1
|
Zhao Q, Li X, Wen J, He Y, Zheng N, Li W, Cardona A, Gong Z. A two-layer neural circuit controls fast forward locomotion in Drosophila. Curr Biol 2024; 34:3439-3453.e5. [PMID: 39053465 DOI: 10.1016/j.cub.2024.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Fast forward locomotion is critical for animal hunting and escaping behaviors. However, how the underlying neural circuit is wired at synaptic resolution to decide locomotion direction and speed remains poorly understood. Here, we identified in the ventral nerve cord (VNC) a set of ascending cholinergic neurons (AcNs) to be command neurons capable of initiating fast forward peristaltic locomotion in Drosophila larvae. Targeted manipulations revealed that AcNs are necessary and sufficient for fast forward locomotion. AcNs can activate their postsynaptic partners, A01j and A02j; both are interneurons with locomotory rhythmicity. Activated A01j neurons form a posterior-anteriorly descendent gradient in output activity along the VNC to launch forward locomotion from the tail. Activated A02j neurons exhibit quicker intersegmental transmission in activity that enables fast propagation of motor waves. Our work revealed a global neural mechanism that coordinately controls the launch direction and propagation speed of Drosophila locomotion, furthering the understanding of the strategy for locomotion control.
Collapse
Affiliation(s)
- Qianhui Zhao
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China
| | - Xinhang Li
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China
| | - Jun Wen
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Lab, Hangzhou 311121, China
| | - Yinhui He
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Lab, Hangzhou 311121, China
| | - Wenchang Li
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| | - Albert Cardona
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| | - Zhefeng Gong
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China.
| |
Collapse
|
2
|
Roberts RJV, Pop S, Prieto-Godino LL. Evolution of central neural circuits: state of the art and perspectives. Nat Rev Neurosci 2022; 23:725-743. [DOI: 10.1038/s41583-022-00644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
|
3
|
Janiak FK, Bartel P, Bale MR, Yoshimatsu T, Komulainen E, Zhou M, Staras K, Prieto-Godino LL, Euler T, Maravall M, Baden T. Non-telecentric two-photon microscopy for 3D random access mesoscale imaging. Nat Commun 2022; 13:544. [PMID: 35087041 PMCID: PMC8795402 DOI: 10.1038/s41467-022-28192-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/04/2022] [Indexed: 01/07/2023] Open
Abstract
Diffraction-limited two-photon microscopy permits minimally invasive optical monitoring of neuronal activity. However, most conventional two-photon microscopes impose significant constraints on the size of the imaging field-of-view and the specific shape of the effective excitation volume, thus limiting the scope of biological questions that can be addressed and the information obtainable. Here, employing a non-telecentric optical design, we present a low-cost, easily implemented and flexible solution to address these limitations, offering a several-fold expanded three-dimensional field of view. Moreover, rapid laser-focus control via an electrically tunable lens allows near-simultaneous imaging of remote regions separated in three dimensions and permits the bending of imaging planes to follow natural curvatures in biological structures. Crucially, our core design is readily implemented (and reversed) within a matter of hours, making it highly suitable as a base platform for further development. We demonstrate the application of our system for imaging neuronal activity in a variety of examples in zebrafish, mice and fruit flies.
Collapse
Affiliation(s)
- F K Janiak
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK.
| | - P Bartel
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - M R Bale
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - T Yoshimatsu
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - E Komulainen
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - M Zhou
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - K Staras
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | | | - T Euler
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - M Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - T Baden
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK.
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Komarov N, Sprecher SG. The chemosensory system of the Drosophila larva: an overview of current understanding. Fly (Austin) 2021; 16:1-12. [PMID: 34612150 PMCID: PMC8496535 DOI: 10.1080/19336934.2021.1953364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Animals must sense their surroundings and be able to distinguish between relevant and irrelevant cues. An enticing area of research aims to uncover the mechanisms by which animals respond to chemical signals that constitute critical sensory input. In this review, we describe the principles of a model chemosensory system: the Drosophila larva. While distinct in many ways, larval behaviour is reminiscent of the dogmatic goals of life: to reach a stage of reproductive potential. It takes into account a number of distinct and identifiable parameters to ultimately provoke or modulate appropriate behavioural output. In this light, we describe current knowledge of chemosensory anatomy, genetic components, and the processing logic of chemical cues. We outline recent advancements and summarize the hypothesized neural circuits of sensory systems. Furthermore, we note yet-unanswered questions to create a basis for further investigation of molecular and systemic mechanisms of chemosensation in Drosophila and beyond.
Collapse
Affiliation(s)
- Nikita Komarov
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Simon G Sprecher
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
5
|
Heckman EL, Doe CQ. Establishment and Maintenance of Neural Circuit Architecture. J Neurosci 2021; 41:1119-1129. [PMID: 33568445 PMCID: PMC7888231 DOI: 10.1523/jneurosci.1143-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 02/03/2023] Open
Abstract
The ability to sense the world, process information, and navigate the environment depends on the assembly and continuous function of neural circuits in the brain. Within the past two decades, new technologies have rapidly advanced our understanding of how neural circuits are wired during development and how they are stably maintained, often for years. Electron microscopy reconstructions of model organism connectomes have provided a map of the stereotyped (and variable) connections in the brain; advanced light microscopy techniques have enabled direct observation of the cellular dynamics that underlie circuit construction and maintenance; transcriptomic and proteomic surveys of both developing and mature neurons have provided insights into the molecular and genetic programs governing circuit establishment and maintenance; and advanced genetic techniques have allowed for high-throughput discovery of wiring regulators. These tools have empowered scientists to rapidly generate and test hypotheses about how circuits establish and maintain connectivity. Thus, the set of principles governing circuit formation and maintenance have been expanded. These principles are discussed in this review.
Collapse
Affiliation(s)
- Emily L Heckman
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403
| | - Chris Q Doe
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
6
|
Valdes-Aleman J, Fetter RD, Sales EC, Heckman EL, Venkatasubramanian L, Doe CQ, Landgraf M, Cardona A, Zlatic M. Comparative Connectomics Reveals How Partner Identity, Location, and Activity Specify Synaptic Connectivity in Drosophila. Neuron 2020; 109:105-122.e7. [PMID: 33120017 PMCID: PMC7837116 DOI: 10.1016/j.neuron.2020.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 01/30/2023]
Abstract
The mechanisms by which synaptic partners recognize each other and establish appropriate numbers of connections during embryonic development to form functional neural circuits are poorly understood. We combined electron microscopy reconstruction, functional imaging of neural activity, and behavioral experiments to elucidate the roles of (1) partner identity, (2) location, and (3) activity in circuit assembly in the embryonic nerve cord of Drosophila. We found that postsynaptic partners are able to find and connect to their presynaptic partners even when these have been shifted to ectopic locations or silenced. However, orderly positioning of axon terminals by positional cues and synaptic activity is required for appropriate numbers of connections between specific partners, for appropriate balance between excitatory and inhibitory connections, and for appropriate functional connectivity and behavior. Our study reveals with unprecedented resolution the fine connectivity effects of multiple factors that work together to control the assembly of neural circuits.
Collapse
Affiliation(s)
- Javier Valdes-Aleman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Emily C Sales
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Emily L Heckman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | | | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
7
|
Zimmermann M, Maia Chagas A, Bartel P, Pop S, Prieto-Godino L, Baden T. LED Zappelin': An open source LED controller for arbitrary spectrum visual stimulation and optogenetics during 2-photon imaging. HARDWAREX 2020; 8:e00127. [PMID: 35498254 PMCID: PMC9041195 DOI: 10.1016/j.ohx.2020.e00127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 05/19/2023]
Abstract
Two-photon (2P) microscopy is a cornerstone technique in neuroscience research. However, combining 2P imaging with spectrally arbitrary light stimulation can be challenging due to crosstalk between stimulation light and fluorescence detection. To overcome this limitation, we present a simple and low-cost electronic solution based on an ESP32 microcontroller and a TLC5947 LED driver to rapidly time-interleave stimulation and detection epochs during scans. Implemented for less than $100, our design can independently drive up to 24 arbitrary spectrum LEDs to meet user requirements. We demonstrate the utility of our stimulator for colour vision experiments on the in vivo tetrachromatic zebrafish retina and for optogenetic circuit mapping in Drosophila.
Collapse
Affiliation(s)
- M.J.Y. Zimmermann
- Sussex Neuroscience, School of Life Sciences, University of Sussex, United Kingdom
| | - A. Maia Chagas
- Sussex Neuroscience, School of Life Sciences, University of Sussex, United Kingdom
- TReND in Africa (www.TReNDinAfrica.org), United Kingdom
- GOSH Community (http://openhardware.science/)
- Institute for Ophthalmic Research, University of Tübingen, Germany
| | - P. Bartel
- Sussex Neuroscience, School of Life Sciences, University of Sussex, United Kingdom
| | - S. Pop
- The Francis Crick Institute, London, United Kingdom
| | - L.L. Prieto-Godino
- TReND in Africa (www.TReNDinAfrica.org), United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - T. Baden
- Sussex Neuroscience, School of Life Sciences, University of Sussex, United Kingdom
- TReND in Africa (www.TReNDinAfrica.org), United Kingdom
- Institute for Ophthalmic Research, University of Tübingen, Germany
| |
Collapse
|
8
|
Qin D, Zhang P, Zhou Y, Liu B, Xiao C, Chen W, Zhang Z. Antifeeding effects of azadirachtin on the fifth instar Spodoptera litura larvae and the analysis of azadirachtin on target sensilla around mouthparts. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21646. [PMID: 31742777 DOI: 10.1002/arch.21646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/02/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
To clarify the types, number, and distribution of sensilla on the head of the fifth instar Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) larvae and identify the main sensilla of azadirachtin acting on larvae, scanning electron microscopy was used to study the morphology of the head and sensilla on the mouthparts. The four sensilla-sensillum basiconicum, sensillum chaeticum, sensillum styloconicum, and sensillum trichodeum-on the head of the fifth instar larvae were treated with 0, 0.1, 0.5, 1, 2, and 4 mg/kg azadirachtin by a microdrop method. The larvae showed an obvious antifeeding effect with azadirachtin. And higher the concentration of azadirachtin, the more obvious the phenomenon of antifeeding activity. The sensillum styloconicum and the sensillum trichodeum were the main sensilla for azadirachtin. When 1 mg/kg azadirachtin was used to treat sensillum styloconicum and sensillum basiconicum, the fifth instar larvae of S. litura showed obvious antifeedant activity and the cumulative feed intake for 24 hr was no more than 30% of the leaf area. Quantitative reverse-transcription polymerase chain reaction verified the expression patterns of some Grs, indicating that Grst43a was upregulated by 1.3- and 3.9-fold, Gor24 was upregulated by 2.5- and 3.3-fold, Gr5a was downregulated by 0.6-fold and upregulated by 2.0-fold, and Gr28a was downregulated by 0.8-fold and upregulated by 3.6-fold upon treatment with 0.5 mg/kg and 1 mg/kg azadirachtin in 24 hr. Gr genes participated in the identification of bitterness and we speculated that Gr genes may indirectly lead to the occurrence of antifeeding behavior.
Collapse
Affiliation(s)
- Deqiang Qin
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Peiwen Zhang
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - You Zhou
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Benju Liu
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Chunxia Xiao
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Weibin Chen
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zhixiang Zhang
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Yan H, Jafari S, Pask G, Zhou X, Reinberg D, Desplan C. Evolution, developmental expression and function of odorant receptors in insects. J Exp Biol 2020; 223:jeb208215. [PMID: 32034042 PMCID: PMC7790194 DOI: 10.1242/jeb.208215] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Animals rely on their chemosensory system to discriminate among a very large number of attractive or repulsive chemical cues in the environment, which is essential to respond with proper action. The olfactory sensory systems in insects share significant similarities with those of vertebrates, although they also exhibit dramatic differences, such as the molecular nature of the odorant receptors (ORs): insect ORs function as heteromeric ion channels with a common Orco subunit, unlike the G-protein-coupled olfactory receptors found in vertebrates. Remarkable progress has recently been made in understanding the evolution, development and function of insect odorant receptor neurons (ORNs). These studies have uncovered the diversity of olfactory sensory systems among insect species, including in eusocial insects that rely extensively on olfactory sensing of pheromones for social communication. However, further studies, notably functional analyses, are needed to improve our understanding of the origins of the Orco-OR system, the mechanisms of ORN fate determination, and the extraordinary diversity of behavioral responses to chemical cues.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste (UFCST), University of Florida, Gainesville, FL 32610, USA
| | - Shadi Jafari
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Department of Biology, New York University, New York, NY 10003, USA
| | - Gregory Pask
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, China
| | - Danny Reinberg
- Howard Hughes Medical Institute (HHMI), Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
10
|
Utashiro N, Williams CR, Parrish JZ, Emoto K. Prior activity of olfactory receptor neurons is required for proper sensory processing and behavior in Drosophila larvae. Sci Rep 2018; 8:8580. [PMID: 29872087 PMCID: PMC5988719 DOI: 10.1038/s41598-018-26825-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/14/2018] [Indexed: 11/10/2022] Open
Abstract
Animal responses to their environment rely on activation of sensory neurons by external stimuli. In many sensory systems, however, neurons display basal activity prior to the external stimuli. This prior activity is thought to modulate neural functions, yet its impact on animal behavior remains elusive. Here, we reveal a potential role for prior activity in olfactory receptor neurons (ORNs) in shaping larval olfactory behavior. We show that prior activity in larval ORNs is mediated by the olfactory receptor complex (OR complex). Mutations of Orco, an odorant co-receptor required for OR complex function, cause reduced attractive behavior in response to optogenetic activation of ORNs. Calcium imaging reveals that Orco mutant ORNs fully respond to optogenetic stimulation but exhibit altered temporal patterns of neural responses. These findings together suggest a critical role for prior activity in information processing upon ORN activation in Drosophila larvae, which in turn contributes to olfactory behavior control.
Collapse
Affiliation(s)
- Nao Utashiro
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Claire R Williams
- Department of Biology, University of Washington, 24 Kincaid Hall, Box 351800, Seattle, WA, 98195, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, 24 Kincaid Hall, Box 351800, Seattle, WA, 98195, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Kazuo Emoto
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
11
|
Serotonergic Modulation Enables Pathway-Specific Plasticity in a Developing Sensory Circuit in Drosophila. Neuron 2017; 95:623-638.e4. [PMID: 28712652 DOI: 10.1016/j.neuron.2017.06.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 05/06/2017] [Accepted: 06/19/2017] [Indexed: 11/23/2022]
Abstract
How experiences during development cause long-lasting changes in sensory circuits and affect behavior in mature animals are poorly understood. Here we establish a novel system for mechanistic analysis of the plasticity of developing neural circuits by showing that sensory experience during development alters nociceptive behavior and circuit physiology in Drosophila larvae. Despite the convergence of nociceptive and mechanosensory inputs on common second-order neurons (SONs), developmental noxious input modifies transmission from nociceptors to their SONs, but not from mechanosensors to the same SONs, which suggests striking sensory pathway specificity. These SONs activate serotonergic neurons to inhibit nociceptor-to-SON transmission; stimulation of nociceptors during development sensitizes nociceptor presynapses to this feedback inhibition. Our results demonstrate that, unlike associative learning, which involves inputs from two sensory pathways, sensory pathway-specific plasticity in the Drosophila nociceptive circuit is in part established through feedback modulation. This study elucidates a novel mechanism that enables pathway-specific plasticity in sensory systems. VIDEO ABSTRACT.
Collapse
|
12
|
Vonhoff F, Keshishian H. Activity-Dependent Synaptic Refinement: New Insights from Drosophila. Front Syst Neurosci 2017; 11:23. [PMID: 28484377 PMCID: PMC5399093 DOI: 10.3389/fnsys.2017.00023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/03/2017] [Indexed: 01/26/2023] Open
Abstract
During development, neurons establish inappropriate connections as they seek out their synaptic partners, resulting in supernumerary synapses that must be pruned away. The removal of miswired synapses usually involves electrical activity, often through a Hebbian spike-timing mechanism. A novel form of activity-dependent refinement is used by Drosophila that may be non-Hebbian, and is critical for generating the precise connectivity observed in that system. In Drosophila, motoneurons use both glutamate and the biogenic amine octopamine for neurotransmission, and the muscle fibers receive multiple synaptic inputs. Motoneuron growth cones respond in a time-regulated fashion to multiple chemotropic signals arising from their postsynaptic partners. Central to this mechanism is a very low frequency (<0.03 Hz) oscillation of presynaptic cytoplasmic calcium, that regulates and coordinates the action of multiple downstream effectors involved in the withdrawal from off-target contacts. Low frequency calcium oscillations are widely observed in developing neural circuits in mammals, and have been shown to be critical for normal connectivity in a variety of neural systems. In Drosophila these mechanisms allow the growth cone to sample widely among possible synaptic partners, evaluate opponent chemotropic signals, and withdraw from off-target contacts. It is possible that the underlying molecular mechanisms are conserved widely among invertebrates and vertebrates.
Collapse
Affiliation(s)
- Fernando Vonhoff
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| | - Haig Keshishian
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| |
Collapse
|
13
|
Berck ME, Khandelwal A, Claus L, Hernandez-Nunez L, Si G, Tabone CJ, Li F, Truman JW, Fetter RD, Louis M, Samuel AD, Cardona A. The wiring diagram of a glomerular olfactory system. eLife 2016; 5. [PMID: 27177418 PMCID: PMC4930330 DOI: 10.7554/elife.14859] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022] Open
Abstract
The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior. DOI:http://dx.doi.org/10.7554/eLife.14859.001 Our sense of smell can tell us about bread being baked faraway in the kitchen, or whether a leftover piece finally went bad. Similarly to the eyes, the nose enables us to make up a mental image of what lies at a distance. In mammals, the surface of the nose hosts a huge number of olfactory sensory cells, each of which is tuned to respond to a small set of scent molecules. The olfactory sensory cells communicate with a region of the brain called the olfactory bulb. Olfactory sensory cells of the same type converge onto the same small pocket of the olfactory bulb, forming a structure called a glomerulus. Similarly to how the retina generates an image, the combined activity of multiple glomeruli defines an odor. A particular smell is the combination of many volatile compounds, the odorants. Therefore the interactions between different olfactory glomeruli are important for defining the nature of the perceived odor. Although the types of neurons involved in these interactions were known in insects, fish and mice, a precise wiring diagram of a complete set of glomeruli had not been described. In particular, the points of contact through which neurons communicate with each other – known as synapses – among all the neurons participating in an olfactory system were not known. Berck, Khandelwal et al. have now taken advantage of the small size of the olfactory system of the larvae of Drosophila fruit flies to fully describe, using high-resolution imaging, all its neurons and their synapses. The results define the complete wiring diagram of the neural circuit that processes the signals sent by olfactory sensory neurons in the larva’s olfactory circuits. In addition to the neurons that read out the activity of a single glomerulus and send it to higher areas of the brain for further processing, there are also numerous neurons that read out activity from multiple glomeruli. These neurons represent a system, encoded in the genome, for quickly extracting valuable olfactory information and then relaying it to other areas of the brain. An essential aspect of sensation is the ability to stop noticing a stimulus if it doesn't change. This allows an animal to, for example, find food by moving in a direction that increases the intensity of an odor. Inhibition mediates some aspects of this capability. The discovery of structure in the inhibitory connections among glomeruli, together with prior findings on the inner workings of the olfactory system, enabled Berck, Khandelwal et al. to hypothesize how the olfactory circuits enable odor gradients to be navigated. Further investigation revealed more about how the circuits could detect slight changes in odor concentration regardless of whether the overall odor intensity is strong or faint. And, crucially, it revealed how the worst odors – which can signal danger – can still be perceived in the presence of very strong pleasant odors. With the wiring diagram, theories about the sense of smell can now be tested using the genetic tools available for Drosophila, leading to an understanding of how neural circuits work. DOI:http://dx.doi.org/10.7554/eLife.14859.002
Collapse
Affiliation(s)
- Matthew E Berck
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Avinash Khandelwal
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Lindsey Claus
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Luis Hernandez-Nunez
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Guangwei Si
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | | | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Rick D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Matthieu Louis
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Aravinthan Dt Samuel
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
14
|
Abstract
Binary expression systems are flexible and versatile genetic tools in Drosophila. The Q-system is a recently developed repressible binary expression system that offers new possibilities for transgene expression and genetic manipulations. In this review chapter, we focus on current state-of-the-art Q-system tools and reagents. We also discuss in vivo applications of the Q-system, together with GAL4/UAS and LexA/LexAop systems, for simultaneous expression of multiple effectors, intersectional labeling, and clonal analysis.
Collapse
|
15
|
Packard A, Delafield-Butt JT. Feelings as agents of selection: putting Charles Darwin back into (extended neo-) Darwinism. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Andrew Packard
- La Goure; Chemin de l'Avelan; La Garde-Freinet 83680 France
| | | |
Collapse
|
16
|
Doll CA, Broadie K. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models. Front Cell Neurosci 2014; 8:30. [PMID: 24570656 PMCID: PMC3916725 DOI: 10.3389/fncel.2014.00030] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/21/2014] [Indexed: 01/23/2023] Open
Abstract
Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent (A-D) developmental processes are specifically impaired in autism spectrum disorders (ASDs). ASD genetic models in both mouse and Drosophila have pioneered our insights into normal A-D neural circuit assembly and consolidation, and how these developmental mechanisms go awry in specific genetic conditions. The monogenic fragile X syndrome (FXS), a common cause of heritable ASD and intellectual disability, has been particularly well linked to defects in A-D critical period processes. The fragile X mental retardation protein (FMRP) is positively activity-regulated in expression and function, in turn regulates excitability and activity in a negative feedback loop, and appears to be required for the A-D remodeling of synaptic connectivity during early-use critical periods. The Drosophila FXS model has been shown to functionally conserve the roles of human FMRP in synaptogenesis, and has been centrally important in generating our current mechanistic understanding of the FXS disease state. Recent advances in Drosophila optogenetics, transgenic calcium reporters, highly-targeted transgenic drivers for individually-identified neurons, and a vastly improved connectome of the brain are now being combined to provide unparalleled opportunities to both manipulate and monitor A-D processes during critical period brain development in defined neural circuits. The field is now poised to exploit this new Drosophila transgenic toolbox for the systematic dissection of A-D mechanisms in normal versus ASD brain development, particularly utilizing the well-established Drosophila FXS disease model.
Collapse
Affiliation(s)
- Caleb A Doll
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA ; Kennedy Center for Research on Human Development, Vanderbilt University Nashville, TN, USA
| |
Collapse
|