1
|
Clavijo-Buriticá DC, Sosa CC, Heredia RC, Mosquera AJ, Álvarez A, Medina J, Quimbaya M. Use of Arabidopsis thaliana as a model to understand specific carcinogenic events: Comparison of the molecular machinery associated with cancer-hallmarks in plants and humans. Heliyon 2023; 9:e15367. [PMID: 37101642 PMCID: PMC10123165 DOI: 10.1016/j.heliyon.2023.e15367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Model organisms are fundamental in cancer research given that they rise the possibility to characterize in a quantitative-objective fashion the organisms as a whole in ways that are infeasible in humans. From this perspective, model organisms with short generation times and established protocols for genetic manipulation allow the understanding of basic biology principles that might guide carcinogenic onset. The cancer-hallmarks (CHs) approach, a modular perspective for cancer understanding, stands that underlying the variability among different cancer types, critical events support the carcinogenic origin and progression. Thus, CHs as interconnected genetic circuitry, have a causal effect over cancer biogenesis and might represent a comparison scaffold among model organisms to identify and characterize evolutionarily conserved modules to understand cancer. Nevertheless, the identification of novel cancer regulators by comparative genomics approaches relies on selecting specific biological processes or related signaling cascades that limit the type of detected regulators, even more, holistic analysis from a systemic perspective is absent. Similarly, although the plant Arabidopsis thaliana has been used as a model organism to dissect specific disease-associated mechanisms, given the evolutionary distance between plants and humans, a general concern about the utility of using A. thaliana as a cancer model persists. In the present research, we take advantage of the CHs paradigm as a framework to establish a functional systemic comparison between plants and humans, that allowed the identification not only of specific novel key genetic regulators, but also, biological processes, metabolic systems, and genetic modules that might contribute to the neoplastic transformation. We propose five cancer-hallmarks that overlapped in conserved mechanisms and processes between Arabidopsis and human and thus, represent mechanisms which study can be prioritized in A. thaliana as an alternative model for cancer research. Additionally, derived from network analyses and machine learning strategies, a new set of potential candidate genes that might contribute to neoplastic transformation is described. These findings postulate A. thaliana as a suitable model to dissect, not all, but specific cancer properties, highlighting the importance of using alternative complementary models to understand carcinogenesis.
Collapse
Affiliation(s)
| | - Chrystian C. Sosa
- Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
- Grupo de Investigación en Evolución, Ecología y Conservación EECO, Programa de Biología, Facultad de Ciencias Básicas y Tecnologías, Universidad del Quindío, Armenia, Colombia
| | - Rafael Cárdenas Heredia
- Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
| | - Arlen James Mosquera
- Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
| | - Andrés Álvarez
- Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
| | - Jan Medina
- Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
| | - Mauricio Quimbaya
- Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
- Corresponding author.
| |
Collapse
|
2
|
Johnson RP, Ratnacaram CK, Kumar L, Jose J. Combinatorial approaches of nanotherapeutics for inflammatory pathway targeted therapy of prostate cancer. Drug Resist Updat 2022; 64:100865. [PMID: 36099796 DOI: 10.1016/j.drup.2022.100865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PC) is the most prevalent male urogenital cancer worldwide. PC patients presenting an advanced or metastatic cancer succumb to the disease, even after therapeutic interventions including radiotherapy, surgery, androgen deprivation therapy (ADT), and chemotherapy. One of the hallmarks of PC is evading immune surveillance and chronic inflammation, which is a major challenge towards designing effective therapeutic formulations against PC. Chronic inflammation in PC is often characterized by tumor microenvironment alterations, epithelial-mesenchymal transition and extracellular matrix modifications. The inflammatory events are modulated by reactive nitrogen and oxygen species, inflammatory cytokines and chemokines. Major signaling pathways in PC includes androgen receptor, PI3K and NF-κB pathways and targeting these inter-linked pathways poses a major therapeutic challenge. Notably, many conventional treatments are clinically unsuccessful, due to lack of targetability and poor bioavailability of the therapeutics, untoward toxicity and multidrug resistance. The past decade witnessed an advancement of nanotechnology as an excellent therapeutic paradigm for PC therapy. Modern nanovectorization strategies such as stimuli-responsive and active PC targeting carriers offer controlled release patterns and superior anti-cancer effects. The current review initially describes the classification, inflammatory triggers and major inflammatory pathways of PC, various PC treatment strategies and their limitations. Subsequently, recent advancement in combinatorial nanotherapeutic approaches, which target PC inflammatory pathways, and the mechanism of action are discussed. Besides, the current clinical status and prospects of PC homing nanovectorization, and major challenges to be addressed towards the advancement PC therapy are also addressed.
Collapse
Affiliation(s)
- Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Chandrahas Koumar Ratnacaram
- Cell Signaling and Cancer Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576 104, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| |
Collapse
|
3
|
Cheng KC, Burdine RD, Dickinson ME, Ekker SC, Lin AY, Lloyd KCK, Lutz CM, MacRae CA, Morrison JH, O'Connor DH, Postlethwait JH, Rogers CD, Sanchez S, Simpson JH, Talbot WS, Wallace DC, Weimer JM, Bellen HJ. Promoting validation and cross-phylogenetic integration in model organism research. Dis Model Mech 2022; 15:dmm049600. [PMID: 36125045 PMCID: PMC9531892 DOI: 10.1242/dmm.049600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Model organism (MO) research provides a basic understanding of biology and disease due to the evolutionary conservation of the molecular and cellular language of life. MOs have been used to identify and understand the function of orthologous genes, proteins, cells and tissues involved in biological processes, to develop and evaluate techniques and methods, and to perform whole-organism-based chemical screens to test drug efficacy and toxicity. However, a growing richness of datasets and the rising power of computation raise an important question: How do we maximize the value of MOs? In-depth discussions in over 50 virtual presentations organized by the National Institutes of Health across more than 10 weeks yielded important suggestions for improving the rigor, validation, reproducibility and translatability of MO research. The effort clarified challenges and opportunities for developing and integrating tools and resources. Maintenance of critical existing infrastructure and the implementation of suggested improvements will play important roles in maintaining productivity and facilitating the validation of animal models of human biology and disease.
Collapse
Affiliation(s)
- Keith C. Cheng
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, Park, PA 16802, USA
| | - Rebecca D. Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77007, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77007, USA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55906, USA
| | - Alex Y. Lin
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - K. C. Kent Lloyd
- Mouse Biology Program, School of Medicinel, University of California Davis, Davis, CA 95618, USA
- Department of Surgery, School of Medicine, University of California Davis, Davis, CA 95618, USA
| | - Cathleen M. Lutz
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME 04609, USA
| | - Calum A. MacRae
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 360 Longwood Avenue, Boston, MA 02215, USA
| | - John H. Morrison
- California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
- Department of Neurology, University of California Davis, Davis, CA 95616, USA
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University ofWisconsin-Madison, Madison, WI 53711, USA
| | | | - Crystal D. Rogers
- School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Susan Sanchez
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Julie H. Simpson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93117, USA
| | - William S. Talbot
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Douglas C. Wallace
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Neurological Research Institute (TCH), Baylor College of Medicine, Houston, TX 77007, USA
| |
Collapse
|
4
|
Fu L, Jin W, Zhang J, Zhu L, Lu J, Zhen Y, Zhang L, Ouyang L, Liu B, Yu H. Repurposing non-oncology small-molecule drugs to improve cancer therapy: Current situation and future directions. Acta Pharm Sin B 2022; 12:532-557. [PMID: 35256933 PMCID: PMC8897051 DOI: 10.1016/j.apsb.2021.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/05/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022] Open
Abstract
Drug repurposing or repositioning has been well-known to refer to the therapeutic applications of a drug for another indication other than it was originally approved for. Repurposing non-oncology small-molecule drugs has been increasingly becoming an attractive approach to improve cancer therapy, with potentially lower overall costs and shorter timelines. Several non-oncology drugs approved by FDA have been recently reported to treat different types of human cancers, with the aid of some new emerging technologies, such as omics sequencing and artificial intelligence to overcome the bottleneck of drug repurposing. Therefore, in this review, we focus on summarizing the therapeutic potential of non-oncology drugs, including cardiovascular drugs, microbiological drugs, small-molecule antibiotics, anti-viral drugs, anti-inflammatory drugs, anti-neurodegenerative drugs, antipsychotic drugs, antidepressants, and other drugs in human cancers. We also discuss their novel potential targets and relevant signaling pathways of these old non-oncology drugs in cancer therapies. Taken together, these inspiring findings will shed new light on repurposing more non-oncology small-molecule drugs with their intricate molecular mechanisms for future cancer drug discovery.
Collapse
|
5
|
Hu Y, Zhou W, Xue Z, Liu X, Feng Z, Zhang Y, Liu X, Li W, Zhang Q, Chen A, Huang B, Wang J. Thiabendazole Inhibits Glioblastoma Cell Proliferation and Invasion Targeting Mini-chromosome Maintenance Protein 2. J Pharmacol Exp Ther 2022; 380:63-75. [PMID: 34750208 DOI: 10.1124/jpet.121.000852] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022] Open
Abstract
Thiabendazole (TBZ), approved by the US Food and Drug Administration (FDA) for human oral use, elicits a potential anticancer activity on cancer cells in vitro and in animal models. Here, we evaluated the efficacy of TBZ in the treatment of human glioblastoma multiforme (GBM). TBZ reduced the viability of GBM cells (P3, U251, LN229, A172, and U118MG) relative to controls in a dose- and time-dependent manner. However, normal human astrocytes (NHA) exhibited a greater IC50 than tumor cell lines and were thus more resistant to its cytotoxic effects. 5-Ethynyl-2'-deoxyuridine (EdU)-positive cells and the number of colonies formed were decreased in TBZ-treated cells (at 150 μM, P < 0.05 and at 150 μM, P < 0.001, respectively). This decrease in proliferation was associated with a G2/M arrest as assessed with flow cytometry, and the downregulation of G2/M check point proteins. In addition, TBZ suppressed GBM cell invasion. Analysis of RNA sequencing data comparing TBZ-treated cells with controls yielded a group of differentially expressed genes, the functions of which were associated with the cell cycle and DNA replication. The most significantly downregulated gene in TBZ-treated cells was mini-chromosome maintenance protein 2 (MCM2). SiRNA knockdown of MCM2 inhibited proliferation, causing a G2/M arrest in GBM cell lines and suppressed invasion. Taken together, our results demonstrated that TBZ inhibited proliferation and invasion in GBM cells through targeting of MCM2. SIGNIFICANCE STATEMENT: TBZ inhibits the proliferation and invasion of glioblastoma cells by downregulating the expression of MCM2. These results support the repurposing of TBZ as a possible therapeutic drug in the treatment of GBM.
Collapse
Affiliation(s)
- Yaotian Hu
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Wenjing Zhou
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Zhiyi Xue
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Xuemeng Liu
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Zichao Feng
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Yulin Zhang
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Xiaofei Liu
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Wenjie Li
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Qing Zhang
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Anjing Chen
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Bin Huang
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Jian Wang
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| |
Collapse
|
6
|
Singh H, Thirupathi A, Das B, Janni M, Kumari R, Singh S, Rashid M, Wahajuddin M, Balamurali MM, Jagavelu K, Peruncheralathan S. 2,3-Difunctionalized Benzo[ b]thiophene Scaffolds Possessing Potent Antiangiogenic Properties. J Med Chem 2021; 65:120-134. [PMID: 34914389 DOI: 10.1021/acs.jmedchem.1c00892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new class of 2-anilino-3-cyanobenzo[b]thiophenes (2,3-ACBTs) was studied for its antiangiogenic activity for the first time. One of the 2,3-ACBTs inhibited tubulogenesis in a dose-dependent manner without any toxicity. The 2,3-ACBTs significantly reduced neovascularization in both ex vivo and in vivo angiogenic assays without affecting the proliferation of endothelial cells. Neovascularization was limited through reduced phosphorylation of Akt/Src and depolymerization of f-actin and β-tubulin filaments, resulting in reduced migration of cells. In addition, the 2,3-ACBT compound disrupted the preformed angiogenic tubules, and docking/competitive binding studies showed that it binds to VEGFR2. Compound 2,3-ACBT had good stability and intramuscular profile, translating in suppressing the tumor angiogenesis induced in a xenograft model. Overall, the present study suggests that 2,3-ACBT arrests angiogenesis by regulating the Akt/Src signaling pathway and deranging cytoskeletal filaments of endothelial cells.
Collapse
Affiliation(s)
- Himalaya Singh
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Annaram Thirupathi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, HBNI, Jatni, Khurda 752050, India
| | - Bishwaprava Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, HBNI, Jatni, Khurda 752050, India
| | - Manojkumar Janni
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, HBNI, Jatni, Khurda 752050, India
| | - Renu Kumari
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sandeep Singh
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mamunur Rashid
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mohammad Wahajuddin
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Musuvathi Motilal Balamurali
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai 600127, India
| | - Kumaravelu Jagavelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saravanan Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, HBNI, Jatni, Khurda 752050, India
| |
Collapse
|
7
|
Cha HJ, Uyan Ö, Kai Y, Liu T, Zhu Q, Tothova Z, Botten GA, Xu J, Yuan GC, Dekker J, Orkin SH. Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture. Nat Commun 2021; 12:6241. [PMID: 34716321 PMCID: PMC8556400 DOI: 10.1038/s41467-021-26574-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Precise control of gene expression during differentiation relies on the interplay of chromatin and nuclear structure. Despite an established contribution of nuclear membrane proteins to developmental gene regulation, little is known regarding the role of inner nuclear proteins. Here we demonstrate that loss of the nuclear scaffolding protein Matrin-3 (Matr3) in erythroid cells leads to morphological and gene expression changes characteristic of accelerated maturation, as well as broad alterations in chromatin organization similar to those accompanying differentiation. Matr3 protein interacts with CTCF and the cohesin complex, and its loss perturbs their occupancy at a subset of sites. Destabilization of CTCF and cohesin binding correlates with altered transcription and accelerated differentiation. This association is conserved in embryonic stem cells. Our findings indicate Matr3 negatively affects cell fate transitions and demonstrate that a critical inner nuclear protein impacts occupancy of architectural factors, culminating in broad effects on chromatin organization and cell differentiation.
Collapse
Affiliation(s)
- Hye Ji Cha
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Özgün Uyan
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yan Kai
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Tianxin Liu
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Qian Zhu
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Giovanni A Botten
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Xu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guo-Cheng Yuan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
8
|
Garge RK, Cha HJ, Lee C, Gollihar JD, Kachroo AH, Wallingford JB, Marcotte EM. Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast. Genetics 2021; 219:iyab101. [PMID: 34849907 PMCID: PMC8633126 DOI: 10.1093/genetics/iyab101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Thiabendazole (TBZ) is an FDA-approved benzimidazole widely used for its antifungal and antihelminthic properties. We showed previously that TBZ is also a potent vascular disrupting agent and inhibits angiogenesis at the tissue level by dissociating vascular endothelial cells in newly formed blood vessels. Here, we uncover TBZ's molecular target and mechanism of action. Using human cell culture, molecular modeling, and humanized yeast, we find that TBZ selectively targets only 1 of 9 human β-tubulin isotypes (TUBB8) to specifically disrupt endothelial cell microtubules. By leveraging epidemiological pesticide resistance data and mining chemical features of commercially used benzimidazoles, we discover that a broader class of benzimidazole compounds, in extensive use for 50 years, also potently disrupt immature blood vessels and inhibit angiogenesis. Thus, besides identifying the molecular mechanism of benzimidazole-mediated vascular disruption, this study presents evidence relevant to the widespread use of these compounds while offering potential new clinical applications.
Collapse
Affiliation(s)
- Riddhiman K Garge
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hye Ji Cha
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jimmy D Gollihar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- US Army Research Laboratory—South, Austin, TX 78758, USA
| | - Aashiq H Kachroo
- The Department of Biology, Centre for Applied Synthetic Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
9
|
Sunny S, John SE, Shankaraiah N. Exploration of C‐H Activation Strategies in Construction of Functionalized 2‐Aryl Benzoazoles: A Decisive Review. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Steeva Sunny
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Stephy Elza John
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
10
|
Movahedi F, Gu W, Soares CP, Xu ZP. Encapsulating Anti-Parasite Benzimidazole Drugs into Lipid-Coated Calcium Phosphate Nanoparticles to Efficiently Induce Skin Cancer Cell Apoptosis. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.693837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Benzimidazole (BMZ) family of anti-worm drugs has been now repurposed as anti-cancer drugs. However, offering a general reformulation method for these drugs is essential due to their hydrophobicity and low aqueous solubility. In this work, we developed a general approach to load typical BMZ drugs as tiny nanocrystals within lipid-coated calcium phosphate (LCP) nanoparticles. BMZ drug-loaded LCP nanoparticles increased their solubility in PBS by 100–200% and significantly enhanced the anti-cancer efficacy in the treatment of B16F0 melanoma cells. These drug-LCP nanoparticles induced much more cancer cell apoptosis, generated much more reactive oxygen species (ROS) and inhibited Bcl-2 expression of cancer cells. Moreover, BMZ drug-loaded LCP nanoparticles caused morphological change and extension disruption of cancer cells, and significantly reduced migration activity, representing high possibility for inhibition of tumor dissemination and metastasis. Very advantageously, BMZ drug-loaded LCP nanoparticles did not show any obvious toxicity, Bcl-2 inhibition and morphological changes in HEK293T healthy cells. In conclusion, BMZ drug-incorporated LCP nanoformulations may be a valuable nanomedicine that is able to inhibit primary tumors and prevent tumor dissemination with minimum side effects on healthy cells and tissues.
Collapse
|
11
|
Population Modelling in Affective Disorders. Curr Behav Neurosci Rep 2021; 8:21-27. [PMID: 33875934 PMCID: PMC8047557 DOI: 10.1007/s40473-021-00229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 11/28/2022]
Abstract
Purpose of Review The prevalence of affective disorders is on the rise. This upward trajectory leads to a substantial personal and societal cost. There is growing body of literature demonstrating decision-making impairments associated with affective disorders, and more studies are using computational modelling methods to infer underlying mechanisms of these impairments from participant choice behaviour. However, lack of population modelling suggests that data resources may still be underutilised. Recent Findings A number of recent studies associated major depression with abnormal risky decision-making as well as impairments in temporal discounting and social decision-making. These domains capture relevant aspects of real-life decision-making. Consequently, data from these studies can be used to define behavioural phenotypes for major depression. Summary The manuscript describes a detailed proposal for population modelling to capture changes in the prevalence rate of major depression. The population modelling approach can also identify which decision-making domains can account for a larger part of impairments in psychosocial functioning and how behavioural interventions built on computational principles can target these to improve real-life psychosocial functioning in patient groups.
Collapse
|
12
|
El Bourakadi K, Mekhzoum MEM, Qaiss AEK, Bouhfid R. Recent Advances in the Synthesis and Applications of Thiabendazole Derivatives: A Short Review. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200922090947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Thiabendazoles and their derivatives have a unique place in the field of
medicinal and pharmaceutical chemistry. These synthesized compounds are used as
principal precursors for the synthesis of several new active heterocyclic molecules
that have diverse biological activities and play vital roles in other industrial fields.
This short review aims to provide current updates about the most bioactive thiabendazole
derivatives from synthesis to their functional applications in diverse fields
including biology, chemistry, materials, and agriculture.
Collapse
Affiliation(s)
- Khadija El Bourakadi
- Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Composites and Nanocomposites Center, Rabat design Center, Madinat Al Irfane, Rabat, Morocco
| | - Mohamed El Mehdi Mekhzoum
- Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Composites and Nanocomposites Center, Rabat design Center, Madinat Al Irfane, Rabat, Morocco
| | - Abou El Kacem Qaiss
- Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Composites and Nanocomposites Center, Rabat design Center, Madinat Al Irfane, Rabat, Morocco
| | - Rachid Bouhfid
- Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Composites and Nanocomposites Center, Rabat design Center, Madinat Al Irfane, Rabat, Morocco
| |
Collapse
|
13
|
Tzani MA, Gabriel C, Lykakis IN. Selective Synthesis of Benzimidazoles from o-Phenylenediamine and Aldehydes Promoted by Supported Gold Nanoparticles. NANOMATERIALS 2020; 10:nano10122405. [PMID: 33271922 PMCID: PMC7760220 DOI: 10.3390/nano10122405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 11/17/2022]
Abstract
We investigated the catalytic efficacy of supported gold nanoparticles (AuNPs) towards the selective reaction between o-phenylenediamine and aldehydes that yields 2-substituted benzimidazoles. Among several supported gold nanoparticle platforms, the Au/TiO2 provides a series of 2-aryl and 2-alkyl substituted benzimidazoles at ambient conditions, in the absence of additives and in high yields, using the mixture CHCl3:MeOH in ratio 3:1 as the reaction solvent. Among the AuNPs catalysts used herein, the Au/TiO2 containing small-size nanoparticles is found to be the most active towards the present catalytic methodology. The Au/TiO2 can be recovered and reused at least five times without a significant loss of its catalytic efficacy. The present catalytic synthetic protocol applies to a broad substrate scope and represents an efficient method for the formation of a C–N bond under mild reaction conditions. Notably, this catalytic methodology provides the regio-isomer of the anthelmintic drug, Thiabendazole, in a lab-scale showing its applicability in the efficient synthesis of such N-heterocyclic molecules at industrial levels.
Collapse
Affiliation(s)
- Marina A. Tzani
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
| | - Catherine Gabriel
- HERACLES Research Center, KEDEK, Laboratory of Environmental Engineering (EnvE-Lab), Department of Chemical Engineering, AUTH, 54124 Thessaloniki, Greece;
| | - Ioannis N. Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
- Correspondence: ; Tel./Fax: +30-2310-997871
| |
Collapse
|
14
|
An Q, He C, Fan X, Hou C, Zhao J, Liu Y, Liu H, Ma J, Sun Z, Chu W. Synthesis of Benzazoles through Electrochemical Oxidative Cyclization Reactions. ChemElectroChem 2020. [DOI: 10.1002/celc.202000931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Qi An
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Chaoyin He
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Xiaodong Fan
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Chuanfu Hou
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Jian Zhao
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Yue Liu
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Hao Liu
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Junjie Ma
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Zhizhong Sun
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Wenyi Chu
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| |
Collapse
|
15
|
El Foujji L, El Bourakadi K, Mekhzoum MEM, Essassi EM, Boeré RT, Qaiss AEK, Bouhfid R. Synthesis, crystal structure, spectroscopic, thermal properties and DFT calculation of a novel ethyl 2-(2-(thiazol-4-yl)-1H-benzimidazol-1-yl)acetate. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Kirtonia A, Gala K, Fernandes SG, Pandya G, Pandey AK, Sethi G, Khattar E, Garg M. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics. Semin Cancer Biol 2020; 68:258-278. [PMID: 32380233 DOI: 10.1016/j.semcancer.2020.04.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Human malignancies are one of the major health-related issues though out the world and anticipated to rise in the future. The development of novel drugs/agents requires a huge amount of cost and time that represents a major challenge for drug discovery. In the last three decades, the number of FDA approved drugs has dropped down and this led to increasing interest in drug reposition or repurposing. The present review focuses on recent concepts and therapeutic opportunities for the utilization of antidiabetics, antibiotics, antifungal, anti-inflammatory, antipsychotic, PDE inhibitors and estrogen receptor antagonist, Antabuse, antiparasitic and cardiovascular agents/drugs as an alternative approach against human malignancies. The repurposing of approved non-cancerous drugs is an effective strategy to develop new therapeutic options for the treatment of cancer patients at an affordable cost in clinics. In the current scenario, most of the countries throughout the globe are unable to meet the medical needs of cancer patients because of the high cost of the available cancerous drugs. Some of these drugs displayed potential anti-cancer activity in preclinic and clinical studies by regulating several key molecular mechanisms and oncogenic pathways in human malignancies. The emerging pieces of evidence indicate that repurposing of drugs is crucial to the faster and cheaper discovery of anti-cancerous drugs.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Kavita Gala
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Haryana, 122413, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
17
|
Olgen S, Kotra LP. Drug Repurposing in the Development of Anticancer Agents. Curr Med Chem 2019; 26:5410-5427. [PMID: 30009698 DOI: 10.2174/0929867325666180713155702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/14/2018] [Accepted: 06/28/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Research into repositioning known drugs to treat cancer other than the originally intended disease continues to grow and develop, encouraged in part, by several recent success stories. Many of the studies in this article are geared towards repurposing generic drugs because additional clinical trials are relatively easy to perform and the drug safety profiles have previously been established. OBJECTIVE This review provides an overview of anticancer drug development strategies which is one of the important areas of drug restructuring. METHODS Repurposed drugs for cancer treatments are classified by their pharmacological effects. The successes and failures of important repurposed drugs as anticancer agents are evaluated in this review. RESULTS AND CONCLUSION Drugs could have many off-target effects, and can be intelligently repurposed if the off-target effects can be employed for therapeutic purposes. In cancer, due to the heterogeneity of the disease, often targets are quite diverse, hence a number of already known drugs that interfere with these targets could be deployed or repurposed with appropriate research and development.
Collapse
Affiliation(s)
- Sureyya Olgen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Lakshmi P Kotra
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada.,Center for Molecular Design and Preformulations, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, M5G 1L7 Canada.,Multi-Organ Transplant Program, Toronto General Hospital, Toronto, Ontario, M5G 1L7 Canada
| |
Collapse
|
18
|
Mahapatra K, De S, Banerjee S, Roy S. Pesticide mediated oxidative stress induces genotoxicity and disrupts chromatin structure in fenugreek (Trigonella foenum - graecum L.) seedlings. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:362-374. [PMID: 30784966 DOI: 10.1016/j.jhazmat.2019.02.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Here we report cytototoxic and genotoxic potentials of four commonly used pesticides, including, tricyclazole, thiabendazole (fungicides), plethora and slash-360 (insecticides) in the non-target tropical crop plant Trigonella foenum - graecum L. (fenugreek). Three different concentrations of the selected pesticides were used. For fungicides, 0.05% and for insecticides, 0.1% concentration represents recommended doses, while, 2X and 4X concentrations of the recommended dose were used to test their phytotoxic effects. Inhibition of germination and seedling growth were clearly observed at 4X concentration of the pesticides. Tricyclazole and plethora showed more pronounced effects than the other two agrochemicals. The pesticides, particularly at 4X concentrations clearly induced oxidative stress and cytotoxic effects in Trigonella seedlings with appreciable reduction in mitotic index, induction of chromosomal abnormalities in root meristematic cell and decreased level of accumulation of some key cell cycle regulators, including CDK1, CDK2 and Cyclin B1.Detection of accumulation of DNA double strand breaks and histone H2AX phosphorylation in pesticide treated seedlings have revealed direct genotoxic effects of the selected pesticides. Overall, our results provide insights into the mechanism of pesticide induced cytotoxic and genotoxic effects in plant genome with future implications for designing pesticides to minimize their deleterious effects on non-target crop plants.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104, West Bengal, India
| | - Sayanti De
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104, West Bengal, India
| | - Samrat Banerjee
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104, West Bengal, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104, West Bengal, India.
| |
Collapse
|
19
|
Golden A. From phenologs to silent suppressors: Identifying potential therapeutic targets for human disease. Mol Reprod Dev 2017; 84:1118-1132. [PMID: 28834577 DOI: 10.1002/mrd.22880] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022]
Abstract
Orthologous phenotypes, or phenologs, are seemingly unrelated phenotypes generated by mutations in a conserved set of genes. Phenologs have been widely observed and accepted by those who study model organisms, and allow one to study a set of genes in a model organism to learn more about the function of those genes in other organisms, including humans. At the cellular and molecular level, these conserved genes likely function in a very similar mode, but are doing so in different tissues or cell types and can result in different phenotypic effects. For example, the RAS-RAF-MEK-MAPK pathway in animals is a highly conserved signaling pathway that animals adopted for numerous biological processes, such as vulval induction in Caenorhabditis elegans and cell proliferation in mammalian cells; but this same gene set has been co-opted to function in a variety of cellular contexts. In this review, I give a few examples of how suppressor screens in model organisms (with a emphasis on C. elegans) can identify new genes that function in a conserved pathway in many other organisms. I also demonstrate how the identification of such genes can lead to important insights into mammalian biology. From such screens, an occasional silent suppressor that does not cause a phenotype on its own is found; such suppressors thus make for good candidates as therapeutic targets.
Collapse
Affiliation(s)
- Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
20
|
Abassi AJ, Mohamadnia A, Parhiz SA, Azizi Moghadam N, Bahrami N. Cytotoxic Effect of Thiabendazole on Hn5 Head and Neck Squamous Cell Carcinoma Cell Line. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2017; 18:219-226. [PMID: 29034278 PMCID: PMC5634363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
STATEMENT OF THE PROBLEM Evidence shows thiabendazole has the potential to inhibit angiogenesis in melanoma and fibrosarcoma; however, its effect on oral squamous cell carcinoma has not been previously studied. PURPOSE This study sought to assess the cytotoxic effects of thiabendazole on HN5 head and neck squamous carcinoma cell line. MATERIALS AND METHOD HN5 cell lines were exposed to different concentrations of thiabendazole (prepared from 99% pure powder) for 24, 48 and 72 hours. Cell viability was assessed by the methyl thiazol tetrazolium assay, and IC50 of thiabendazole was calculated. Cells were also exposed to different concentrations of thiabendazole for 48 hours to determine its effect on expression and transcription of vascular endothelial growth factor gene. Expression of vascular endothelial growth factor mRNA was assessed by real-time polymerase chain reaction. The vascular endothelial growth factor release was assessed by the enzyme-linked immunosorbent assay test. RESULTS In all concentrations of thiabendazole except for 200 and 550μM, cell viability was significantly different at different time points (p< 0.05). At 48 and 72 hours, cell viability at all concentrations of thiabendazole (100-650μM) significantly decreased compared to the control group (zero concentration). In addition, cell viability significantly decreased with an increase in thiabendazole concentration. At 48 hours, expression of vascular endothelial growth factor mRNA was significantly lower in presence of 500μM thiabendazole compared to the control group (p< 0.001) and release of vascular endothelial growth factor was inhibited in a dose-dependent manner. CONCLUSION Thiabendazole inhibited the proliferation of HN5 cells in a dose-dependent and time-dependent manner. It also inhibited the expression of vascular endothelial growth factor gene.
Collapse
Affiliation(s)
- Amir Jalal Abassi
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abdolreza Mohamadnia
- Virology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Alireza Parhiz
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nahid Azizi Moghadam
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Naghmeh Bahrami
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Ohk J, Jung H. Visualization and Quantitative Analysis of Embryonic Angiogenesis in Xenopus tropicalis. J Vis Exp 2017. [PMID: 28570535 DOI: 10.3791/55652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Blood vessels supply oxygen and nutrients throughout the body, and the formation of the vascular network is under tight developmental control. The efficient in vivo visualization of blood vessels and the reliable quantification of their complexity are key to understanding the biology and disease of the vascular network. Here, we provide a detailed method to visualize blood vessels with a commercially available fluorescent dye, human plasma acetylated low density lipoprotein DiI complex (DiI-AcLDL), and to quantify their complexity in Xenopus tropicalis. Blood vessels can be labeled by a simple injection of DiI-AcLDL into the beating heart of an embryo, and blood vessels in the entire embryo can be imaged in live or fixed embryos. Combined with gene perturbation by the targeted microinjection of nucleic acids and/or the bath application of pharmacological reagents, the roles of a gene or of a signaling pathway on vascular development can be investigated within one week without resorting to sophisticated genetically engineered animals. Because of the well-defined venous system of Xenopus and its stereotypic angiogenesis, the sprouting of pre-existing vessels, vessel complexity can be quantified efficiently after perturbation experiments. This relatively simple protocol should serve as an easily accessible tool in diverse fields of cardiovascular research.
Collapse
Affiliation(s)
- Jiyeon Ohk
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine
| | - Hosung Jung
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine; Department of Anatomy, Brain Research Institute, Yonsei University College of Medicine;
| |
Collapse
|
22
|
Varaksin M, Moseev T, Chupakhin O, Charushin V, Trofimov B. Metal-free C–H functionalization of 2H-imidazole 1-oxides with pyrrolyl fragments in the design of novel azaheterocyclic ensembles. Org Biomol Chem 2017; 15:8280-8284. [PMID: 28944818 DOI: 10.1039/c7ob01999h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Novel pyrrolyl-2H-imidazoles have been synthesizedviametal-free C–H/C–H coupling reactions under mild conditions and in good to excellent yields.
Collapse
Affiliation(s)
- Mikhail Varaksin
- Ural Federal University
- 620002 Ekaterinburg
- Russia
- Institute of Organic Synthesis
- Ural Branch of the Russian Academy of Sciences
| | | | - Oleg Chupakhin
- Ural Federal University
- 620002 Ekaterinburg
- Russia
- Institute of Organic Synthesis
- Ural Branch of the Russian Academy of Sciences
| | - Valery Charushin
- Ural Federal University
- 620002 Ekaterinburg
- Russia
- Institute of Organic Synthesis
- Ural Branch of the Russian Academy of Sciences
| | - Boris Trofimov
- Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russia
| |
Collapse
|
23
|
Marchetti F, Massarotti A, Yauk CL, Pacchierotti F, Russo A. The adverse outcome pathway (AOP) for chemical binding to tubulin in oocytes leading to aneuploid offspring. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:87-113. [PMID: 26581746 DOI: 10.1002/em.21986] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
The Organisation for Economic Co-operation and Development (OECD) has launched the Adverse Outcome Pathway (AOP) Programme to advance knowledge of pathways of toxicity and improve the use of mechanistic information in risk assessment. An AOP links a molecular initiating event (MIE) to an adverse outcome (AO) through intermediate key events (KE). Here, we present the scientific evidence in support of an AOP whereby chemicals that bind to tubulin cause microtubule depolymerization resulting in spindle disorganization followed by altered chromosome alignment and segregation and the generation of aneuploidy in female germ cells, ultimately leading to aneuploidy in the offspring. Aneuploidy, an abnormal number of chromosomes that is not an exact multiple of the haploid number, is a well-known cause of human disease and represents a major cause of infertility, pregnancy failure, and serious genetic disorders in the offspring. Among chemicals that induce aneuploidy in female germ cells, a large majority impairs microtubule dynamics and spindle function. Colchicine, a prototypical chemical that binds to tubulin and causes microtubule depolymerization, is used here to illustrate the AOP. This AOP is specific to female germ cells exposed during the periovulation period. Although the majority of the data come from rodent studies, the available evidence suggests that the MIE and KEs are conserved across species and would occur in human oocytes. The development of AOPs related to mutagenicity in germ cells is expected to aid the identification of potential hazards to germ cell genomic integrity and support regulatory efforts to protect population health.
Collapse
Affiliation(s)
- Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Alberto Massarotti
- Dipartimento Di Scienze Del Farmaco, Università Degli Studi Del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Francesca Pacchierotti
- Division of Health Protection Technologies, Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Rome, Italy
| | | |
Collapse
|
24
|
Pulya S, Kommagalla Y, Sant DG, Jorwekar SU, Tupe SG, Deshpande MV, Ramana CV. Re-engineering of PIP3-antagonist triazole PITENIN's chemical scaffold: development of novel antifungal leads. RSC Adv 2016. [DOI: 10.1039/c5ra25145a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A novel 4-(1-phenyl-1-hydroxyethyl)-1-(o-hydroxyphenyl)-1H-1,2,3-triazole was designed by integrating the structural features of triazole PITENIN anticancer agents and the azole class of antifungal drugs.
Collapse
Affiliation(s)
- Sravani Pulya
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Yadagiri Kommagalla
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Duhita G. Sant
- Biochemical Sciences Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Shweta U. Jorwekar
- Biochemical Sciences Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Santosh G. Tupe
- Biochemical Sciences Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Mukund V. Deshpande
- Biochemical Sciences Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Chepuri V. Ramana
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| |
Collapse
|
25
|
Séïde M, Marion M, Mateescu MA, Averill-Bates DA. The fungicide thiabendazole causes apoptosis in rat hepatocytes. Toxicol In Vitro 2015; 32:232-9. [PMID: 26748015 DOI: 10.1016/j.tiv.2015.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/02/2015] [Accepted: 12/28/2015] [Indexed: 02/04/2023]
Abstract
Many pharmaceutical drugs cause hepatotoxicity in humans leading to severe liver diseases, representing a serious public health issue. This study investigates the ability of the anthelmintic and antifungal drug thiabendazole to cause cell death by apoptosis and metabolic changes in primary cultures of rat hepatocytes. Thiabendazole (200-500 μM) induced apoptosis in hepatocytes after 1 to 24h, causing loss of mitochondrial membrane potential, cytochrome c release from mitochondria, Fas-associated death domain (FADD) translocation from the cytosol to membranes, and activation of caspases-3, -8 and -9. Thus, thiabendazole activated both the mitochondrial and death receptor pathways of apoptosis. Under these conditions, cell death by necrosis was not detected following exposure to thiabendazole (100-500 μM) for 24-48 h, measured by lactate dehydrogenase release and propidium iodide uptake. Furthermore, thiabendazole increased activities of cytochrome P450 (CYP) isoenzymes CYP1A and CYP2B after 24 and 48 h, determined by 7-ethoxyresorufin-O-deethylase (EROD) and 7-pentoxyresorufin-O-dealkylase (PROD) activities, respectively. An important finding is that thiabendazole can eliminate hepatocytes by apoptosis, which could be a sensitive marker for hepatic damage and cell death. This study improves understanding of the mode of cell death induced by thiabendazole, which is important given that humans and animals are exposed to this compound as a pharmaceutical agent and in an environmental context.
Collapse
Affiliation(s)
- Marilyne Séïde
- Department of Chemistry, Université du Québec à Montréal (University of Quebec at Montreal), Canada; Department of Biological sciences, Université du Québec à Montréal (University of Quebec at Montreal), Canada
| | - Michel Marion
- Department of Chemistry, Université du Québec à Montréal (University of Quebec at Montreal), Canada
| | - Mircea Alexandru Mateescu
- Department of Chemistry, Université du Québec à Montréal (University of Quebec at Montreal), Canada; BioMedical Research Centre, Université du Québec à Montréal (University of Quebec at Montreal), Canada
| | - Diana A Averill-Bates
- Department of Chemistry, Université du Québec à Montréal (University of Quebec at Montreal), Canada; Department of Biological sciences, Université du Québec à Montréal (University of Quebec at Montreal), Canada; Research Centre for Environmental Toxicology (TOXEN), Université du Québec à Montréal (University of Quebec at Montreal), Canada; BioMedical Research Centre, Université du Québec à Montréal (University of Quebec at Montreal), Canada.
| |
Collapse
|
26
|
In search of underlying mechanisms and potential drugs of melphalan-induced vascular toxicity through retinal endothelial cells using bioinformatics approach. Tumour Biol 2015; 37:6709-18. [PMID: 26662105 DOI: 10.1007/s13277-015-4444-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023] Open
Abstract
We aimed to explore molecular mechanism and drug candidates of vascular toxicities associated with melphalan after treating human retinal endothelial cells (RECs). GSE34381 microarray data was firstly downloaded and used to identify the differentially expressed genes (DEGs) in human REC treated with melphalan vs. untreated cells by limma package in R language. The transcription network was constructed based on TRANSFAC database and the top five transcription factors (TFs) were select with a measure of regulatory impact factor, followed by the construction of function modules. Gene ontology enrichment analyses were performed to explore the enriched functions. Connectivity Map analysis was conducted to predict the potential drugs overcoming the melphalan's actions on REC. Totally, 75 DEGs were identified, including 70 up-regulated and five down-regulated genes. Transcription network with 1311 nodes and 1875 edges was constructed and the top five TFs were CREM, MYC, FLI1, NF-κB1, and JUN. Functional modules indicated that NF-κB1 and MYC were the important nodes. The upregulated genes as well as the genes involved in the modules mainly participated in biological process of immune response, cell proliferation, and cell motion. Five small molecules were predicted to be potential drug candidates, including doxorubicin, fipexide, daunorubicin, tiabendazole, and GW-8510. Based on these results, we speculate that NF-κB1 and MYC might involve in the molecular mechanism of vascular toxicity induced by melphalan through regulating their target genes. Five small molecules might be drug candidates to overcome the melphalan-induced vascular toxicity via targeting to MYC and JUN.
Collapse
|
27
|
Gueddar H, Bouhfid R, Essassi EM, Saadi M, El Ammari L. Crystal structure of 1-[(2,2-dimethyl-1,3-dioxolan-4-yl)meth-yl]-2-(thia-zol-4-yl)-1H-benzimidazole. Acta Crystallogr E Crystallogr Commun 2015; 71:o951-2. [PMID: 26870546 PMCID: PMC4719918 DOI: 10.1107/s205698901502085x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/03/2022]
Abstract
The benzimidazole ring in the title compound, C16H17N3O2S, is almost planar, with the greatest deviation from the mean plane being 0.032 (1) Å. The fused-ring system makes dihedral angles of 19.91 (7) and 24.51 (8)° with the best plane through each of the thia-zol-4-yl and 1,3-dioxolan-4-yl rings, respectively; the latter exhibits an envelope conformation with the methyl-ene C atom being the flap. Finally, the thia-zol-4-yl ring makes a dihedral angle of 33.85 (9)° with the 1,3-dioxolan-4-yl ring. In the crystal, mol-ecules are connected by a pair of C-H⋯π(imidazole) inter-actions to form centrosymmetric aggregates.
Collapse
Affiliation(s)
- Hicham Gueddar
- Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat, Morocco
| | - Rachid Bouhfid
- Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat, Morocco
| | - El Mokhtar Essassi
- Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat, Morocco
- Laboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V de Rabat, Morocco
| | - Mohamed Saadi
- Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V de Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
| | - Lahcen El Ammari
- Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V de Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
| |
Collapse
|
28
|
Abstract
Despite a billion years of divergent evolution, the baker’s yeast Saccharomyces cerevisiae has long proven to be an invaluable model organism for studying human biology. Given its tractability and ease of genetic manipulation, along with extensive genetic conservation with humans, it is perhaps no surprise that researchers have been able to expand its utility by expressing human proteins in yeast, or by humanizing specific yeast amino acids, proteins or even entire pathways. These methods are increasingly being scaled in throughput, further enabling the detailed investigation of human biology and disease-specific variations of human genes in a simplified model organism.
Collapse
|
29
|
Mojardín L, Botet J, Moreno S, Salas M. Chromosome segregation and organization are targets of 5'-Fluorouracil in eukaryotic cells. Cell Cycle 2015; 14:206-18. [PMID: 25483073 DOI: 10.4161/15384101.2014.974425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The antimetabolite 5'-Fluorouracil (5FU) is an analog of uracil commonly employed as a chemotherapeutic agent in the treatment of a range of cancers including colorectal tumors. To assess the cellular effects of 5FU, we performed a genome-wide screening of the haploid deletion library of the eukaryotic model Schizosaccharomyces pombe. Our analysis validated previously characterized drug targets including RNA metabolism, but it also revealed unexpected mechanisms of action associated with chromosome segregation and organization (post-translational histone modification, histone exchange, heterochromatin). Further analysis showed that 5FU affects the heterochromatin structure (decreased levels of histone H3 lysine 9 methylation) and silencing (down-regulation of heterochromatic dg/dh transcripts). To our knowledge, this is the first time that defects in heterochromatin have been correlated with increased cytotoxicity to an anticancer drug. Moreover, the segregation of chromosomes, a process that requires an intact heterochromatin at centromeres, was impaired after drug exposure. These defects could be related to the induction of genes involved in chromatid cohesion and kinetochore assembly. Interestingly, we also observed that thiabendazole, a microtubule-destabilizing agent, synergistically enhanced the cytotoxic effects of 5FU. These findings point to new targets and drug combinations that could potentiate the effectiveness of 5FU-based treatments.
Collapse
Key Words
- 5FU, 5′-Fluorouracil, 5FU
- 5′-Fluorouracil
- Anticancer drug
- CENP-A, centromere-associated protein A
- CLRC, Clr4 methyltransferase complex
- ChIP, chromatin immunoprecipitation
- FUTP, fluorouridine triphosphate
- FdUMP, fluorodeoxyuridine monophosphate
- FdUTP, fluorodeoxyuridine triphosphate
- G1 phase, gap 1 phase of cell cycle
- GO, Gene Ontology
- H3K9me, H3 lysine 9 methylation
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- HMT, histone methyltransferase
- HP1, heterochromatin protein 1
- HULC, histone H2B ubiquitin ligase complex
- MNAse, micrococcal nuclease
- RDRC, RNA-directed RNA polymerase complex
- RITS, RNA-induced transcriptional silencing
- RNAi, interference RNA
- S phase, synthesis phase of cell cycle
- Schizosaccharomyces pombe
- TBZ, thiabendazole
- centromere
- chromosome organization
- chromosome segregation
- cnt, central core
- dsRNA, double-stranded RNA
- heterochromatin
- histone modification
- imr, innermost repeats
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Laura Mojardín
- a Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (CSIC-Universidad Autónoma) ; Cantoblanco , Madrid , Spain
| | | | | | | |
Collapse
|
30
|
Applications of comparative evolution to human disease genetics. Curr Opin Genet Dev 2015; 35:16-24. [PMID: 26338499 DOI: 10.1016/j.gde.2015.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/15/2022]
Abstract
Direct comparison of human diseases with model phenotypes allows exploration of key areas of human biology which are often inaccessible for practical or ethical reasons. We review recent developments in comparative evolutionary approaches for finding models for genetic disease, including high-throughput generation of gene/phenotype relationship data, the linking of orthologous genes and phenotypes across species, and statistical methods for linking human diseases to model phenotypes.
Collapse
|
31
|
Synthesis and biological evaluation of thiabendazole derivatives as anti-angiogenesis and vascular disrupting agents. Bioorg Med Chem 2015; 23:3774-80. [DOI: 10.1016/j.bmc.2015.03.085] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 01/05/2023]
|
32
|
NHR-176 regulates cyp-35d1 to control hydroxylation-dependent metabolism of thiabendazole in Caenorhabditis elegans. Biochem J 2015; 466:37-44. [PMID: 25406993 DOI: 10.1042/bj20141296] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Knowledge of how drugs are metabolized and excreted is an essential component of understanding their fate within and among target and non-target organisms. Thiabendazole (TBZ) was the first benzimidazole (BZ) to be commercially available and remains one of the most important anthelmintic drugs for medical and veterinary use. We have characterized how Caenorhabditis elegans metabolizes and excretes TBZ. We have shown that TBZ directly binds to the nuclear hormone receptor (NHR)-176 and that this receptor is required for the induction by TBZ of the cytochrome P450 (CYP) encoded by cyp-35d1. Further, RNAi inhibition of cyp-35d1 in animals exposed to TBZ causes a reduction in the quantity of a hydroxylated TBZ metabolite and its glucose conjugate that is detected in C. elegans tissue by HPLC. This final metabolite is unique to nematodes and we also identify two P-glycoproteins (PGPs) necessary for its excretion. Finally, we have shown that inhibiting the metabolism we describe increases the susceptibility of C. elegans to TBZ in wild-type and in resistant genetic backgrounds.
Collapse
|
33
|
Segura-Cabrera A, García-Pérez CA, Guo X, Rodríguez-Pérez MA. A viral-human interactome based on structural motif-domain interactions captures the human infectome. PLoS One 2013; 8:e71526. [PMID: 23951184 PMCID: PMC3738538 DOI: 10.1371/journal.pone.0071526] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/28/2013] [Indexed: 11/23/2022] Open
Abstract
Protein interactions between a pathogen and its host are fundamental in the establishment of the pathogen and underline the infection mechanism. In the present work, we developed a single predictive model for building a host-viral interactome based on the identification of structural descriptors from motif-domain interactions of protein complexes deposited in the Protein Data Bank (PDB). The structural descriptors were used for searching, in a database of protein sequences of human and five clinically important viruses; therefore, viral and human proteins sharing a descriptor were predicted as interacting proteins. The analysis of the host-viral interactome allowed to identify a set of new interactions that further explain molecular mechanism associated with viral infections and showed that it was able to capture human proteins already associated to viral infections (human infectome) and non-infectious diseases (human diseasome). The analysis of human proteins targeted by viral proteins in the context of a human interactome showed that their neighbors are enriched in proteins reported with differential expression under infection and disease conditions. It is expected that the findings of this work will contribute to the development of systems biology for infectious diseases, and help guide the rational identification and prioritization of novel drug targets.
Collapse
Affiliation(s)
- Aldo Segura-Cabrera
- Laboratorio de Bioinformática, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México.
| | | | | | | |
Collapse
|
34
|
Zhang F, Bhat S, Gabelli SB, Chen X, Miller MS, Nacev BA, Cheng YL, Meyers DJ, Tenney K, Shim JS, Crews P, Amzel LM, Ma D, Liu JO. Pyridinylquinazolines selectively inhibit human methionine aminopeptidase-1 in cells. J Med Chem 2013; 56:3996-4016. [PMID: 23634668 DOI: 10.1021/jm400227z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Methionine aminopeptidases (MetAPs), which remove the initiator methionine from nascent peptides, are essential in all organisms. While MetAP2 has been demonstrated to be a therapeutic target for inhibiting angiogenesis in mammals, MetAP1 seems to be vital for cell proliferation. Our earlier efforts identified two structural classes of human MetAP1 (HsMetAP1)-selective inhibitors (1-4), but all of them failed to inhibit cellular HsMetAP1. Using Mn(II) or Zn(II) to activate HsMetAP1, we found that 1-4 could only effectively inhibit purified HsMetAP1 in the presence of physiologically unachievable concentrations of Co(II). In an effort to seek Co(II)-independent inhibitors, a novel structural class containing a 2-(pyridin-2-yl)quinazoline core has been discovered. Many compounds in this class potently and selectively inhibited HsMetAP1 without Co(II). Subsequently, we demonstrated that 11j, an auxiliary metal-dependent inhibitor, effectively inhibited HsMetAP1 in primary cells. This is the first report that an HsMetAP1-selective inhibitor is effective against its target in cells.
Collapse
Affiliation(s)
- Feiran Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
To what extent can variation in phenotypic traits such as disease risk be accurately predicted in individuals? In this Review, I highlight recent studies in model organisms that are relevant both to the challenge of accurately predicting phenotypic variation from individual genome sequences ('whole-genome reverse genetics') and for understanding why, in many cases, this may be impossible. These studies argue that only by combining genetic knowledge with in vivo measurements of biological states will it be possible to make accurate genetic predictions for individual humans.
Collapse
|