1
|
Wu J, Hollinger J, Bonanno E, Jiang F, Yao P. Cardiomyocyte-Specific Loss of Glutamyl-prolyl-tRNA Synthetase Leads to Disturbed Protein Homeostasis and Dilated Cardiomyopathy. Cells 2023; 13:35. [PMID: 38201239 PMCID: PMC10778562 DOI: 10.3390/cells13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Glutamyl-prolyl-tRNA synthetase (EPRS1), an aminoacyl-tRNA synthetase (ARS) ligating glutamic acid and proline to their corresponding tRNAs, plays an essential role in decoding proline codons during translation elongation. The physiological function of EPRS1 in cardiomyocytes (CMs) and the potential effects of the CM-specific loss of Eprs1 remain unknown. Here, we found that heterozygous Eprs1 knockout in CMs does not cause any significant changes in CM hypertrophy induced by pressure overload, while homozygous knockout leads to dilated cardiomyopathy, heart failure, and lethality at around 1 month after Eprs1 deletion. The transcriptomic profiling of early-stage Eprs1 knockout hearts suggests a significantly decreased expression of multiple ion channel genes and an increased gene expression in proapoptotic pathways and integrated stress response. Proteomic analysis shows decreased protein expression in multi-aminoacyl-tRNA synthetase complex components, fatty acids, and branched-chain amino acid metabolic enzymes, as well as a compensatory increase in cytosolic translation machine-related proteins. Immunoblot analysis indicates that multiple proline-rich proteins were reduced at the early stage, which might contribute to the cardiac dysfunction of Eprs1 knockout mice. Taken together, this study demonstrates the physiological and molecular outcomes of loss-of-function of Eprs1 in vivo and provides valuable insights into the potential side effects on CMs, resulting from the EPRS1-targeting therapeutic approach.
Collapse
Affiliation(s)
- Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA; (J.W.); (J.H.)
| | - Jared Hollinger
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA; (J.W.); (J.H.)
| | - Emily Bonanno
- Undergraduate Program in Biology and Medicine, Department of Biological Sciences: Biochemistry, University of Rochester, Rochester, NY 14620, USA;
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA; (J.W.); (J.H.)
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA; (J.W.); (J.H.)
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
2
|
Goswami B, Nag S, Ray PS. Fates and functions of RNA-binding proteins under stress. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1825. [PMID: 38014833 DOI: 10.1002/wrna.1825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/03/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Exposure to stress activates a well-orchestrated set of changes in gene expression programs that allow the cell to cope with and adapt to the stress, or undergo programmed cell death. RNA-protein interactions, mediating all aspects of post-transcriptional regulation of gene expression, play crucial roles in cellular stress responses. RNA-binding proteins (RBPs), which interact with sequence/structural elements in RNAs to control the steps of RNA metabolism, have therefore emerged as central regulators of post-transcriptional responses to stress. Following exposure to a variety of stresses, the dynamic alterations in the RNA-protein interactome enable cells to respond to intracellular or extracellular perturbations by causing changes in mRNA splicing, polyadenylation, stability, translation, and localization. As RBPs play a central role in determining the cellular proteome both qualitatively and quantitatively, it has become increasingly evident that their abundance, availability, and functions are also highly regulated in response to stress. Exposure to stress initiates a series of signaling cascades that converge on post-translational modifications (PTMs) of RBPs, resulting in changes in their subcellular localization, association with stress granules, extracellular export, proteasomal degradation, and RNA-binding activities. These alterations in the fate and function of RBPs directly impact their post-transcriptional regulatory roles in cells under stress. Adopting the ubiquitous RBP HuR as a prototype, three scenarios illustrating the changes in nuclear-cytoplasmic localization, RNA-binding activity, export and degradation of HuR in response to inflammation, genotoxic stress, and heat shock depict the complex and interlinked regulatory mechanisms that control the fate and functions of RBPs under stress. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Binita Goswami
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, West Bengal, India
| | - Sharanya Nag
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, West Bengal, India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, West Bengal, India
| |
Collapse
|
3
|
Liu X, Han W, Hu X. Post-transcriptional regulation of myeloid cell-mediated inflammatory responses. Adv Immunol 2023; 160:59-82. [PMID: 38042586 DOI: 10.1016/bs.ai.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
Myeloid cells, particularly macrophages, act as the frontline responders to infectious agents and initiate inflammation. While the molecular mechanisms driving inflammatory responses have primarily focused on pattern recognition by myeloid cells and subsequent transcriptional events, it is crucial to note that post-transcriptional regulation plays a pivotal role in this process. In addition to the transcriptional regulation of innate immune responses, additional layers of intricate network of post-transcriptional mechanisms critically determine the quantity and duration of key inflammatory products and thus the outcome of immune responses. A multitude of mechanisms governing post-transcriptional regulation in innate immunity have been uncovered, encompassing RNA alternative splicing, mRNA stability, and translational regulation. This review encapsulates the current insights into the post-transcriptional regulation of inflammatory genes within myeloid cells, with particular emphasis on translational regulation during inflammation. While acknowledging the advancements, we also shed light on the existing gaps in immunological research pertaining to post-transcriptional levels and propose perspectives that controlling post-transcriptional process may serve as potential targets for therapeutic interventions in inflammatory diseases.
Collapse
Affiliation(s)
- Xingxian Liu
- Institute for Immunology, Tsinghua University, Beijing, P.R. China; Department of Basic Medical Sciences, Tsinghua University, Beijing, P.R. China; Tsinghua-Peking Center for Life Sciences, Beijing, P.R. China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, P.R. China
| | - Weidong Han
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Xiaoyu Hu
- Institute for Immunology, Tsinghua University, Beijing, P.R. China; Department of Basic Medical Sciences, Tsinghua University, Beijing, P.R. China; Tsinghua-Peking Center for Life Sciences, Beijing, P.R. China; The State Key Laboratory of Membrane Biology, Beijing, P.R. China.
| |
Collapse
|
4
|
Wu J, Hollinger J, Bonanno E, Jiang F, Yao P. Cardiomyocyte-specific Loss of Glutamyl-prolyl-tRNA Synthetase Leads to Disturbed Protein Homeostasis and Dilated Cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558539. [PMID: 37790482 PMCID: PMC10542137 DOI: 10.1101/2023.09.19.558539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Glutamyl-prolyl-tRNA synthetase (EPRS1), an aminoacyl-tRNA synthetase (ARS) ligating glutamic acid and proline to their corresponding tRNAs, plays an essential role in decoding proline codons during translation elongation. The physiological function of EPRS1 in cardiomyocytes (CMs) and the potential effects of CM-specific loss of EPRS1 remain unknown. Here, we found that heterozygous Eprs1 knockout in CMs does not cause any significant changes in CM hypertrophy induced by pressure overload, while homozygous knockout leads to dilated cardiomyopathy, heart failure, and lethality at around 1 month after Eprs1 deletion. Transcriptomic profiling of early-stage Eprs1 knockout hearts suggests a significantly decreased expression of multiple ion channel genes and an increased gene expression in proapoptotic pathways and integrated stress response. Proteomic analysis shows decreased protein expression of multi-aminoacyl-tRNA synthetase complex components, fatty acid, and branched-chain amino acid metabolic enzymes, as well as a compensatory increase in cytosolic translation machine-related proteins. Immunoblot analysis indicated that multiple proline-rich proteins were reduced at the early stage, which might contribute to cardiac dysfunction of Eprs1 knockout mice. Taken together, this study demonstrates the physiological and molecular outcome of loss-of-function of EPRS1 in vivo and provides valuable insights into the potential side effects on CMs resulting from the EPRS1-targeting therapeutic approach.
Collapse
Affiliation(s)
- Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642 USA
| | - Jared Hollinger
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642 USA
| | - Emily Bonanno
- Undergraduate Program in Biology and Medicine, Department of Biological Sciences: Biochemistry, University of Rochester, Rochester, New York 14620 USA
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642 USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642 USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642 USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642 USA
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642 USA
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642 USA
| |
Collapse
|
5
|
Mathew V, Mei A, Giwa H, Cheong A, Chander A, Zou A, Blanton RM, Kashpur O, Cui W, Slonim D, Mahmoud T, O'Tierney-Ginn P, Mager J, Draper I, Wallingford MC. hnRNPL expression dynamics in the embryo and placenta. Gene Expr Patterns 2023; 48:119319. [PMID: 37148985 PMCID: PMC10330435 DOI: 10.1016/j.gep.2023.119319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/13/2023] [Accepted: 04/04/2023] [Indexed: 05/08/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein L (hnRNPL) is a conserved RNA binding protein (RBP) that plays an important role in the alternative splicing of gene transcripts, and thus in the generation of specific protein isoforms. Global deficiency in hnRNPL in mice results in preimplantation embryonic lethality at embryonic day (E) 3.5. To begin to understand the contribution of hnRNPL-regulated pathways in the normal development of the embryo and placenta, we determined hnRNPL expression profile and subcellular localization throughout development. Proteome and Western blot analyses were employed to determine hnRNPL abundance between E3.5 and E17.5. Histological analyses supported that the embryo and implantation site display distinct hnRNPL localization patterns. In the fully developed mouse placenta, nuclear hnRNPL was observed broadly in trophoblasts, whereas within the implantation site a discrete subset of cells showed hnRNPL outside the nucleus. In the first-trimester human placenta, hnRNPL was detected in the undifferentiated cytotrophoblasts, suggesting a role for this factor in trophoblast progenitors. Parallel in vitro studies utilizing Htr8 and Jeg3 cell lines confirmed expression of hnRNPL in cellular models of human trophoblasts. These studies [support] coordinated regulation of hnRNPL during the normal developmental program in the mammalian embryo and placenta.
Collapse
Affiliation(s)
- Vineetha Mathew
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Ariel Mei
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Hamida Giwa
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Agnes Cheong
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ashmita Chander
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Aaron Zou
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Olga Kashpur
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Donna Slonim
- Department of Computer Science, Tufts University, 177 College Avenue, Medford, MA, 02155, USA
| | - Taysir Mahmoud
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Perrie O'Tierney-Ginn
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Isabelle Draper
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| | - Mary C Wallingford
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA; Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| |
Collapse
|
6
|
Vasu K, Ramachandiran I, Chechi A, Khan K, Khan D, Kaufman R, Fox PL. Translational control of murine adiponectin expression by an upstream open reading frame element. RNA Biol 2023; 20:737-749. [PMID: 37702393 PMCID: PMC10501164 DOI: 10.1080/15476286.2023.2256094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 09/14/2023] Open
Abstract
Adiponectin, an adipocyte-specific secretory protein encoded by the ADIPOQ gene has a causal role in insulin resistance. Anti-diabetic drugs increase plasma adiponectin by a poorly understood, post-transcriptional mechanism enhancing insulin sensitivity. Deletion analysis of a reporter bearing the mouse Adipoq mRNA 5'-leader identified an inhibitory cis-regulatory sequence. The 5'-leader harbours two potential upstream open reading frames (uORFs) overlapping the principal downstream ORF. Mutation of the uORF ATGs increased reporter translation ~3-fold, indicative of a functional uORF. uORFs are common in mammalian mRNAs; however, only a select group resist translational repression by the integrated stress response (ISR). Thapsigargin (TG), which induces endoplasmic reticulum (ER) stress and the ISR, enhanced expression of a reporter bearing the Adipoq 5'-leader; polysome profiling verified translation-stimulation. TG-stimulated translation was absent in cells defective in Ser51 phosphorylation of eukaryotic initiation factor 2α (eIF2α), required for the ISR. To determine its role in expression and function of endogenous adiponectin, the upstream uORF was disrupted by CRISPR-Cas9-mediated mutagenesis of differentiated mouse 3T3-L1 adipocytes. uORF disruption in adipocytes increased adiponectin expression, triacylglycerol accumulation, and glucose uptake, and inhibited paracrine muscle and liver cell expression of gluconeogenic enzymes, establishing an important role of the uORF in adiponectin-mediated responses to stress.
Collapse
Affiliation(s)
- Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Aayushi Chechi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Randall Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
7
|
Smith MR, Costa G. RNA-binding proteins and translation control in angiogenesis. FEBS J 2022; 289:7788-7809. [PMID: 34796614 DOI: 10.1111/febs.16286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/17/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023]
Abstract
Tissue vascularization through the process of angiogenesis ensures adequate oxygen and nutrient supply during development and regeneration. The complex morphogenetic events involved in new blood vessel formation are orchestrated by a tightly regulated crosstalk between extra and intracellular factors. In this context, RNA-binding protein (RBP) activity and protein translation play fundamental roles during the cellular responses triggered by particular environmental cues. A solid body of work has demonstrated that key RBPs (such as HuR, TIS11 proteins, hnRNPs, NF90, QKIs and YB1) are implicated in both physiological and pathological angiogenesis. These RBPs are critical for the metabolism of messenger (m)RNAs encoding angiogenic modulators and, importantly, strong evidence suggests that RBP-mRNA interactions can be altered in disease. Lesser known, but not less important, the mechanistic aspects of protein synthesis can also regulate the generation of new vessels. In this review, we outline the key findings demonstrating the implications of RBP-mediated RNA regulation and translation control in angiogenesis. Furthermore, we highlight how these mechanisms of post-transcriptional control of gene expression have led to promising therapeutic strategies aimed at targeting undesired blood vessel formation.
Collapse
Affiliation(s)
- Madeleine R Smith
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Guilherme Costa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| |
Collapse
|
8
|
Nag S, Goswami B, Das Mandal S, Ray PS. Cooperation and competition by RNA-binding proteins in cancer. Semin Cancer Biol 2022; 86:286-297. [PMID: 35248729 DOI: 10.1016/j.semcancer.2022.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
Post-transcriptional regulation of gene expression plays a major role in determining the cellular proteome in health and disease. Post-transcriptional control mechanisms are disrupted in many cancers, contributing to multiple processes of tumorigenesis. RNA-binding proteins (RBPs), the main post-transcriptional regulators, often show altered expression and activity in cancer cells. Dysregulation of RBPs contributes to many cancer phenotypes, functioning in complex regulatory networks with other cellular players such as non-coding RNAs, signaling mediators and transcription factors to alter the expression of oncogenes and tumor suppressor genes. RBPs often function combinatorially, based on their binding to target sequences/structures on shared mRNA targets, to regulate the expression of cancer-related genes. This gives rise to cooperativity and competition between RBPs in mRNA binding and resultant functional outcomes in post-transcriptional processes such as mRNA splicing, stability, export and translation. Cooperation and competition is also observed in the case of interaction of RBPs and microRNAs with mRNA targets. RNA structural change is a common mechanism mediating the cooperative/competitive interplay between RBPs and between RBPs and microRNAs. RNA modifications, leading to changes in RNA structure, add a new dimension to cooperative/competitive binding of RBPs to mRNAs, further expanding the RBP regulatory landscape. Therefore, cooperative/competitive interplay between RBPs is a major determinant of the RBP interactome and post-transcriptional regulation of gene expression in cancer cells.
Collapse
Affiliation(s)
- Sharanya Nag
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Binita Goswami
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sukhen Das Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| |
Collapse
|
9
|
Emerging roles of hnRNP A2B1 in cancer and inflammation. Int J Biol Macromol 2022; 221:1077-1092. [PMID: 36113587 DOI: 10.1016/j.ijbiomac.2022.09.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/27/2022] [Accepted: 09/11/2022] [Indexed: 11/05/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a group of RNA-binding proteins with important roles in multiple aspects of nucleic acid metabolism, including the packaging of nascent transcripts, alternative splicing, transactivation of gene expression, and regulation of protein translation. As a core component of the hnRNP complex in mammalian cells, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNP A2B1) participates in and coordinates various molecular events. Given its regulatory role in inflammation and cancer progression, hnRNP A2B1 has become a novel player in immune response, inflammation, and cancer development. Concomitant with these new roles, a surprising number of mechanisms deemed to regulate hnRNP A2B1 functions have been identified, including post-translational modifications, changes in subcellular localization, direct interactions with multiple DNAs, RNAs, and proteins or the formation of complexes with them, which have gradually made hnRNP A2B1 a molecular target for multiple drugs. In light of the rising interest in the intersection between cancer and inflammation, this review will focus on recent knowledge of the biological roles of hnRNP A2B1 in cancer, immune response, and inflammation.
Collapse
|
10
|
Guillemin A, Kumar A, Wencker M, Ricci EP. Shaping the Innate Immune Response Through Post-Transcriptional Regulation of Gene Expression Mediated by RNA-Binding Proteins. Front Immunol 2022; 12:796012. [PMID: 35087521 PMCID: PMC8787094 DOI: 10.3389/fimmu.2021.796012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.
Collapse
Affiliation(s)
- Anissa Guillemin
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| | - Anuj Kumar
- CRCL, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Mélanie Wencker
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, ENS de Lyon, CNRS, UMR 5308, INSERM, Lyon, France
| | - Emiliano P. Ricci
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| |
Collapse
|
11
|
Wei S, Dai S, Zhang C, Zhao R, Zhao Z, Song Y, Shan B, Zhao L. LncRNA NR038975, A Serum-Based Biomarker, Promotes Gastric Tumorigenesis by Interacting With NF90/NF45 Complex. Front Oncol 2021; 11:721604. [PMID: 34900675 PMCID: PMC8660099 DOI: 10.3389/fonc.2021.721604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the deadliest cancers, and long noncoding RNAs (lncRNAs) have been reported to be the important regulators during the occurrence and development of GC. The present study identified a novel and functional lncRNA in GC, named NR038975, which was confirmed to be markedly upregulated in the Gene Expression Profiling Interactive Analysis (GEPIA) dataset and our independent cohort of GC tissues. We firstly characterized the full-length sequence and subcellular location of NR038975 in GC cells. Our data demonstrated that upregulated NR038975 expression was significantly related to lymph node metastasis and TNM stage. In addition, knockdown of NR038975 inhibited GC cell proliferation, migration, invasion, and clonogenicity and vice versa. Mechanistically, RNA pull-down and mass spectrometry assays identified the NR038975-binding proteins and NF90/NF45 complex, and the binding was also confirmed by RNA immunoprecipitation and confocal experiments. We further demonstrated that genetic deficiency of NR038975 abrogated the interaction between NF45 and NF90. Moreover, NF90 increased the stability of NR038975. Thus, NR038975-NF90/NF45 will be an important combinational target of GC. Finally, we detected NR038975 in serum exosomes and serum of GC patients. Our results indicated that NR038975 was a biomarker for gastric tumorigenesis. The current study demonstrated that NR038975 is a novel lncRNA that is clinically and functionally engaged in GC progression and might be a novel diagnostic marker and potential therapeutic target.
Collapse
Affiliation(s)
- Sisi Wei
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Suli Dai
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cong Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruinian Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Uemura A, Fruttiger M, D'Amore PA, De Falco S, Joussen AM, Sennlaub F, Brunck LR, Johnson KT, Lambrou GN, Rittenhouse KD, Langmann T. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res 2021; 84:100954. [PMID: 33640465 PMCID: PMC8385046 DOI: 10.1016/j.preteyeres.2021.100954] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Five vascular endothelial growth factor receptor (VEGFR) ligands (VEGF-A, -B, -C, -D, and placental growth factor [PlGF]) constitute the VEGF family. VEGF-A binds VEGF receptors 1 and 2 (VEGFR1/2), whereas VEGF-B and PlGF only bind VEGFR1. Although much research has been conducted on VEGFR2 to elucidate its key role in retinal diseases, recent efforts have shown the importance and involvement of VEGFR1 and its family of ligands in angiogenesis, vascular permeability, and microinflammatory cascades within the retina. Expression of VEGFR1 depends on the microenvironment, is differentially regulated under hypoxic and inflammatory conditions, and it has been detected in retinal and choroidal endothelial cells, pericytes, retinal and choroidal mononuclear phagocytes (including microglia), Müller cells, photoreceptor cells, and the retinal pigment epithelium. Whilst the VEGF-A decoy function of VEGFR1 is well established, consequences of its direct signaling are less clear. VEGFR1 activation can affect vascular permeability and induce macrophage and microglia production of proinflammatory and proangiogenic mediators. However the ability of the VEGFR1 ligands (VEGF-A, PlGF, and VEGF-B) to compete against each other for receptor binding and to heterodimerize complicates our understanding of the relative contribution of VEGFR1 signaling alone toward the pathologic processes seen in diabetic retinopathy, retinal vascular occlusions, retinopathy of prematurity, and age-related macular degeneration. Clinically, anti-VEGF drugs have proven transformational in these pathologies and their impact on modulation of VEGFR1 signaling is still an opportunity-rich field for further research.
Collapse
Affiliation(s)
- Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, 20 Staniford Street, Boston, MA, 02114, USA.
| | - Sandro De Falco
- Angiogenesis Laboratory, Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy; ANBITION S.r.l., Via Manzoni 1, 80123, Naples, Italy.
| | - Antonia M Joussen
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, and Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
| | - Lynne R Brunck
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kristian T Johnson
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - George N Lambrou
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kay D Rittenhouse
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany.
| |
Collapse
|
13
|
Song P, Yang F, Jin H, Wang X. The regulation of protein translation and its implications for cancer. Signal Transduct Target Ther 2021; 6:68. [PMID: 33597534 PMCID: PMC7889628 DOI: 10.1038/s41392-020-00444-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/30/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023] Open
Abstract
In addition to the deregulation of gene transcriptions and post-translational protein modifications, the aberrant translation from mRNAs to proteins plays an important role in the pathogenesis of various cancers. Targeting mRNA translation are expected to become potential approaches for anticancer treatments. Protein translation is affected by many factors including translation initiation factors and RNA-binding proteins. Recently, modifications of mRNAs mainly N6-methyladenine (m6A) modification and noncoding RNAs, such as microRNAs and long noncoding RNAs are involved. In this review, we generally summarized the recent advances on the regulation of protein translation by the interplay between mRNA modifications and ncRNAs. By doing so, we hope this review could offer some hints for the development of novel approaches in precision therapy of human cancers.
Collapse
Affiliation(s)
- Ping Song
- grid.13402.340000 0004 1759 700XDepartment of Medical Oncology, Cancer Institute of Zhejiang University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Fan Yang
- grid.13402.340000 0004 1759 700XDepartment of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Hongchuan Jin
- grid.13402.340000 0004 1759 700XKey Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Xian Wang
- grid.13402.340000 0004 1759 700XDepartment of Medical Oncology, Cancer Institute of Zhejiang University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| |
Collapse
|
14
|
Xie W, Zhu H, Zhao M, Wang L, Li S, Zhao C, Zhou Y, Zhu B, Jiang X, Liu W, Ren C. Crucial roles of different RNA-binding hnRNP proteins in Stem Cells. Int J Biol Sci 2021; 17:807-817. [PMID: 33767590 PMCID: PMC7975692 DOI: 10.7150/ijbs.55120] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/07/2021] [Indexed: 11/05/2022] Open
Abstract
The self-renewal, pluripotency and differentiation of stem cells are regulated by various genetic and epigenetic factors. As a kind of RNA binding protein (RBP), the heterogeneous nuclear ribonucleoproteins (hnRNPs) can act as "RNA scaffold" and recruit mRNA, lncRNA, microRNA and circRNA to affect mRNA splicing and processing, regulate gene transcription and post-transcriptional translation, change genome structure, and ultimately play crucial roles in the biological processes of cells. Recent researches have demonstrated that hnRNPs are irreplaceable for self-renewal and differentiation of stem cells. hnRNPs function in stem cells by multiple mechanisms, which include regulating mRNA stability, inducing alternative splicing of mRNA, epigenetically regulate gene expression, and maintaining telomerase activity and telomere length. The functions and the underlying mechanisms of hnRNPs in stem cells deserve further investigation.
Collapse
Affiliation(s)
- Wen Xie
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha 410008, China
| | - Hecheng Zhu
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, China
| | - Lei Wang
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha 410008, China
| | - Shasha Li
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha 410008, China
| | - Cong Zhao
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha 410008, China
| | - Yao Zhou
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha 410008, China
| | - Bin Zhu
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha 410008, China
| | - Xingjun Jiang
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Weidong Liu
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha 410008, China
| | - Caiping Ren
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha 410008, China
| |
Collapse
|
15
|
Das Mandal S, Ray PS. Transcriptome-wide analysis reveals spatial correlation between N6-methyladenosine and binding sites of microRNAs and RNA-binding proteins. Genomics 2020; 113:205-216. [PMID: 33340693 DOI: 10.1016/j.ygeno.2020.12.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/02/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
N6-methyladenosine (m6A), the most prevalent epitranscriptomic modification in eukaryotes, is enriched in 3'-untranslated regions (3'UTRs) of mRNAs. As 3'UTRs are major binding sites of RNA-binding proteins (RBPs) and microRNAs (miRNAs), m6A-dependent local RNA structure change may alter the accessibility of RBPs and miRNAs to their target sites and regulate mRNA function. Using a human transcriptome-wide computational analysis to investigate the relation between m6A, RBPs and miRNAs, we find a strong positive correlation between number of m6A sites, miRNAs and RBPs binding to mRNAs, suggesting m6A-modified mRNAs are more targeted by miRNAs and RBPs. Moreover, m6A sites are located proximally to miRNA target sites and binding sites of multiple RBPs. Further, miRNA target sites and RBP-binding sites located close to each other are also located proximally to m6A. This study indicates three-way interplay between m6A, microRNA and RBP binding, suggesting the influence of mRNA modifications on the miRNA and RBP interactomes.
Collapse
Affiliation(s)
- Sukhen Das Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, 741246, West Bengal, India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, 741246, West Bengal, India.
| |
Collapse
|
16
|
Wu J, Subbaiah KCV, Xie LH, Jiang F, Khor ES, Mickelsen D, Myers JR, Tang WHW, Yao P. Glutamyl-Prolyl-tRNA Synthetase Regulates Proline-Rich Pro-Fibrotic Protein Synthesis During Cardiac Fibrosis. Circ Res 2020; 127:827-846. [PMID: 32611237 PMCID: PMC7484271 DOI: 10.1161/circresaha.119.315999] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/01/2020] [Indexed: 01/22/2023]
Abstract
RATIONALE Increased protein synthesis of profibrotic genes is a common feature in cardiac fibrosis and heart failure. Despite this observation, critical factors and molecular mechanisms for translational control of profibrotic genes during cardiac fibrosis remain unclear. OBJECTIVE To investigate the role of a bifunctional ARS (aminoacyl-tRNA synthetase), EPRS (glutamyl-prolyl-tRNA synthetase) in translational control of cardiac fibrosis. METHODS AND RESULTS Results from reanalyses of multiple publicly available data sets of human and mouse heart failure, demonstrated that EPRS acted as an integrated node among the ARSs in various cardiac pathogenic processes. We confirmed that EPRS was induced at mRNA and protein levels (≈1.5-2.5-fold increase) in failing hearts compared with nonfailing hearts using our cohort of human and mouse heart samples. Genetic knockout of one allele of Eprs globally (Eprs+/-) using CRISPR-Cas9 technology or in a Postn-Cre-dependent manner (Eprsflox/+; PostnMCM/+) strongly reduces cardiac fibrosis (≈50% reduction) in isoproterenol-, transverse aortic constriction-, and myocardial infarction (MI)-induced heart failure mouse models. Inhibition of EPRS using a PRS (prolyl-tRNA synthetase)-specific inhibitor, halofuginone, significantly decreases translation efficiency (TE) of proline-rich collagens in cardiac fibroblasts as well as TGF-β (transforming growth factor-β)-activated myofibroblasts. Overexpression of EPRS increases collagen protein expression in primary cardiac fibroblasts under TGF-β stimulation. Using transcriptome-wide RNA-Seq and polysome profiling-Seq in halofuginone-treated fibroblasts, we identified multiple novel Pro-rich genes in addition to collagens, such as Ltbp2 (latent TGF-β-binding protein 2) and Sulf1 (sulfatase 1), which are translationally regulated by EPRS. SULF1 is highly enriched in human and mouse myofibroblasts. In the primary cardiac fibroblast culture system, siRNA-mediated knockdown of SULF1 attenuates cardiac myofibroblast activation and collagen deposition. Overexpression of SULF1 promotes TGF-β-induced myofibroblast activation and partially antagonizes anti-fibrotic effects of halofuginone treatment. CONCLUSIONS Our results indicate that EPRS preferentially controls translational activation of proline codon rich profibrotic genes in cardiac fibroblasts and augments pathological cardiac remodeling. Graphical Abstract: A graphical abstract is available for this article.
Collapse
Affiliation(s)
- Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry
| | - Kadiam C Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry
| | - Li Huitong Xie
- Graduate Program in Genetics, Development and Stem Cells, Department of Biomedical Genetics
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry
| | - Eng-Soon Khor
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry
| | - Deanne Mickelsen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry
| | - Jason R Myers
- Genomics Research Center, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | | | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry
| |
Collapse
|
17
|
Li X, Hu Z, Shi H, Wang C, Lei J, Cheng Y. Inhibition of VEGFA Increases the Sensitivity of Ovarian Cancer Cells to Chemotherapy by Suppressing VEGFA-Mediated Autophagy. Onco Targets Ther 2020; 13:8161-8171. [PMID: 32884298 PMCID: PMC7443464 DOI: 10.2147/ott.s250392] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background Ovarian cancer (OvCa) is the leading cause of death of gynecological malignancies worldwide. Vascular endothelial growth factor A (VEGFA), the most potent angiogenic factor, is responsible for tumor growth and angiogenesis, but its role in OvCa chemotherapy resistance remains unclear. Methods RT-PCR and Western blot were used to detect VEGFA expression in tumor cells and normal ovarian surface epithelial cells. Gene Ontology (GO) enrichment analysis was used to analyze GO terms correlated with VEGFA. In in vitro experiments, we knockdown VEGFA in tumor cells and detected the tumor cell viability and apoptosis after chemotherapy drug treatment by MTT assay and flow cytometry. Western blot was used to detect autophagy and apoptosis related proteins. Results We proved that VEGFA was highly expressed in tumor cells comparted with normal ovarian surface epithelial cells, and enriched GO analysis of VEGFA showed that VEGFA was involved in anti-apoptotic process. Further in vitro experiments confirmed that expression of VEGFA was correlated with chemotherapy resistance and this effect was mediated by autophagy. Meanwhile tumor cells treated with chemotherapy drugs also promoted the expression of VEGFA. Knockdown VEGFA inhibited autophagy of tumor cells and thus potents the killing efficiency in DDP resistant tumor cells and this effect could be reversed by the addition of recombinant VEGFA. Conclusion Taken together, our study demonstrates that VEGFA is involved in anti-apoptosis of tumor cells to chemotherapy, killing partly through autophagy, indicating that VEGFA may serve as a potential target to improve chemotherapy treatment.
Collapse
Affiliation(s)
- Xia Li
- Gynecological Oncology Radiotherapy Ward, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Zhenhua Hu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Huirong Shi
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Cong Wang
- Gynecological Oncology Radiotherapy Ward, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Jia Lei
- Gynecological Oncology Radiotherapy Ward, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Yan Cheng
- Gynecological Oncology Radiotherapy Ward, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| |
Collapse
|
18
|
Abstract
Aminoacyl-tRNA synthetases (ARSs) are a family of essential "housekeeping" enzymes ubiquitous in the three major domains of life. ARSs uniquely connect the essential minimal units of both major oligomer classes-the 3-nucleotide codons of oligonucleotides and the amino acids of proteins. They catalyze the esterification of amino acids to the 3'-end of cognate transfer RNAs (tRNAs) bearing the correct anticodon triplet to ensure accurate transfer of information from mRNA to protein according to the genetic code. As an essential translation factor responsible for the first biochemical reaction in protein biosynthesis, ARSs control protein production by catalyzing aminoacylation, and by editing of mischarged aminoacyl-tRNAs to maintain translational fidelity. In addition to their primary enzymatic activities, many ARSs have noncanonical functions unrelated to their catalytic activity in protein synthesis. Among the ARSs with "moonlighting" activities, several, including GluProRS (or EPRS), LeuRS, LysRS, SerRS, TyrRS, and TrpRS, exhibit cell signaling-related activities that sense environmental signals, regulate gene expression, and modulate cellular functions. ARS signaling functions generally depend on catalytically-inactive, appended domains not present in ancient enzyme forms, and are activated by stimulus-dependent post-translational modification. Activation often results in cellular re-localization and gain of new interacting partners. The newly formed ARS-bearing complexes conduct a host of signal transduction functions, including immune response, mTORC1 pathway signaling, and fibrogenic and angiogenic signaling, among others. Because noncanonical functions of ARSs in signal transduction are uncoupled from canonical aminoacylation functions, function-specific inhibitors can be developed, thus providing promising opportunities and therapeutic targets for treatment of human disease.
Collapse
Affiliation(s)
- Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine and Department of Biochemistry & Biophysics, The Center for RNA Biology, The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY, United States.
| | - Paul L Fox
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
19
|
Fischer S, Di Liddo A, Taylor K, Gerhardus JS, Sobczak K, Zarnack K, Weigand JE. Muscleblind-like 2 controls the hypoxia response of cancer cells. RNA (NEW YORK, N.Y.) 2020; 26:648-663. [PMID: 32127384 PMCID: PMC7161353 DOI: 10.1261/rna.073353.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/27/2020] [Indexed: 05/03/2023]
Abstract
Hypoxia is a hallmark of solid cancers, supporting proliferation, angiogenesis, and escape from apoptosis. There is still limited understanding of how cancer cells adapt to hypoxic conditions and survive. We analyzed transcriptome changes of human lung and breast cancer cells under chronic hypoxia. Hypoxia induced highly concordant changes in transcript abundance, but divergent splicing responses, underlining the cell type-specificity of alternative splicing programs. While RNA-binding proteins were predominantly reduced, hypoxia specifically induced muscleblind-like protein 2 (MBNL2). Strikingly, MBNL2 induction was critical for hypoxia adaptation by controlling the transcript abundance of hypoxia response genes, such as vascular endothelial growth factor A (VEGFA) MBNL2 depletion reduced the proliferation and migration of cancer cells, demonstrating an important role of MBNL2 as cancer driver. Hypoxia control is specific for MBNL2 and not shared by its paralog MBNL1. Thus, our study revealed MBNL2 as central mediator of cancer cell responses to hypoxia, regulating the expression and alternative splicing of hypoxia-induced genes.
Collapse
Affiliation(s)
- Sandra Fischer
- Department of Biology, Technical University of Darmstadt, Darmstadt, 64287, Germany
| | - Antonella Di Liddo
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
| | - Katarzyna Taylor
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Jamina S Gerhardus
- Department of Biology, Technical University of Darmstadt, Darmstadt, 64287, Germany
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
| | - Julia E Weigand
- Department of Biology, Technical University of Darmstadt, Darmstadt, 64287, Germany
| |
Collapse
|
20
|
Venkata Subbaiah KC, Hedaya O, Wu J, Jiang F, Yao P. Mammalian RNA switches: Molecular rheostats in gene regulation, disease, and medicine. Comput Struct Biotechnol J 2019; 17:1326-1338. [PMID: 31741723 PMCID: PMC6849081 DOI: 10.1016/j.csbj.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 01/12/2023] Open
Abstract
Alteration of RNA structure by environmental signals is a fundamental mechanism of gene regulation. For example, the riboswitch is a noncoding RNA regulatory element that binds a small molecule and causes a structural change in the RNA, thereby regulating transcription, splicing, or translation of an mRNA. The role of riboswitches in metabolite sensing and gene regulation in bacteria and other lower species was reported almost two decades ago, but riboswitches have not yet been discovered in mammals. An analog of the riboswitch, the protein-directed RNA switch (PDRS), has been identified as an important regulatory mechanism of gene expression in mammalian cells. RNA-binding proteins and microRNAs are two major executors of PDRS via their interaction with target transcripts in mammals. These protein-RNA interactions influence cellular functions by integrating environmental signals and intracellular pathways from disparate stimuli to modulate stability or translation of specific mRNAs. The discovery of a riboswitch in eukaryotes that is composed of a single class of thiamine pyrophosphate (TPP) suggests that additional ligand-sensing RNAs may be present to control eukaryotic or mammalian gene expression. In this review, we focus on protein-directed RNA switch mechanisms in mammals. We offer perspectives on the potential discovery of mammalian protein-directed and compound-dependent RNA switches that are related to human disease and medicine.
Collapse
Affiliation(s)
- Kadiam C Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Omar Hedaya
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| |
Collapse
|
21
|
Venkata Subbaiah KC, Wu J, Potdar A, Yao P. hnRNP L-mediated RNA switches function as a hypoxia-induced translational regulon. Biochem Biophys Res Commun 2019; 516:753-759. [PMID: 31255281 DOI: 10.1016/j.bbrc.2019.06.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 11/24/2022]
Abstract
The GAIT (gamma-interferon-activated inhibitor of translation) complex or miR-297-RISC (RNA-induced silencing complex), together with hnRNP L or hnRNP L-bearing complex, operates an RNA switch in myeloid cells that regulates stress-dependent expression of vascular endothelial growth factor-A (VEGFA). Here, we have shown that hnRNP L directs multiple hypoxia-inducible RNA switches simultaneously and regulates expression of these oncogenic genes in addition to VEGFA. Bioinformatic and polysome profiling-microarray screens have identified DNM1L (Dynamin 1-like) and PHF21A (PHD finger protein 21A) mRNAs as regulated at the translational level by GAIT-dependent, hnRNP L-directed RNA switches. We have also uncovered CDK6 (Cyclin dependent kinase 6), MKLN1 (Muskelin 1) and EIF5 (Eukaryotic initiation factor 5) as novel miR-297-dependent, hnRNP L-directed RNA switch transcripts. Src Kinase is required for the phosphorylation of hnRNP L and activation of the RNA switch pathway. Knockdown of hnRNP L sensitizes the human U937 monocytic cells under hypoxia stress but not in normoxia via inducing cell apoptosis partially due to the reduced translation of hnRNP L target mRNAs. Collectively, our findings suggest that commonly controlled genes by the hnRNP L-directed RNA switches form a translational regulon that promotes hypoxia resistance and cell survival.
Collapse
Affiliation(s)
- Kadiam C Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, Department of Biochemistry and Biophysics, Center for RNA Biology, Center for Biomedical Informatics, University of Rochester Medical Center, Rochester, NY, USA
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, Department of Biochemistry and Biophysics, Center for RNA Biology, Center for Biomedical Informatics, University of Rochester Medical Center, Rochester, NY, USA
| | - Alka Potdar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, Department of Biochemistry and Biophysics, Center for RNA Biology, Center for Biomedical Informatics, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
22
|
Wen X, Liu X, Mao YP, Yang XJ, Wang YQ, Zhang PP, Lei Y, Hong XH, He QM, Ma J, Liu N, Li YQ. Long non-coding RNA DANCR stabilizes HIF-1α and promotes metastasis by interacting with NF90/NF45 complex in nasopharyngeal carcinoma. Theranostics 2018; 8:5676-5689. [PMID: 30555573 PMCID: PMC6276287 DOI: 10.7150/thno.28538] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play an important role in the development and progression of cancers. However, the clinical significances of lncRNAs and their functions and mechanisms in nasopharyngeal carcinoma (NPC) remain largely unclear. Methods: Quantitative RT-PCR was used to determine DANCR expression and Kaplan-Meier curves were used to evaluate its prognostic value. RNA sequencing followed by bioinformatic analysis was performed to determine the potential function of DANCR. In vitro and in vivo experiments were conducted to investigate its biological effects. DANCR-interacting proteins were identified by RNA pull-down assay followed by mass spectrometry and western blotting, and then confirmed by RNA immunoprecipitation (RIP) assays. Results: Our previous microarray analysis identified a metastasis-associated lncRNA DANCR. Here, we found that DANCR was upregulated in NPC, especially in those with lymph lode metastasis, and its upregulation could predict poor survival. We then constructed a prognostic predictive model. RNA sequencing followed by bioinformatic analysis revealed that DANCR was responsible for NPC metastasis and hypoxia phenotype. Functional studies showed that DANCR promoted NPC cell invasion and metastasis in vitro and in vivo. Further investigation suggested that DANCR could increase HIF-1α mRNA stability through interacting with the NF90/NF45 complex. Additionally, overexpression of HIF-1α in DANCR knockdown cells restored its suppressive effects on NPC cell migration and invasion. Conclusions: Taken together, our results suggest that DANCR acts as a prognostic biomarker and increases HIF-1α mRNA stability by interacting with NF90/NF45, leading to metastasis and disease progression of NPC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jun Ma
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Na Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Ying-Qin Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| |
Collapse
|
23
|
Fortenbery GW, Sarathy B, Carraway KR, Mansfield KD. Hypoxic stabilization of mRNA is HIF-independent but requires mtROS. Cell Mol Biol Lett 2018; 23:48. [PMID: 30305827 PMCID: PMC6172842 DOI: 10.1186/s11658-018-0112-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023] Open
Abstract
Background Tissue ischemia can arise in response to numerous physiologic and pathologic conditions. The cellular response to decreased perfusion, most notably a decrease in glucose and oxygen, is important for cellular survival. In response to oxygen deprivation or hypoxia, one of the key response elements is hypoxia inducible factor (HIF) and a key protein induced by hypoxia is vascular endothelial growth factor (VEGF). Under hypoxia, we and others have reported an increase in the half-life of VEGF and other hypoxia related mRNAs including MYC and CYR61; however, the mediator of this response has yet to be identified. For this study, we sought to determine if HIF-mediated transcriptional activity is involved in the mRNA stabilization induced by hypoxia. Methods HEK293T or C6 cells were cultured in either normoxic or hypoxic (1% oxygen) conditions in the presence of 1 g/L glucose for all experiments. Pharmacological treatments were used to mimic hypoxia (desferroxamine, dimethyloxaloglutamate, CoCl2), inhibit mitochondrial respiration (rotenone, myxothiazol), scavenge reactive oxygen species (ROS; ebselen), or generate mitochondrial ROS (antimycin A). siRNAs were used to knock down components of the HIF transcriptional apparatus. mRNA half-life was determined via actinomycin D decay and real time PCR and western blotting was used to determine mRNA and protein levels respectively. Results Treatment of HEK293T or C6 cells with hypoxic mimetics, desferroxamine, dimethyloxaloglutamate, or CoCl2 showed similar induction of HIF compared to hypoxia treatment, however, in contrast to hypoxia, the mimetics caused no significant increase in VEGF, MYC or CYR61 mRNA half-life. Knockdown of HIF-alpha or ARNT via siRNA also had no effect on hypoxic mRNA stabilization. Interestingly, treatment of HEK293T cells with the mitochondrial inhibitors rotenone and myxothiazol, or the glutathione peroxidase mimetic ebselen did prevent the hypoxic stabilization of VEGF, MYC, and CYR61, suggesting a role for mtROS in the process. Additionally, treatment with antimycin A, which has been shown to generate mtROS, was able to drive the normoxic stabilization of these mRNAs. Conclusion Overall these data suggest that hypoxic mRNA stabilization is independent of HIF transcriptional activity but requires mtROS.
Collapse
Affiliation(s)
- Grey W Fortenbery
- 1Brody School of Medicine, East Carolina University, Greenville, NC 27834 USA
| | - Brinda Sarathy
- 2Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834 USA
| | - Kristen R Carraway
- 2Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834 USA
| | - Kyle D Mansfield
- 2Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834 USA
| |
Collapse
|
24
|
Dutta D, Belashov IA, Wedekind JE. Coupling Green Fluorescent Protein Expression with Chemical Modification to Probe Functionally Relevant Riboswitch Conformations in Live Bacteria. Biochemistry 2018; 57:4620-4628. [PMID: 29897738 DOI: 10.1021/acs.biochem.8b00316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Noncoding RNAs engage in numerous biological activities including gene regulation. To fully understand RNA function it is necessary to probe biologically relevant conformations in living cells. To address this challenge, we coupled RNA-mediated regulation of the green fluorescent protein (GFP)uv-reporter gene to icSHAPE (in cell Selective 2'-Hydroxyl Acylation analyzed by Primer Extension). Our transcript-specific approach provides sensitive, fluorescence-based readout of the regulatory-RNA status as a means to coordinate chemical modification experiments. We chose a plasmid-based reporter compatible with Escherichia coli to allow use of knockout strains that eliminate endogenous effector biosynthesis. The approach was piloted using the Lactobacillus rhamnosus ( Lrh) preQ1-II riboswitch, which senses the pyrrolopyrimidine metabolite preQ1. Using an E. coli Δ queF strain incapable of preQ1 anabolism, the Lrh riboswitch yielded nearly one log unit of GFPuv-gene repression resulting from exogenously added preQ1. We then subjected cells in gene "on" and "off" states to icSHAPE. The resulting differential analysis indicated reduction in Lrh riboswitch flexibility in the P3 helix of the pseudoknot, which comprises the ribosome-binding site (RBS) paired with the anti-RBS. Such expression platform modulation was not observed by in vitro chemical probing and demonstrates that the crowded cellular environment does not preclude detection of compact and loose RNA-regulatory conformations. Here we describe the design, methods, interpretation, and caveats of Reporter Coupled (ReCo) icSHAPE. We also describe mapping of the differential ReCo-icSHAPE results onto the Lrh riboswitch-preQ1 cocrystal structure. The approach should be readily applicable to functional RNAs triggered by effectors or environmental variations.
Collapse
Affiliation(s)
- Debapratim Dutta
- Department of Biochemistry & Biophysics and Center for RNA Biology , University of Rochester School of Medicine & Dentistry , Rochester , New York 14642 , United States
| | - Ivan A Belashov
- Department of Biochemistry & Biophysics and Center for RNA Biology , University of Rochester School of Medicine & Dentistry , Rochester , New York 14642 , United States
| | - Joseph E Wedekind
- Department of Biochemistry & Biophysics and Center for RNA Biology , University of Rochester School of Medicine & Dentistry , Rochester , New York 14642 , United States
| |
Collapse
|
25
|
Proteomic Identification of Heat Shock-Induced Danger Signals in a Melanoma Cell Lysate Used in Dendritic Cell-Based Cancer Immunotherapy. J Immunol Res 2018; 2018:3982942. [PMID: 29744371 PMCID: PMC5878886 DOI: 10.1155/2018/3982942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022] Open
Abstract
Autologous dendritic cells (DCs) loaded with cancer cell-derived lysates have become a promising tool in cancer immunotherapy. During the last decade, we demonstrated that vaccination of advanced melanoma patients with autologous tumor antigen presenting cells (TAPCells) loaded with an allogeneic heat shock- (HS-) conditioned melanoma cell-derived lysate (called TRIMEL) is able to induce an antitumor immune response associated with a prolonged patient survival. TRIMEL provides not only a broad spectrum of potential melanoma-associated antigens but also danger signals that are crucial in the induction of a committed mature DC phenotype. However, potential changes induced by heat conditioning on the proteome of TRIMEL are still unknown. The identification of newly or differentially expressed proteins under defined stress conditions is relevant for understanding the lysate immunogenicity. Here, we characterized the proteomic profile of TRIMEL in response to HS treatment. A quantitative label-free proteome analysis of over 2800 proteins was performed, with 91 proteins that were found to be regulated by HS treatment: 18 proteins were overexpressed and 73 underexpressed. Additionally, 32 proteins were only identified in the HS-treated TRIMEL and 26 in non HS-conditioned samples. One protein from the overexpressed group and two proteins from the HS-exclusive group were previously described as potential damage-associated molecular patterns (DAMPs). Some of the HS-induced proteins, such as haptoglobin, could be also considered as DAMPs and candidates for further immunological analysis in the establishment of new putative danger signals with immunostimulatory functions.
Collapse
|
26
|
Schmidt T, Friedrich S, Golbik RP, Behrens SE. NF90-NF45 is a selective RNA chaperone that rearranges viral and cellular riboswitches: biochemical analysis of a virus host factor activity. Nucleic Acids Res 2017; 45:12441-12454. [PMID: 29040738 PMCID: PMC5716087 DOI: 10.1093/nar/gkx931] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/10/2017] [Indexed: 01/28/2023] Open
Abstract
The heterodimer NF90-NF45 is an RNA-binding protein complex that modulates the expression of various cellular mRNAs on the post-transcriptional level. Furthermore, it acts as a host factor that supports the replication of several RNA viruses. The molecular mechanisms underlying these activities have yet to be elucidated. Recently, we showed that the RNA-binding capabilities and binding specificity of NF90 considerably improves when it forms a complex with NF45. Here, we demonstrate that NF90 has a substrate-selective RNA chaperone activity (RCA) involving RNA annealing and strand displacement activities. The mechanism of the NF90-catalyzed RNA annealing was elucidated to comprise a combination of 'matchmaking' and compensation of repulsive charges, which finally results in the population of dsRNA products. Heterodimer formation with NF45 enhances 'matchmaking' of complementary ssRNAs and substantially increases the efficiency of NF90's RCA. During investigations of the relevance of the NF90-NF45 RCA, the complex was shown to stimulate the first step in the RNA replication process of hepatitis C virus (HCV) in vitro and to stabilize a regulatory element within the mRNA of vascular endothelial growth factor (VEGF) by protein-guided changes of the RNAs' structures. Thus, our study reveals how the intrinsic properties of an RNA-binding protein determine its biological activities.
Collapse
Affiliation(s)
- Tobias Schmidt
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
- To whom correspondence should be addressed. Tel: +49 3455 5249 60; Fax: +49 3455 5273 87; . Correspondence may also be addressed to Tobias Schmidt.
| | - Susann Friedrich
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
| | - Ralph Peter Golbik
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
- To whom correspondence should be addressed. Tel: +49 3455 5249 60; Fax: +49 3455 5273 87; . Correspondence may also be addressed to Tobias Schmidt.
| |
Collapse
|
27
|
Arif A, Yao P, Terenzi F, Jia J, Ray PS, Fox PL. The GAIT translational control system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29152905 PMCID: PMC5815886 DOI: 10.1002/wrna.1441] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/12/2017] [Accepted: 07/31/2017] [Indexed: 01/19/2023]
Abstract
The interferon (IFN)‐γ‐activated inhibitor of translation (GAIT) system directs transcript‐selective translational control of functionally related genes. In myeloid cells, IFN‐γ induces formation of a multiprotein GAIT complex that binds structural GAIT elements in the 3′‐untranslated regions (UTRs) of multiple inflammation‐related mRNAs, including ceruloplasmin and VEGF‐A, and represses their translation. The human GAIT complex is a heterotetramer containing glutamyl‐prolyl tRNA synthetase (EPRS), NS1‐associated protein 1 (NSAP1), ribosomal protein L13a (L13a), and glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH). A network of IFN‐γ‐stimulated kinases regulates recruitment and assembly of GAIT complex constituents. Activation of cyclin‐dependent kinase 5 (Cdk5), mammalian target of rapamycin complex 1 (mTORC1), and S6K1 kinases induces EPRS release from its parental multiaminoacyl tRNA synthetase complex to join NSAP1 in a ‘pre‐GAIT’ complex. Subsequently, the DAPK‐ZIPK kinase axis phosphorylates L13a, inducing release from the 60S ribosomal subunit and binding to GAPDH. The subcomplexes join to form the functional GAIT complex. Each constituent has a distinct role in the GAIT system. EPRS binds the GAIT element in target mRNAs, NSAP1 negatively regulates mRNA binding, L13a binds eIF4G to block ribosome recruitment, and GAPDH shields L13a from proteasomal degradation. The GAIT system is susceptible to genetic and condition‐specific regulation. An N‐terminus EPRS truncate is a dominant‐negative inhibitor ensuring a ‘translational trickle’ of target transcripts. Also, hypoxia and oxidatively modified lipoproteins regulate GAIT activity. Mouse models exhibiting absent or genetically modified GAIT complex constituents are beginning to elucidate the physiological role of the GAIT system, particularly in the resolution of chronic inflammation. Finally, GAIT‐like systems in proto‐chordates suggests an evolutionarily conserved role of the pathway in innate immunity. WIREs RNA 2018, 9:e1441. doi: 10.1002/wrna.1441 This article is categorized under:
Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Riboswitches
Collapse
Affiliation(s)
- Abul Arif
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Fulvia Terenzi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jie Jia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
28
|
Yao P, Wu J, Lindner D, Fox PL. Interplay between miR-574-3p and hnRNP L regulates VEGFA mRNA translation and tumorigenesis. Nucleic Acids Res 2017; 45:7950-7964. [PMID: 28520992 PMCID: PMC5570063 DOI: 10.1093/nar/gkx440] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) and heterogeneous nuclear ribonucleoproteins (hnRNPs) are families of sequence-specific, posttranscriptional modulators of gene expression. Despite extensive mechanistic and functional studies on both regulatory classes, the interactions and crosstalk between them are largely unexplored. We have reported that competition between miR-297 and hnRNP L to bind a 3΄UTR-localized CA-rich element (CARE) of VEGFA mRNA regulates its translation. Here, we show that translation of VEGFA mRNA in human myeloid cells is dictated by a bi-directional interaction between miR-574-3p, a CA-rich microRNA, and hnRNP L. In normoxia, miR-574-3p, acting as a decoy, binds cytoplasmic hnRNP L and prevents its binding to the CARE and stimulation of VEGFA mRNA translation, simultaneously permitting miR-297-mediated translational silencing. However, in hypoxia, cytoplasmic accumulation of Tyr359-phosphorylated hnRNP L sequesters miR-574-3p, overcoming its decoy activity and seed sequence-dependent gene silencing activity. Ectopically expressed miR-574-3p binds multiple RNA recognition motif (RRM) domains of hnRNP L, synergizes with miR-297, reduces VEGFA mRNA translation, and triggers apoptosis, thereby suppressing tumorigenesis. Our studies establish a novel condition-dependent interplay between a miRNA and an hnRNP that regulates their functions in a bidirectional manner.
Collapse
Affiliation(s)
- Peng Yao
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Daniel Lindner
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
29
|
Carraway KR, Johnson EM, Kauffmann TC, Fry NJ, Mansfield KD. Hypoxia and Hypoglycemia synergistically regulate mRNA stability. RNA Biol 2017; 14:938-951. [PMID: 28362162 PMCID: PMC5546718 DOI: 10.1080/15476286.2017.1311456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ischemic events, common in many diseases, result from decreased blood flow and impaired delivery of oxygen and glucose to tissues of the body. While much is known about the cellular transcriptional response to ischemia, much less is known about the posttranscriptional response to oxygen and glucose deprivation. The goal of this project was to investigate one such posttranscriptional response, the regulation of mRNA stability. To that end, we have identified several novel ischemia-related mRNAs that are synergistically stabilized by oxygen and glucose deprivation including VEGF, MYC, MDM2, and CYR61. This increase in mRNA half-life requires the synergistic effects of both low oxygen (1%) as well as low glucose (≤ 1 g/L) conditions. Oxygen or glucose deprivation alone fails to initiate the response, as exposure to either high glucose (4 g/L) or normoxic conditions inhibits the response. Furthermore, in response to hypoxia/hypoglycemia, the identified mRNAs are released from the RNA binding protein KHSRP which likely contributes to their stabilization.
Collapse
Affiliation(s)
- Kristen R Carraway
- a Biochemistry and Molecular Biology, Brody School of Medicine , East Carolina University , Greenville , NC , USA
| | - Ellen M Johnson
- a Biochemistry and Molecular Biology, Brody School of Medicine , East Carolina University , Greenville , NC , USA
| | - Travis C Kauffmann
- b Brody School of Medicine , East Carolina University , Greenville , NC , USA
| | - Nate J Fry
- a Biochemistry and Molecular Biology, Brody School of Medicine , East Carolina University , Greenville , NC , USA
| | - Kyle D Mansfield
- a Biochemistry and Molecular Biology, Brody School of Medicine , East Carolina University , Greenville , NC , USA
| |
Collapse
|
30
|
Cao L, Weetall M, Bombard J, Qi H, Arasu T, Lennox W, Hedrick J, Sheedy J, Risher N, Brooks PC, Trifillis P, Trotta C, Moon YC, Babiak J, Almstead NG, Colacino JM, Davis TW, Peltz SW. Discovery of Novel Small Molecule Inhibitors of VEGF Expression in Tumor Cells Using a Cell-Based High Throughput Screening Platform. PLoS One 2016; 11:e0168366. [PMID: 27992500 PMCID: PMC5161367 DOI: 10.1371/journal.pone.0168366] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/30/2016] [Indexed: 01/04/2023] Open
Abstract
Current anti-VEGF (Vascular Endothelial Growth Factor A) therapies to treat various cancers indiscriminately block VEGF function in the patient resulting in the global loss of VEGF signaling which has been linked to dose-limiting toxicities as well as treatment failures due to acquired resistance. Accumulating evidence suggests that this resistance is at least partially due to increased production of compensatory tumor angiogenic factors/cytokines. VEGF protein production is differentially controlled depending on whether cells are in the normal “homeostatic” state or in a stressed state, such as hypoxia, by post-transcriptional regulation imparted by elements in the 5’ and 3’ untranslated regions (UTR) of the VEGF mRNA. Using the Gene Expression Modulation by Small molecules (GEMS™) phenotypic assay system, we performed a high throughput screen to identify low molecular weight compounds that target the VEGF mRNA UTR-mediated regulation of stress-induced VEGF production in tumor cells. We identified a number of compounds that potently and selectively reduce endogenous VEGF production under hypoxia in HeLa cells. Medicinal chemistry efforts improved the potency and pharmaceutical properties of one series of compounds resulting in the discovery of PTC-510 which inhibits hypoxia-induced VEGF expression in HeLa cells at low nanomolar concentration. In mouse xenograft studies, oral administration of PTC-510 results in marked reduction of intratumor VEGF production and single agent control of tumor growth without any evident toxicity. Here, we show that selective suppression of stress-induced VEGF production within tumor cells effectively controls tumor growth. Therefore, this approach may minimize the liabilities of current global anti-VEGF therapies.
Collapse
Affiliation(s)
- Liangxian Cao
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
- * E-mail:
| | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Jenelle Bombard
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Hongyan Qi
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Tamil Arasu
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - William Lennox
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Jean Hedrick
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Josephine Sheedy
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Nicole Risher
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Peter C. Brooks
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine, United States of America
| | - Panayiota Trifillis
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Christopher Trotta
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Young-Choon Moon
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - John Babiak
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Neil G. Almstead
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Joseph M. Colacino
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Thomas W. Davis
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Stuart W. Peltz
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| |
Collapse
|
31
|
The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions. Pflugers Arch 2016; 468:1029-40. [PMID: 27165283 PMCID: PMC4893068 DOI: 10.1007/s00424-016-1819-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 02/06/2023]
Abstract
Post-transcriptional regulation of gene expression plays a critical role in almost all cellular processes. Regulation occurs mostly by RNA-binding proteins (RBPs) that recognise RNA elements and form ribonucleoproteins (RNPs) to control RNA metabolism from synthesis to decay. Recently, the repertoire of RBPs was significantly expanded owing to methodological advances such as RNA interactome capture. The newly identified RNA binders are involved in diverse biological processes and belong to a broad spectrum of protein families, many of them exhibiting enzymatic activities. This suggests the existence of an extensive crosstalk between RNA biology and other, in principle unrelated, cell functions such as intermediary metabolism. Unexpectedly, hundreds of new RBPs do not contain identifiable RNA-binding domains (RBDs), raising the question of how they interact with RNA. Despite the many functions that have been attributed to RNA, our understanding of RNPs is still mostly governed by a rather protein-centric view, leading to the idea that proteins have evolved to bind to and regulate RNA and not vice versa. However, RNPs formed by an RNA-driven interaction mechanism (RNA-determined RNPs) are abundant and offer an alternative explanation for the surprising lack of classical RBDs in many RNA-interacting proteins. Moreover, RNAs can act as scaffolds to orchestrate and organise protein networks and directly control their activity, suggesting that nucleic acids might play an important regulatory role in many cellular processes, including metabolism.
Collapse
|
32
|
Jayachandran U, Grey H, Cook AG. Nuclear factor 90 uses an ADAR2-like binding mode to recognize specific bases in dsRNA. Nucleic Acids Res 2015; 44:1924-36. [PMID: 26712564 PMCID: PMC4770229 DOI: 10.1093/nar/gkv1508] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023] Open
Abstract
Nuclear factors 90 and 45 (NF90 and NF45) form a protein complex involved in the post-transcriptional control of many genes in vertebrates. NF90 is a member of the dsRNA binding domain (dsRBD) family of proteins. RNA binding partners identified so far include elements in 3′ untranslated regions of specific mRNAs and several non-coding RNAs. In NF90, a tandem pair of dsRBDs separated by a natively unstructured segment confers dsRNA binding activity. We determined a crystal structure of the tandem dsRBDs of NF90 in complex with a synthetic dsRNA. This complex shows surprising similarity to the tandem dsRBDs from an adenosine-to-inosine editing enzyme, ADAR2 in complex with a substrate RNA. Residues involved in unusual base-specific recognition in the minor groove of dsRNA are conserved between NF90 and ADAR2. These data suggest that, like ADAR2, underlying sequences in dsRNA may influence how NF90 recognizes its target RNAs.
Collapse
Affiliation(s)
- Uma Jayachandran
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Heather Grey
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Atlanta G Cook
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
33
|
Abstract
Among the multiple modes of regulation of gene expression, translational control is arguably the least investigated and understood, and its role in vascular biology and pathobiology is not an exception. Here, we review recent studies that have revealed exciting translational regulatory phenomena and mechanisms involving novel RNA binding proteins and microRNA machinery in vascular biology. From these studies, the importance of translational regulation in angiogenesis, atherosclerosis, and blood pressure maintenance is beginning to emerge. We believe that the recent development of powerful techniques such as ribosome profiling and translating ribosome affinity purification (TRAP) will motivate and facilitate additional research in these areas.
Collapse
|
34
|
Combinatorial Control of mRNA Fates by RNA-Binding Proteins and Non-Coding RNAs. Biomolecules 2015; 5:2207-22. [PMID: 26404389 PMCID: PMC4693235 DOI: 10.3390/biom5042207] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023] Open
Abstract
Post-transcriptional control of gene expression is mediated by RNA-binding proteins (RBPs) and small non-coding RNAs (e.g., microRNAs) that bind to distinct elements in their mRNA targets. Here, we review recent examples describing the synergistic and/or antagonistic effects mediated by RBPs and miRNAs to determine the localisation, stability and translation of mRNAs in mammalian cells. From these studies, it is becoming increasingly apparent that dynamic rearrangements of RNA-protein complexes could have profound implications in human cancer, in synaptic plasticity, and in cellular differentiation.
Collapse
|
35
|
Osera C, Martindale JL, Amadio M, Kim J, Yang X, Moad CA, Indig FE, Govoni S, Abdelmohsen K, Gorospe M, Pascale A. Induction of VEGFA mRNA translation by CoCl2 mediated by HuR. RNA Biol 2015; 12:1121-30. [PMID: 26325091 DOI: 10.1080/15476286.2015.1085276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) A is a master regulator of neovascularization and angiogenesis. VEGFA is potently induced by hypoxia and by pathological conditions including diabetic retinopathy and tumorigenesis. Fine-tuning of VEGFA expression by different stimuli is important for maintaining tissue vascularization and organ homeostasis. Here, we tested the effect of the hypoxia mimetic cobalt chloride (CoCl2) on VEGFA expression in human cervical carcinoma HeLa cells. We found that CoCl2 increased the levels of VEGFA mRNA and VEGFA protein without affecting VEGFA mRNA stability. Biotin pulldown analysis to capture the RNA-binding proteins (RBPs) bound to VEGFA mRNA followed by mass spectrometry analysis revealed that the RBP HuR [human antigen R, a member of the embryonic lethal abnormal vision (ELAV) family of proteins], interacts with VEGFA mRNA. VEGFA mRNA-tagging experiments showed that exposure to CoCl2 increases the interaction of HuR with VEGFA mRNA and promoted the colocalization of HuR and the distal part of the VEGFA 3'-untranslated region (UTR) in the cytoplasm. We propose that under hypoxia-like conditions, HuR enhances VEGFA mRNA translation.
Collapse
Affiliation(s)
- Cecilia Osera
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH ; Baltimore , MD USA.,b Laboratory of Cellular and Molecular Neuropharmacology, Department of Drug Sciences, Section of Pharmacology, University of Pavia ; Pavia , Italy
| | - Jennifer L Martindale
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH ; Baltimore , MD USA
| | - Marialaura Amadio
- b Laboratory of Cellular and Molecular Neuropharmacology, Department of Drug Sciences, Section of Pharmacology, University of Pavia ; Pavia , Italy
| | - Jiyoung Kim
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH ; Baltimore , MD USA
| | - Xiaoling Yang
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH ; Baltimore , MD USA
| | - Christopher A Moad
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH ; Baltimore , MD USA
| | - Fred E Indig
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH ; Baltimore , MD USA
| | - Stefano Govoni
- b Laboratory of Cellular and Molecular Neuropharmacology, Department of Drug Sciences, Section of Pharmacology, University of Pavia ; Pavia , Italy
| | - Kotb Abdelmohsen
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH ; Baltimore , MD USA
| | - Myriam Gorospe
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH ; Baltimore , MD USA
| | - Alessia Pascale
- b Laboratory of Cellular and Molecular Neuropharmacology, Department of Drug Sciences, Section of Pharmacology, University of Pavia ; Pavia , Italy
| |
Collapse
|
36
|
RNA-binding protein HuR sequesters microRNA-21 to prevent translation repression of proinflammatory tumor suppressor gene programmed cell death 4. Oncogene 2015; 35:1703-15. [PMID: 26189797 PMCID: PMC4820683 DOI: 10.1038/onc.2015.235] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/01/2015] [Accepted: 04/12/2015] [Indexed: 02/07/2023]
Abstract
Translation control of proinflammatory genes has a crucial role in regulating the inflammatory response and preventing chronic inflammation, including a transition to cancer. The proinflammatory tumor suppressor protein programmed cell death 4 (PDCD4) is important for maintaining the balance between inflammation and tumorigenesis. PDCD4 messenger RNA translation is inhibited by the oncogenic microRNA, miR-21. AU-rich element-binding protein HuR was found to interact with the PDCD4 3′-untranslated region (UTR) and prevent miR-21-mediated repression of PDCD4 translation. Cells stably expressing miR-21 showed higher proliferation and reduced apoptosis, which was reversed by HuR expression. Inflammatory stimulus caused nuclear-cytoplasmic relocalization of HuR, reversing the translation repression of PDCD4. Unprecedentedly, HuR was also found to bind to miR-21 directly, preventing its interaction with the PDCD4 3′-UTR, thereby preventing the translation repression of PDCD4. This suggests that HuR might act as a ‘miRNA sponge‘ to regulate miRNA-mediated translation regulation under conditions of stress-induced nuclear-cytoplasmic translocation of HuR, which would allow fine-tuned gene expression in complex regulatory environments.
Collapse
|
37
|
Staudacher JJ, Naarmann-de Vries IS, Ujvari SJ, Klinger B, Kasim M, Benko E, Ostareck-Lederer A, Ostareck DH, Bondke Persson A, Lorenzen S, Meier JC, Blüthgen N, Persson PB, Henrion-Caude A, Mrowka R, Fähling M. Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum. Nucleic Acids Res 2015; 43:3219-36. [PMID: 25753659 PMCID: PMC4381074 DOI: 10.1093/nar/gkv167] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/21/2015] [Indexed: 01/01/2023] Open
Abstract
Protein synthesis is a primary energy-consuming process in the cell. Therefore, under hypoxic conditions, rapid inhibition of global mRNA translation represents a major protective strategy to maintain energy metabolism. How some mRNAs, especially those that encode crucial survival factors, continue to be efficiently translated in hypoxia is not completely understood. By comparing specific transcript levels in ribonucleoprotein complexes, cytoplasmic polysomes and endoplasmic reticulum (ER)-bound ribosomes, we show that the synthesis of proteins encoded by hypoxia marker genes is favoured at the ER in hypoxia. Gene expression profiling revealed that transcripts particularly increased by the HIF-1 transcription factor network show hypoxia-induced enrichment at the ER. We found that mRNAs favourably translated at the ER have higher conservation scores for both the 5'- and 3'-untranslated regions (UTRs) and contain less upstream initiation codons (uAUGs), indicating the significance of these sequence elements for sustained mRNA translation under hypoxic conditions. Furthermore, we found enrichment of specific cis-elements in mRNA 5'- as well as 3'-UTRs that mediate transcript localization to the ER in hypoxia. We conclude that transcriptome partitioning between the cytoplasm and the ER permits selective mRNA translation under conditions of energy shortage.
Collapse
Affiliation(s)
- Jonas J Staudacher
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| | - Isabel S Naarmann-de Vries
- University Hospital Aachen, RWTH Aachen University, Department of Intensive and Intermediate Care, Experimental Research Unit, D-52074 Aachen, Germany
| | - Stefanie J Ujvari
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| | - Bertram Klinger
- Humboldt Universität zu Berlin, Institut für Theoretische Biologie, D-10115 Berlin, Germany Charité - Universitätsmedizin Berlin, Institut für Pathologie, D-10117 Berlin, Germany
| | - Mumtaz Kasim
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| | - Edgar Benko
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| | - Antje Ostareck-Lederer
- University Hospital Aachen, RWTH Aachen University, Department of Intensive and Intermediate Care, Experimental Research Unit, D-52074 Aachen, Germany
| | - Dirk H Ostareck
- University Hospital Aachen, RWTH Aachen University, Department of Intensive and Intermediate Care, Experimental Research Unit, D-52074 Aachen, Germany
| | - Anja Bondke Persson
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| | - Stephan Lorenzen
- Universitätsklinikum Jena, Klinik für Innere Medizin III, AG Experimentelle Nephrologie, D-07743 Jena, Germany
| | - Jochen C Meier
- Max Delbrück Center for Molecular Medicine, RNA Editing and Hyperexcitability Disorders Helmholtz Group, D-13125 Berlin, Germany TU Braunschweig, Zoological Institute, Division of Cell Physiology, D-38106 Braunschweig, Germany
| | - Nils Blüthgen
- Humboldt Universität zu Berlin, Institut für Theoretische Biologie, D-10115 Berlin, Germany Charité - Universitätsmedizin Berlin, Institut für Pathologie, D-10117 Berlin, Germany
| | - Pontus B Persson
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| | - Alexandra Henrion-Caude
- Hôpital Necker-Enfants Malades, Université Paris Descartes, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1163 and Imagine Foundation, 75015 Paris, France
| | - Ralf Mrowka
- Universitätsklinikum Jena, Klinik für Innere Medizin III, AG Experimentelle Nephrologie, D-07743 Jena, Germany
| | - Michael Fähling
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|
38
|
Infante T, Mancini FP, Lanza A, Soricelli A, de Nigris F, Napoli C. Polycomb YY1 is a critical interface between epigenetic code and miRNA machinery after exposure to hypoxia in malignancy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:975-86. [PMID: 25644713 DOI: 10.1016/j.bbamcr.2015.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/19/2014] [Accepted: 01/16/2015] [Indexed: 02/09/2023]
Abstract
Yin Yang 1 (YY1) is a member of polycomb protein family involved in epigenetic modifications and transcriptional controls. We have shown that YY1 acts as positive regulator of tumor growth and angiogenesis by interfering with the VEGFA network. Yet, the link between polycomb chromatin complex and hypoxia regulation of VEGFA is still poorly understood. Here, we establish that hypoxia impairs YY1 binding to VEGFA mRNA 3'UTR (p<0.001) in bone malignancy. Moreover, RNA immunoprecipitation reveals the formation of triplex nuclear complexes among YY1, VEGFA DNA, mRNA, and unreached about 200 fold primiRNA 200b and 200c via Dicer protein. In this complex, YY1 is necessary to maintain the steady-state level of VEGFA expression while its silencing increases VEGFA mRNA half-life at 4 h and impairs the maturation of miRNA 200b/c. Hypoxia promotes histone modification through ubiquitination both of YY1 and Dicer proteins. Hypoxia-mediated down-regulation of YY1 and Dicer changes post-transcriptional VEGFA regulation by resulting in the accumulation of primiRNA200b/c in comparison to mature miRNAs (p<0.001). Given the regulatory functions of VEGFA on cellular activities to promote neoangiogenesis, we conclude that YY1 acts as novel critical interface between epigenetic code and miRNAs machinery under chronic hypoxia in malignancy.
Collapse
Affiliation(s)
| | - Francesco P Mancini
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Alessandro Lanza
- Department Multidisciplinary of Specialistic Medical Surgery and Odontostomatologic of Second University of Naples, Naples Italy
| | | | - Filomena de Nigris
- Department of Biochemistry Biophysics and General Pathology, Second University of Naples, Naples Italy.
| | - Claudio Napoli
- IRCCS, SDN, Via E. Gianturco 113, 80143 Naples, Italy; Department of Biochemistry Biophysics and General Pathology, Second University of Naples, Naples Italy
| |
Collapse
|
39
|
Carpenter S, Ricci EP, Mercier BC, Moore MJ, Fitzgerald KA. Post-transcriptional regulation of gene expression in innate immunity. Nat Rev Immunol 2014; 14:361-76. [PMID: 24854588 DOI: 10.1038/nri3682] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Innate immune responses combat infectious microorganisms by inducing inflammatory responses, antimicrobial pathways and adaptive immunity. Multiple genes within each of these functional categories are coordinately and temporally regulated in response to distinct external stimuli. The substantial potential of these responses to drive pathological inflammation and tissue damage highlights the need for rigorous control of these responses. Although transcriptional control of inflammatory gene expression has been studied extensively, the importance of post-transcriptional regulation of these processes is less well defined. In this Review, we discuss the regulatory mechanisms that occur at the level of mRNA splicing, mRNA polyadenylation, mRNA stability and protein translation, and that have instrumental roles in controlling both the magnitude and duration of the inflammatory response.
Collapse
Affiliation(s)
- Susan Carpenter
- 1] Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Emiliano P Ricci
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Blandine C Mercier
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Melissa J Moore
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Katherine A Fitzgerald
- 1] Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2] Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
40
|
Carlson TJ, Pellerin A, Djuretic IM, Trivigno C, Koralov SB, Rao A, Sundrud MS. Halofuginone-induced amino acid starvation regulates Stat3-dependent Th17 effector function and reduces established autoimmune inflammation. THE JOURNAL OF IMMUNOLOGY 2014; 192:2167-76. [PMID: 24489094 DOI: 10.4049/jimmunol.1302316] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The IL-23 pathway is genetically linked to autoimmune disease in humans and is required for pathogenic Th17 cell function in mice. However, because IL-23R-expressing mature Th17 cells are rare and poorly defined in mice at steady-state, little is known about IL-23 signaling. In this study, we show that the endogenous CCR6(+) memory T cell compartment present in peripheral lymphoid organs of unmanipulated mice expresses Il23r ex vivo, displays marked proinflammatory responses to IL-23 stimulation in vitro, and is capable of transferring experimental autoimmune encephalomyelitis. The prolyl-tRNA synthetase inhibitor halofuginone blocks IL-23-induced Stat3 phosphorylation and IL-23-dependent proinflammatory cytokine expression in endogenous CCR6(+) Th17 cells via activation of the amino acid starvation response (AAR) pathway. In vivo, halofuginone shows therapeutic efficacy in experimental autoimmune encephalomyelitis, reducing both established disease progression and local Th17 cell effector function within the CNS. Mechanistically, AAR activation impairs Stat3 responses downstream of multiple cytokine receptors via selective, posttranscriptional suppression of Stat3 protein levels. Thus, our study reveals latent pathogenic functions of endogenous Th17 cells that are regulated by both IL-23 and AAR pathways and identifies a novel regulatory pathway targeting Stat3 that may underlie selective immune regulation by the AAR.
Collapse
|