger D. The Timed Depolarization of Morning and Evening Oscillators Phase Shifts the Circadian Clock of Drosophila. J Biol Rhythms 2016; 31:428-42. [PMID: 27269519 DOI: 10.1177/0748730416651363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phase response curves (PRCs) for light or temperature stimuli have been shown to be most valuable in understanding how circadian clocks are entrained to daily environmental cycles. Nowadays, PRC experiments in which clock neurons are manipulated in a temporally restricted manner by thermogenetic or optogenetic tools are also useful to comprehend clock network properties. Here, we temporally depolarized specific clock neurons of Drosophila melanogaster by activating temperature-sensitive dTrpA1 channels to unravel their role in phase shifting the flies' activity rhythm. The depolarization of all clock neurons caused a PRC resembling the flies' light PRC, with strong phase delays in the first half of the subjective night and modest phase advances in its second half. However, the activation of the flies' pigment-dispersing factor (PDF)-positive morning (M) neurons (s-LNvs) only induced phase advances, and these reached into the subjective day, where the light PRC has its dead zone. This indicates that the M neurons are very potent in accelerating the clock, which is in line with previous observations. In contrast, the evening (E) neurons together with the PDF-positive l-LNvs appear to mediate phase delays. Most interestingly, the molecular clock (Period protein cycling) of the depolarized clock neurons was shifted in parallel to the behavior, and this shift was already visible within the first cycle after the temperature pulse. We identified cAMP response element binding protein B (CREB) as a putative link between membrane depolarization and the molecular clock.
Collapse
Affiliation(s)
- Saskia Eck
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Germany
| | | | - Dirk Rieger
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Germany
| |
Collapse
|
27
|
Temperature compensation and temperature sensation in the circadian clock. Proc Natl Acad Sci U S A 2015; 112:E6284-92. [PMID: 26578788 DOI: 10.1073/pnas.1511215112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All known circadian clocks have an endogenous period that is remarkably insensitive to temperature, a property known as temperature compensation, while at the same time being readily entrained by a diurnal temperature oscillation. Although temperature compensation and entrainment are defining features of circadian clocks, their mechanisms remain poorly understood. Most models presume that multiple steps in the circadian cycle are temperature-dependent, thus facilitating temperature entrainment, but then insist that the effect of changes around the cycle sums to zero to enforce temperature compensation. An alternative theory proposes that the circadian oscillator evolved from an adaptive temperature sensor: a gene circuit that responds only to temperature changes. This theory implies that temperature changes should linearly rescale the amplitudes of clock component oscillations but leave phase relationships and shapes unchanged. We show using timeless luciferase reporter measurements and Western blots against TIMELESS protein that this prediction is satisfied by the Drosophila circadian clock. We also review evidence for pathways that couple temperature to the circadian clock, and show previously unidentified evidence for coupling between the Drosophila clock and the heat-shock pathway.
Collapse
|
28
|
Tormey D, Colbourne JK, Mockaitis K, Choi JH, Lopez J, Burkhart J, Bradshaw W, Holzapfel C. Evolutionary divergence of core and post-translational circadian clock genes in the pitcher-plant mosquito, Wyeomyia smithii. BMC Genomics 2015; 16:754. [PMID: 26444857 PMCID: PMC4594641 DOI: 10.1186/s12864-015-1937-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/19/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Internal circadian (circa, about; dies, day) clocks enable organisms to maintain adaptive timing of their daily behavioral activities and physiological functions. Eukaryotic clocks consist of core transcription-translation feedback loops that generate a cycle and post-translational modifiers that maintain that cycle at about 24 h. We use the pitcher-plant mosquito, Wyeomyia smithii (subfamily Culicini, tribe Sabethini), to test whether evolutionary divergence of the circadian clock genes in this species, relative to other insects, has involved primarily genes in the core feedback loops or the post-translational modifiers. Heretofore, there is no reference transcriptome or genome sequence for any mosquito in the tribe Sabethini, which includes over 375 mainly circumtropical species. METHODS We sequenced, assembled and annotated the transcriptome of W. smithii containing nearly 95 % of conserved single-copy orthologs in animal genomes. We used the translated contigs and singletons to determine the average rates of circadian clock-gene divergence in W. smithii relative to three other mosquito genera, to Drosophila, to the butterfly, Danaus, and to the wasp, Nasonia. RESULTS Over 1.08 million cDNA sequence reads were obtained consisting of 432.5 million nucleotides. Their assembly produced 25,904 contigs and 54,418 singletons of which 62 % and 28 % are annotated as protein-coding genes, respectively, sharing homology with other animal proteomes. DISCUSSION The W. smithii transcriptome includes all nine circadian transcription-translation feedback-loop genes and all eight post-translational modifier genes we sought to identify (Fig. 1). After aligning translated W. smithii contigs and singletons from this transcriptome with other insects, we determined that there was no significant difference in the average divergence of W. smithii from the six other taxa between the core feedback-loop genes and post-translational modifiers. CONCLUSIONS The characterized transcriptome is sufficiently complete and of sufficient quality to have uncovered all of the insect circadian clock genes we sought to identify (Fig. 1). Relative divergence does not differ between core feedback-loop genes and post-translational modifiers of those genes in a Sabethine species (W. smithii) that has experienced a continual northward dispersal into temperate regions of progressively longer summer day lengths as compared with six other insect taxa. An associated microarray platform derived from this work will enable the investigation of functional genomics of circadian rhythmicity, photoperiodic time measurement, and diapause along a photic and seasonal geographic gradient.
Collapse
Affiliation(s)
- Duncan Tormey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.,Stowers Institute for Medical Research, Kansas City, MO, USA
| | - John K Colbourne
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA.,School of Biosciences, University of Birmingham, Birmingham, UK
| | - Keithanne Mockaitis
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA.,Pervasive Technology Institute, Indiana University, Bloomington, IN, USA
| | - Jeong-Hyeon Choi
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA.,GRU Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Jacqueline Lopez
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA.,Department of Biological Sciences, Notre Dame University, Notre Dame, IN, USA
| | - Joshua Burkhart
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.,Burke E. Porter Machinery, Grand Rapids, MI, USA
| | - William Bradshaw
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.
| | | |
Collapse
|
29
|
Adewoye AB, Kyriacou CP, Tauber E. Identification and functional analysis of early gene expression induced by circadian light-resetting in Drosophila. BMC Genomics 2015; 16:570. [PMID: 26231660 PMCID: PMC4521455 DOI: 10.1186/s12864-015-1787-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/20/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The environmental light-dark cycle is the dominant cue that maintains 24-h biological rhythms in multicellular organisms. In Drosophila, light entrainment is mediated by the photosensitive protein CRYPTOCHROME, but the role and extent of transcription regulation in light resetting of the dipteran clock is yet unknown. Given the broad transcriptional changes in response to light previously identified in mammals, we have sought to analyse light-induced global transcriptional changes in the fly's head by using Affymetrix microarrays. Flies were subjected to a 30-min light pulse during the early night (3 h after lights-off), a stimulus which causes a substantial phase delay of the circadian rhythm. We then analysed changes in gene expression 1 h after the light stimulus. RESULTS We identified 200 genes whose transcripts were significantly altered in response to the light pulse at a false discovery rate cut-off of 10%. Analysis of these genes and their biological functions suggests the involvement of at least six biological processes in light-induced delay phase shifts of rhythmic activities. These processes include signalling, ion channel transport, receptor activity, synaptic organisation, signal transduction, and chromatin remodelling. Using RNAi, the expression of 22 genes was downregulated in the clock neurons, leading to significant effects on circadian output. For example, while continuous light normally causes arrhythmicity in wild-type flies, the knockdown of Kr-h1, Nipped-A, Thor, nrv1, Nf1, CG11155 (ionotropic glutamate receptor), and Fmr1 resulted in flies that were rhythmic, suggesting a disruption in the light input pathway to the clock. CONCLUSIONS Our analysis provides a first insight into the early responsive genes that are activated by light and their contribution to light resetting of the Drosophila clock. The analysis suggests multiple domains and pathways that might be associated with light entrainment, including a mechanism that was represented by a light-activated set of chromatin remodelling genes.
Collapse
Affiliation(s)
- Adeolu B Adewoye
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Charalambos P Kyriacou
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Eran Tauber
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
30
|
Donelson NC, Sanyal S. Use of Drosophila in the investigation of sleep disorders. Exp Neurol 2015; 274:72-9. [PMID: 26160555 DOI: 10.1016/j.expneurol.2015.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 12/24/2022]
Abstract
Genetic underpinnings for sleep disorders in humans remain poorly identified, investigated and understood. This is due to the inherent complexity of sleep and a disruption of normal sleep parameters in a number of neurological disorders. On the other hand, there have been steady and remarkable developments in the investigation of sleep using model organisms such as Drosophila. These studies have illuminated conserved genetic pathways, neural circuits and intra-cellular signaling modules in the regulation of sleep. Additionally, work in model systems is beginning to clarify the role of the circadian clock and basal sleep need in this process. There have also been initial efforts to directly model sleep disorders in flies in a few instances where a genetic basis has been suspected. Here, we discuss the opportunities and limitations of studying sleep disorders in Drosophila and propose that a greater convergence of basic sleep research in model organisms and human genetics should catalyze better understanding of sleep disorders and generate viable therapeutic options.
Collapse
Affiliation(s)
- Nathan C Donelson
- Neurology Research, 115 Broadway, Bio 6 Building, Biogen, Cambridge, MA 02142, USA
| | - Subhabrata Sanyal
- Neurology Research, 115 Broadway, Bio 6 Building, Biogen, Cambridge, MA 02142, USA.
| |
Collapse
|
31
|
Abstract
Restless legs syndrome (RLS) is a common sensorimotor trait defined by symptoms that interfere with sleep onset and maintenance in a clinically meaningful way. Nonvolitional myoclonus while awake and asleep is a sign of the disorder and an informative endophenotype. The genetic contributions to RLS/periodic leg movements are substantial, are among the most robust defined to date for a common disease, and account for much of the variance in disease expressivity. The disorder is polygenic, as revealed by recent genome-wide association studies. Experimental studies are revealing mechanistic details of how these common variants might influence RLS expressivity.
Collapse
Affiliation(s)
- David B Rye
- Program in Sleep, Department of Neurology, Emory University School of Medicine, 12 Executive Park Drive Northeast, Atlanta, GA 30329, USA.
| |
Collapse
|
32
|
Andreazza S, Bouleau S, Martin B, Lamouroux A, Ponien P, Papin C, Chélot E, Jacquet E, Rouyer F. Daytime CLOCK Dephosphorylation Is Controlled by STRIPAK Complexes in Drosophila. Cell Rep 2015; 11:1266-79. [PMID: 25981041 DOI: 10.1016/j.celrep.2015.04.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 02/23/2015] [Accepted: 04/16/2015] [Indexed: 11/29/2022] Open
Abstract
In the Drosophila circadian oscillator, the CLOCK/CYCLE complex activates transcription of period (per) and timeless (tim) in the evening. PER and TIM proteins then repress CLOCK (CLK) activity during the night. The pace of the oscillator depends upon post-translational regulation that affects both positive and negative components of the transcriptional loop. CLK protein is highly phosphorylated and inactive in the morning, whereas hypophosphorylated active forms are present in the evening. How this critical dephosphorylation step is mediated is unclear. We show here that two components of the STRIPAK complex, the CKA regulatory subunit of the PP2A phosphatase and its interacting protein STRIP, promote CLK dephosphorylation during the daytime. In contrast, the WDB regulatory PP2A subunit stabilizes CLK without affecting its phosphorylation state. Inhibition of the PP2A catalytic subunit and CKA downregulation affect daytime CLK similarly, suggesting that STRIPAK complexes are the main PP2A players in producing transcriptionally active hypophosphorylated CLK.
Collapse
Affiliation(s)
- Simonetta Andreazza
- Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Sylvina Bouleau
- Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Béatrice Martin
- Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Annie Lamouroux
- Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Prishila Ponien
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, 91190 Gif-sur-Yvette, France
| | - Christian Papin
- Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Elisabeth Chélot
- Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, 91190 Gif-sur-Yvette, France
| | - François Rouyer
- Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
33
|
Grice SJ, Liu JL, Webber C. Synergistic interactions between Drosophila orthologues of genes spanned by de novo human CNVs support multiple-hit models of autism. PLoS Genet 2015; 11:e1004998. [PMID: 25816101 PMCID: PMC4376901 DOI: 10.1371/journal.pgen.1004998] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/12/2015] [Indexed: 01/30/2023] Open
Abstract
Autism spectrum disorders (ASDs) are highly heritable and characterised by deficits in social interaction and communication, as well as restricted and repetitive behaviours. Although a number of highly penetrant ASD gene variants have been identified, there is growing evidence to support a causal role for combinatorial effects arising from the contributions of multiple loci. By examining synaptic and circadian neurological phenotypes resulting from the dosage variants of unique human:fly orthologues in Drosophila, we observe numerous synergistic interactions between pairs of informatically-identified candidate genes whose orthologues are jointly affected by large de novo copy number variants (CNVs). These CNVs were found in the genomes of individuals with autism, including a patient carrying a 22q11.2 deletion. We first demonstrate that dosage alterations of the unique Drosophila orthologues of candidate genes from de novo CNVs that harbour only a single candidate gene display neurological defects similar to those previously reported in Drosophila models of ASD-associated variants. We then considered pairwise dosage changes within the set of orthologues of candidate genes that were affected by the same single human de novo CNV. For three of four CNVs with complete orthologous relationships, we observed significant synergistic effects following the simultaneous dosage change of gene pairs drawn from a single CNV. The phenotypic variation observed at the Drosophila synapse that results from these interacting genetic variants supports a concordant phenotypic outcome across all interacting gene pairs following the direction of human gene copy number change. We observe both specificity and transitivity between interactors, both within and between CNV candidate gene sets, supporting shared and distinct genetic aetiologies. We then show that different interactions affect divergent synaptic processes, demonstrating distinct molecular aetiologies. Our study illustrates mechanisms through which synergistic effects resulting from large structural variation can contribute to human disease.
Collapse
Affiliation(s)
- Stuart J. Grice
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ji-Long Liu
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Caleb Webber
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Tataroglu O, Emery P. The molecular ticks of the Drosophila circadian clock. CURRENT OPINION IN INSECT SCIENCE 2015; 7:51-57. [PMID: 26120561 PMCID: PMC4480617 DOI: 10.1016/j.cois.2015.01.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Drosophila is a powerful model to understand the mechanisms underlying circadian rhythms. The Drosophila molecular clock is comprised of transcriptional feedback loops. The expressions of the critical transcriptional activator CLK and its repressors PER and TIM are under tight transcriptional control. However, posttranslational modification of these proteins and regulation of their stability are critical to their function and to the generation of 24-hr period rhythms. We review here recent progress made in our understanding of PER, TIM and CLK posttranslational control. We also review recent studies that are uncovering the importance of novel regulatory mechanisms that affect mRNA stability and translation of circadian pacemaker proteins and their output.
Collapse
|
35
|
Abstract
The power of Drosophila melanogaster as a model organism lies in its ability to be used for large-scale genetic screens with the capacity to uncover the genetic basis of biological processes. In particular, genetic screens for circadian behavior, which have been performed since 1971, allowed researchers to make groundbreaking discoveries on multiple levels: they discovered that there is a genetic basis for circadian behavior, they identified the so-called core clock genes that govern this process, and they started to paint a detailed picture of the molecular functions of these clock genes and their encoded proteins. Since the discovery that fruit flies sleep in 2000, researchers have successfully been using genetic screening to elucidate the many questions surrounding this basic animal behavior. In this chapter, we briefly recall the history of circadian rhythm and sleep screens and then move on to describe techniques currently employed for mutagenesis and genetic screening in the field. The emphasis lies on comparing the newer approaches of transgenic RNA interference (RNAi) to classical forms of mutagenesis, in particular in their application to circadian behavior and sleep. We discuss the different screening approaches in light of the literature and published and unpublished sleep and rhythm screens utilizing ethyl methanesulfonate mutagenesis and transgenic RNAi from our lab.
Collapse
Affiliation(s)
- Sofia Axelrod
- Laboratory of Genetics, The Rockefeller University, New York, USA
| | - Lino Saez
- Laboratory of Genetics, The Rockefeller University, New York, USA
| | - Michael W Young
- Laboratory of Genetics, The Rockefeller University, New York, USA.
| |
Collapse
|
36
|
Collins B, Kaplan HS, Cavey M, Lelito KR, Bahle AH, Zhu Z, Macara AM, Roman G, Shafer OT, Blau J. Differentially timed extracellular signals synchronize pacemaker neuron clocks. PLoS Biol 2014; 12:e1001959. [PMID: 25268747 PMCID: PMC4181961 DOI: 10.1371/journal.pbio.1001959] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/20/2014] [Indexed: 12/22/2022] Open
Abstract
Circadian pacemaker neurons in Drosophila are regulated by two synchronizing signals that are released at opposite times of day, generating a rhythm in intracellular cyclic AMP. Synchronized neuronal activity is vital for complex processes like behavior. Circadian pacemaker neurons offer an unusual opportunity to study synchrony as their molecular clocks oscillate in phase over an extended timeframe (24 h). To identify where, when, and how synchronizing signals are perceived, we first studied the minimal clock neural circuit in Drosophila larvae, manipulating either the four master pacemaker neurons (LNvs) or two dorsal clock neurons (DN1s). Unexpectedly, we found that the PDF Receptor (PdfR) is required in both LNvs and DN1s to maintain synchronized LNv clocks. We also found that glutamate is a second synchronizing signal that is released from DN1s and perceived in LNvs via the metabotropic glutamate receptor (mGluRA). Because simultaneously reducing Pdfr and mGluRA expression in LNvs severely dampened Timeless clock protein oscillations, we conclude that the master pacemaker LNvs require extracellular signals to function normally. These two synchronizing signals are released at opposite times of day and drive cAMP oscillations in LNvs. Finally we found that PdfR and mGluRA also help synchronize Timeless oscillations in adult s-LNvs. We propose that differentially timed signals that drive cAMP oscillations and synchronize pacemaker neurons in circadian neural circuits will be conserved across species. Circadian molecular clocks are essential for daily cycles in animal behavior and we have a good understanding of how these clocks work in individual pacemaker neurons. However, the accuracy of these individual clocks is meaningless unless they are synchronized with one another. In this study we show that synchronizing the principal pacemaker LNv neurons in Drosophila larvae require two extracellular signals that are received at opposite times of day: namely, the neuropeptide PDF released from LNvs themselves at dawn and glutamate released from dorsal clock neurons at dusk. LNvs perceive both PDF and glutamate via G-protein coupled receptors that increase or decrease intracellular cAMP, respectively. The alternating phases of PDF and glutamate release generate oscillations in intracellular cyclic AMP. In addition to maintaining synchrony between LNvs, this rhythm is also required for molecular clock oscillations in individual larval LNvs. We show that disruption of PDF and glutamate signaling also reduces synchrony in adult LNvs. This impairs the oscillations of clock proteins and flies have delayed onset of sleep. Our data highlight the importance of intercellular signaling in ensuring synchrony between clock neurons within the circadian network. Our findings help extend the conservation of clock properties between Drosophila and mammals beyond clock genes to include clock circuitry.
Collapse
Affiliation(s)
- Ben Collins
- Department of Biology, New York University, New York, New York, United States of America
| | - Harris S. Kaplan
- Department of Biology, New York University, New York, New York, United States of America
| | - Matthieu Cavey
- Department of Biology, New York University, New York, New York, United States of America
| | - Katherine R. Lelito
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew H. Bahle
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zhonghua Zhu
- Department of Biology, New York University, New York, New York, United States of America
| | - Ann Marie Macara
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gregg Roman
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Orie T. Shafer
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Justin Blau
- Department of Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi Institute, Abu Dhabi, United Arab Emirates
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- * E-mail:
| |
Collapse
|
37
|
Guo F, Cerullo I, Chen X, Rosbash M. PDF neuron firing phase-shifts key circadian activity neurons in Drosophila. eLife 2014; 3. [PMID: 24939987 PMCID: PMC4092873 DOI: 10.7554/elife.02780] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/16/2014] [Indexed: 01/06/2023] Open
Abstract
Our experiments address two long-standing models for the function of the Drosophila brain circadian network: a dual oscillator model, which emphasizes the primacy of PDF-containing neurons, and a cell-autonomous model for circadian phase adjustment. We identify five different circadian (E) neurons that are a major source of rhythmicity and locomotor activity. Brief firing of PDF cells at different times of day generates a phase response curve (PRC), which mimics a light-mediated PRC and requires PDF receptor expression in the five E neurons. Firing also resembles light by causing TIM degradation in downstream neurons. Unlike light however, firing-mediated phase-shifting is CRY-independent and exploits the E3 ligase component CUL-3 in the early night to degrade TIM. Our results suggest that PDF neurons integrate light information and then modulate the phase of E cell oscillations and behavioral rhythms. The results also explain how fly brain rhythms persist in constant darkness and without CRY. DOI:http://dx.doi.org/10.7554/eLife.02780.001 Most animals have daily rhythms of activity: some are awake during the day and asleep at night, whilst others are more active at night, or during the twilight hours around dawn and dusk. These cycles of activity are driven by an internal body clock, which is reset in response to external cues, like light and temperature, and which keeps the animal in sync with the day–night cycle. The fruit fly Drosophila has daily—or circadian—rhythms of behavior, which are controlled by a network of genes that are switched ‘on’ or ‘off’ at different times in every 24-hr period. These circadian genes encode various proteins, including PERIOD and TIMELESS. The levels of these two proteins increase during the day and into the night, until they reach a point at which they cause their own genes to be switched off. PERIOD and TIMELESS are then destroyed each morning, and the cycle begins anew. Most of these same proteins perform similar functions in mammals. In the fly brain, two groups of neurons express these key proteins and control the timings of activity or movement. One group, called M cells, regulates activity in the morning and also produces a small molecule called PDF. Another group, called E cells, controls evening activity, but is less well-defined. Since M cells can maintain circadian rhythms even in total darkness, these cells were also considered key ‘pacemaker neurons’. However, Guo et al. now challenge this view by identifying five E cells that are the major source of circadian activity. Blocking the release of signaling molecules from these neurons severely disrupted movement in both the morning and the evening. The E cells are also critical for timekeeping under a normal day–night cycle. Guo et al. found that the rhythm of the E cells is reset when the M cell neurons fire, which causes a release of PDF molecules. Further, PDF molecules reset the E cells by causing the degradation of the TIMELESS protein—which is similar to the effect of light, although light cause TIMELESS to be degraded via a different biochemical pathway. Guo et al. suggest that under normal light–dark conditions the E cells are important for driving the flies' activity as well as for overall timekeeping. The M cells, instead, appear to function primarily to integrate information about light and reset the E cell clock. Challenges moving forward will include understanding other ways in which the firing of neurons can affect timekeeping, as well as looking if there any differences between the five E cells. DOI:http://dx.doi.org/10.7554/eLife.02780.002
Collapse
Affiliation(s)
- Fang Guo
- Department of Biology, Brandeis University, Waltham, United States
| | - Isadora Cerullo
- Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Xiao Chen
- Department of Biology, Brandeis University, Waltham, United States
| | - Michael Rosbash
- Department of Biology, Brandeis University, Waltham, United States
| |
Collapse
|
38
|
Seluzicki A, Flourakis M, Kula-Eversole E, Zhang L, Kilman V, Allada R. Dual PDF signaling pathways reset clocks via TIMELESS and acutely excite target neurons to control circadian behavior. PLoS Biol 2014; 12:e1001810. [PMID: 24643294 PMCID: PMC3958333 DOI: 10.1371/journal.pbio.1001810] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 02/05/2014] [Indexed: 12/20/2022] Open
Abstract
Molecular circadian clocks are interconnected via neural networks. In Drosophila, PIGMENT-DISPERSING FACTOR (PDF) acts as a master network regulator with dual functions in synchronizing molecular oscillations between disparate PDF(+) and PDF(-) circadian pacemaker neurons and controlling pacemaker neuron output. Yet the mechanisms by which PDF functions are not clear. We demonstrate that genetic inhibition of protein kinase A (PKA) in PDF(-) clock neurons can phenocopy PDF mutants while activated PKA can partially rescue PDF receptor mutants. PKA subunit transcripts are also under clock control in non-PDF DN1p neurons. To address the core clock target of PDF, we rescued per in PDF neurons of arrhythmic per⁰¹ mutants. PDF neuron rescue induced high amplitude rhythms in the clock component TIMELESS (TIM) in per-less DN1p neurons. Complete loss of PDF or PKA inhibition also results in reduced TIM levels in non-PDF neurons of per⁰¹ flies. To address how PDF impacts pacemaker neuron output, we focally applied PDF to DN1p neurons and found that it acutely depolarizes and increases firing rates of DN1p neurons. Surprisingly, these effects are reduced in the presence of an adenylate cyclase inhibitor, yet persist in the presence of PKA inhibition. We have provided evidence for a signaling mechanism (PKA) and a molecular target (TIM) by which PDF resets and synchronizes clocks and demonstrates an acute direct excitatory effect of PDF on target neurons to control neuronal output. The identification of TIM as a target of PDF signaling suggests it is a multimodal integrator of cell autonomous clock, environmental light, and neural network signaling. Moreover, these data reveal a bifurcation of PKA-dependent clock effects and PKA-independent output effects. Taken together, our results provide a molecular and cellular basis for the dual functions of PDF in clock resetting and pacemaker output.
Collapse
Affiliation(s)
- Adam Seluzicki
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Matthieu Flourakis
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Elzbieta Kula-Eversole
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Luoying Zhang
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Valerie Kilman
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
39
|
The molecular basis of restless legs syndrome. Curr Opin Neurobiol 2013; 23:895-900. [DOI: 10.1016/j.conb.2013.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/29/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022]
|
40
|
Szabó Á, Papin C, Zorn D, Ponien P, Weber F, Raabe T, Rouyer F. The CK2 kinase stabilizes CLOCK and represses its activity in the Drosophila circadian oscillator. PLoS Biol 2013; 11:e1001645. [PMID: 24013921 PMCID: PMC3754892 DOI: 10.1371/journal.pbio.1001645] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/19/2013] [Indexed: 12/21/2022] Open
Abstract
Phosphorylation is a pivotal regulatory mechanism for protein stability and activity in circadian clocks regardless of their evolutionary origin. It determines the speed and strength of molecular oscillations by acting on transcriptional activators and their repressors, which form negative feedback loops. In Drosophila, the CK2 kinase phosphorylates and destabilizes the PERIOD (PER) and TIMELESS (TIM) proteins, which inhibit CLOCK (CLK) transcriptional activity. Here we show that CK2 also targets the CLK activator directly. Downregulating the activity of the catalytic α subunit of CK2 induces CLK degradation, even in the absence of PER and TIM. Unexpectedly, the regulatory β subunit of the CK2 holoenzyme is not required for the regulation of CLK stability. In addition, downregulation of CK2α activity decreases CLK phosphorylation and increases per and tim transcription. These results indicate that CK2 inhibits CLK degradation while reducing its activity. Since the CK1 kinase promotes CLK degradation, we suggest that CLK stability and transcriptional activity result from counteracting effects of CK1 and CK2.
Collapse
Affiliation(s)
- Áron Szabó
- Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique Unité Propre de Recherche 3294, Gif-sur-Yvette, France
- Département de Biologie, Université Paris Sud, Orsay, France
| | - Christian Papin
- Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique Unité Propre de Recherche 3294, Gif-sur-Yvette, France
- Département de Biologie, Université Paris Sud, Orsay, France
| | - Daniela Zorn
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Prishila Ponien
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Gif-sur-Yvette, France
- IMAGIF, Centre de Recherche de Gif, Gif-sur-Yvette, France
| | - Frank Weber
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Thomas Raabe
- University of Wuerzburg, Institute of Medical Radiation and Cell Research, Wuerzburg, Germany
| | - François Rouyer
- Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique Unité Propre de Recherche 3294, Gif-sur-Yvette, France
- Département de Biologie, Université Paris Sud, Orsay, France
- * E-mail:
| |
Collapse
|
41
|
Potdar S, Sheeba V. Lessons From Sleeping Flies: Insights fromDrosophila melanogasteron the Neuronal Circuitry and Importance of Sleep. J Neurogenet 2013; 27:23-42. [DOI: 10.3109/01677063.2013.791692] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Freeman AAH, Mandilaras K, Missirlis F, Sanyal S. An emerging role for Cullin-3 mediated ubiquitination in sleep and circadian rhythm: insights from Drosophila. Fly (Austin) 2013; 7:39-43. [PMID: 23455037 DOI: 10.4161/fly.23506] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although the neurophysiological correlates of sleep have been thoroughly described, genetic mechanisms that control sleep architecture, long surmised from ethological studies, family histories and clinical observations, have only been investigated during the past decade. Key contributions to the molecular understanding of sleep have come from studies in Drosophila, benefitting from a strong history of circadian rhythm research. For instance, a number of recent papers have highlighted the role of the E3 ubiquitin ligase Cullin-3 in the regulation of circadian rhythm and sleep. We propose that different Cullin-3 substrate adaptors may affect specific molecular pathways and diverse aspects of circadian rhythm and sleep. We have previously shown that mutations in BTBD9, a risk factor for Restless Legs Syndrome (RLS) encoding a Cullin-3 substrate adaptor, lead to reduced dopamine, increased locomotion and sleep fragmentation. Here, we propose that Cullin-3 acts together with BTBD9 to limit the accumulation of iron regulatory proteins in conditions of iron deficiency. Our model is consistent with clinical observations implicating iron homeostasis in the pathophysiology of RLS and predicts that lack of BTBD9 leads to misregulation of cellular iron storage, inactivating the critical biosynthetic enzyme Tyrosine Hydroxylase in dopaminergic neurons, with consequent phenotypic effects on sleep.
Collapse
Affiliation(s)
- Amanda A H Freeman
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | | | | | | |
Collapse
|