1
|
Selden CR, Schilling K, Basu A, Timm J, Saunders N, Yee N. Amino Acid Complexation Fractionates Nickel Isotopes: Implications for Tracing Nickel Cycling in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2025; 12:283-288. [PMID: 40093648 PMCID: PMC11905280 DOI: 10.1021/acs.estlett.4c01060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 03/19/2025]
Abstract
Nickel (Ni) is an essential cofactor in many proteins. Ni stable isotopes have been shown to undergo isotope fractionation in microorganisms and plants. However, the mechanisms driving this fractionation are poorly understood. Here, we present experimental data on Ni isotope fractionation during binding by common Ni-binding amino acids: glutamate (carboxylate side chain), histidine (imidazole side chain), and cysteine (sulfhydryl side chain). We used an equilibrium Donnan dialysis approach to separate free versus bound Ni and measured the isotopic composition of both pools via multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Our results reveal that the glutamate and cysteine favor heavy 60Ni (Δ60/58Niglutamate = +0.80 ± 0.08; Δ60/58Nicysteine = +1.27 ± 0.08‰), while histidine causes little isotope shift (-0.12 ± 0.16‰). We then conducted experiments using a short peptide that is a structural analogue for acetyl-CoA synthetase and Ni-iron hydrogenase metal-binding sites. The peptide preferentially bound the heavy 60Ni with a Δ60/58Nipeptide value of +0.74 ± 0.04‰. The Ni isotope effect associated with peptide binding corresponded directly to the fractionation expected based on the coordinating ligands. This work represents an important first step in understanding the mechanistic controls on Ni isotope fractionation and the drivers of Ni isotope fractionation in biological and environmental systems.
Collapse
Affiliation(s)
- Corday R. Selden
- Department
of Marine and Coastal Sciences, Rutgers
University, New Brunswick, New Jersey 08901, United States
- Department
of Earth and Planetary Sciences, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Kathrin Schilling
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Anirban Basu
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Jennifer Timm
- Department
of Marine and Coastal Sciences, Rutgers
University, New Brunswick, New Jersey 08901, United States
- Center
for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Naomi Saunders
- Lamont-Doherty
Earth Observatory, Columbia University, New York, New York 10964, United States
| | - Nathan Yee
- Department
of Earth and Planetary Sciences, Rutgers
University, Piscataway, New Jersey 08854, United States
- Department
of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
2
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
3
|
Chivers PT, Basak P, Maroney MJ. One His, two His…the emerging roles of histidine in cellular nickel trafficking. J Inorg Biochem 2024; 259:112668. [PMID: 39053077 DOI: 10.1016/j.jinorgbio.2024.112668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Biological environments present a complex array of metal-binding ligands. Metal-binding proteins have been the overwhelming focus of study because of their important and well-defined biological roles. Consequently, the presence of functional low molecular weight (LMW) metal-ligand complexes has been overlooked in terms of their roles in metallobiochemistry, particularly within cells. Recent studies in microbial systems have illuminated the different roles of L-histidine in nickel uptake, gene expression, and metalloenzyme maturation. In this focused critical review, these roles are surveyed in the context of the coordination chemistry of Ni(II) ions and the amino acid histidine, and the physico-chemical properties of nickel complexes of histidine. These complexes are fundamentally important to cellular metal homeostasis and further work is needed to fully define their contributions.
Collapse
Affiliation(s)
- Peter T Chivers
- Departments of Biosciences and Chemistry, University of Durham, Durham DH1 3LE, UK
| | - Priyanka Basak
- Department of Chemistry, University of Massachusetts, Amherst, MA 01002, United States of America
| | - Michael J Maroney
- Department of Chemistry, University of Massachusetts, Amherst, MA 01002, United States of America.
| |
Collapse
|
4
|
Humphreys IR, Zhang J, Baek M, Wang Y, Krishnakumar A, Pei J, Anishchenko I, Tower CA, Jackson BA, Warrier T, Hung DT, Peterson SB, Mougous JD, Cong Q, Baker D. Protein interactions in human pathogens revealed through deep learning. Nat Microbiol 2024; 9:2642-2652. [PMID: 39294458 PMCID: PMC11445079 DOI: 10.1038/s41564-024-01791-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/23/2024] [Indexed: 09/20/2024]
Abstract
Identification of bacterial protein-protein interactions and predicting the structures of these complexes could aid in the understanding of pathogenicity mechanisms and developing treatments for infectious diseases. Here we developed RoseTTAFold2-Lite, a rapid deep learning model that leverages residue-residue coevolution and protein structure prediction to systematically identify and structurally characterize protein-protein interactions at the proteome-wide scale. Using this pipeline, we searched through 78 million pairs of proteins across 19 human bacterial pathogens and identified 1,923 confidently predicted complexes involving essential genes and 256 involving virulence factors. Many of these complexes were not previously known; we experimentally tested 12 such predictions, and half of them were validated. The predicted interactions span core metabolic and virulence pathways ranging from post-transcriptional modification to acid neutralization to outer-membrane machinery and should contribute to our understanding of the biology of these important pathogens and the design of drugs to combat them.
Collapse
Affiliation(s)
- Ian R Humphreys
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Minkyung Baek
- Department of Biological Sciences, Seoul National University, Seoul, South Korea.
| | - Yaxi Wang
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Aditya Krishnakumar
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Anishchenko
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Catherine A Tower
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Blake A Jackson
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Thulasi Warrier
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deborah T Hung
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - S Brook Peterson
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Microbial Interactions and Microbiome Center, University of Washington, Seattle, WA, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Humphreys IR, Zhang J, Baek M, Wang Y, Krishnakumar A, Pei J, Anishchenko I, Tower CA, Jackson BA, Warrier T, Hung DT, Peterson SB, Mougous JD, Cong Q, Baker D. Essential and virulence-related protein interactions of pathogens revealed through deep learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589144. [PMID: 38645026 PMCID: PMC11030334 DOI: 10.1101/2024.04.12.589144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Identification of bacterial protein-protein interactions and predicting the structures of the complexes could aid in the understanding of pathogenicity mechanisms and developing treatments for infectious diseases. Here, we developed a deep learning-based pipeline that leverages residue-residue coevolution and protein structure prediction to systematically identify and structurally characterize protein-protein interactions at the proteome-wide scale. Using this pipeline, we searched through 78 million pairs of proteins across 19 human bacterial pathogens and identified 1923 confidently predicted complexes involving essential genes and 256 involving virulence factors. Many of these complexes were not previously known; we experimentally tested 12 such predictions, and half of them were validated. The predicted interactions span core metabolic and virulence pathways ranging from post-transcriptional modification to acid neutralization to outer membrane machinery and should contribute to our understanding of the biology of these important pathogens and the design of drugs to combat them.
Collapse
|
6
|
Zhang X, Xiong Z, He Y, Zheng N, Zhao S, Wang J. Epiberberine: a potential rumen microbial urease inhibitor to reduce ammonia release screened by targeting UreG. Appl Microbiol Biotechnol 2024; 108:289. [PMID: 38587649 PMCID: PMC11001712 DOI: 10.1007/s00253-024-13131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Rumen microbial urease inhibitors have been proposed for regulating nitrogen emission and improving nitrogen utilization efficiency in ruminant livestock industry. However, studies on plant-derived natural inhibitors of rumen microbial urease are limited. Urease accessory protein UreG, plays a crucial role in facilitating urease maturation, is a new target for design of urease inhibitor. The objective of this study was to select the potential effective inhibitor of rumen microbial urease from major protoberberine alkaloids in Rhizoma Coptidis by targeting UreG. Our results showed that berberine chloride and epiberberine exerted superior inhibition potential than other alkaloids based on GTPase activity study of UreG. Berberine chloride inhibition of UreG was mixed type, while inhibition kinetics type of epiberberine was uncompetitive. Furthermore, epiberberine was found to be more effective than berberine chloride in inhibiting the combination of nickel towards UreG and inducing changes in the second structure of UreG. Molecular modeling provided the rational structural basis for the higher inhibition potential of epiberberine, amino acid residues in G1 motif and G3 motif of UreG formed interactions with D ring of berberine chloride, while interacted with A ring and D ring of epiberberine. We further demonstrated the efficacy of epiberberine in the ruminal microbial fermentation with low ammonia release and urea degradation. In conclusion, our study clearly indicates that epiberberine is a promising candidate as a safe and effective inhibitor of rumen microbial urease and provides an optimal strategy and suitable feed additive for regulating nitrogen excretion in ruminants in the future. KEY POINTS: • Epiberberine is the most effective inhibitor of rumen urease from Rhizoma Coptidis. • Urease accessory protein UreG is an effective target for design of urease inhibitor. • Epiberberine may be used as natural feed additive to reducing NH3 release in ruminants.
Collapse
Affiliation(s)
- Xiaoyin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhanbo Xiong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yue He
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
7
|
Feng Z, Li H, Hao Y, Peng C, Ou L, Jia J, Xun M, Zou Y, Chen M, Zhang G, Yao M. In vitro anti- Helicobacter pylori activity and the underlining mechanism of an empirical herbal formula - Hezi Qingyou. Front Microbiol 2024; 15:1355460. [PMID: 38440143 PMCID: PMC10910045 DOI: 10.3389/fmicb.2024.1355460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Background Helicobacter pylori (H. pylori) is thought to primarily colonize the human stomach and lead to various gastrointestinal disorders, such as gastritis and gastric cancer. Currently, main eradication treatment is triple or quadruple therapy centered on antibiotics. Due to antibiotic resistance, the eradication rate of H. pylori is decreasing gradually. Therefore, searching for anti-H. pylori drugs from herbal sources has become a strategy for the treatment. Our team proposed a Hezi Qingyou Formula (HZQYF), composed of Chebulae Fructus, Ficus hirta Vahl and Cloves, and studied its anti-H. pylori activity and mechanism. Methods Chemical components of HZQYF were studied using UHPLC-MS/MS and HPLC. Broth microdilution method and agar dilution method were used to evaluate HZQYF's antibacterial activity. The effects of HZQYF on expression of adhesion genes (alpA, alpB, babA), urease genes (ureE, ureF), and flagellar genes (flaA, flaB) were explored using Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR) technology. Effects on morphology and permeability of the extracellular membrane were studied using scanning electron microscopy (SEM) and N-phenylnaphthalen-1-amine (NPN) uptake. Effect on urease activity was studied using a urease kinetics analysis in vitro. Immunofluorescence staining method was used to examine the effect on adhesion. Western blot was used to examine the effect on cagA protein. Results Minimum inhibitory concentration (MIC) values of the formula against H. pylori clinical strains and standard strains were 80-160 μg/mL, and minimum bactericidal concentration (MBC) values were 160-320 μg/mL. The formula could down-regulate the expression of adhesion genes (alpA, alpB, babA), urease genes (ureE, ureF) and flagellar genes (flaA, flaB), change the morphology of H. pylori, increase its extracellular membrane permeability, and decrease its urease activity. Conclusion Present studies confirmed that HZQYF had promising in vitro anti-H. pylori activities and demonstrated its possible mechanism of action by down-regulating the bacterial adhesion, urease, and flagellar gene expression, which provided scientific bases for further clinical investigations.
Collapse
Affiliation(s)
- Zhong Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
| | - Hui Li
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
| | - Yajie Hao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
| | - Chang Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Ling Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Junwei Jia
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
| | - Mingjin Xun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
| | - Yuanjing Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Meiyun Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Guimin Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, China
| | - Meicun Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
- Nanchang Research Institute, Sun Yat-sen University, Jiangxi, China
| |
Collapse
|
8
|
Keshri J, Smith KM, Svendsen MK, Keillor HR, Moss ML, Jordan HJ, Larkin AM, Garrish JK, Line JE, Ball PN, Oakley BB, Seal BS. Phenotypic Characterization and Draft Genome Sequence Analyses of Two Novel Endospore-Forming Sporosarcina spp. Isolated from Canada Goose ( Branta canadensis) Feces. Microorganisms 2023; 12:70. [PMID: 38257897 PMCID: PMC10818898 DOI: 10.3390/microorganisms12010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
In an attempt to isolate new probiotic bacteria, two Gram-variable, spore-forming, rod-shaped aerobic bacteria designated as strain A4 and A15 were isolated from the feces of Canada geese (Branta canadensis). Strain A4 was able to grow in high salt levels and exhibited lipase activity, while A15 did not propagate under these conditions. Both were positive for starch hydrolysis, and they inhibited the growth of Staphylococcus aureus. The strains of the 16S rRNA sequence shared only 94% similarity to previously identified Sporosarcina spp. The ANI (78.08%) and AAI (82.35%) between the two strains were less than the species threshold. Searches for the most similar genomes using the Mash/Minhash algorithm showed the nearest genome to strain A4 and A15 as Sporosarcina sp. P13 (distance of 21%) and S. newyorkensis (distance of 17%), respectively. Sporosarcina spp. strains A4 and A15 contain urease genes, and a fibronectin-binding protein gene indicates that these bacteria may bind to eukaryotic cells in host gastrointestinal tracts. Phenotypic and phylogenetic data, along with low dDDH, ANI, and AAI values for strains A4 and A15, indicate these bacteria are two novel isolates of the Sporosarcina genus: Sporosarcina sp. A4 sp. nov., type strain as Sporosarcina cascadiensis and Sporosarcina sp. A15 sp. nov., type strain Sporosarcina obsidiansis.
Collapse
Affiliation(s)
- Jitendra Keshri
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Kristina M. Smith
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Molly K. Svendsen
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Haley R. Keillor
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Madeline L. Moss
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Haley J. Jordan
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Abigail M. Larkin
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Johnna K. Garrish
- Poultry Microbiological Safety & Processing Research Unit, U.S. National Poultry Research Center, Athens, GA 30605, USA; (J.K.G.); (J.E.L.)
| | - John Eric Line
- Poultry Microbiological Safety & Processing Research Unit, U.S. National Poultry Research Center, Athens, GA 30605, USA; (J.K.G.); (J.E.L.)
| | - Patrick N. Ball
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Brian B. Oakley
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Bruce S. Seal
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| |
Collapse
|
9
|
Sannino DR, Arroyo FA, Pepe-Ranney C, Chen W, Volland JM, Elisabeth NH, Angert ER. The exceptional form and function of the giant bacterium Ca. Epulopiscium viviparus revolves around its sodium motive force. Proc Natl Acad Sci U S A 2023; 120:e2306160120. [PMID: 38109545 PMCID: PMC10756260 DOI: 10.1073/pnas.2306160120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023] Open
Abstract
Epulopiscium spp. are the largest known heterotrophic bacteria; a large cigar-shaped individual is a million times the volume of Escherichia coli. To better understand the metabolic potential and relationship of Epulopiscium sp. type B with its host Naso tonganus, we generated a high-quality draft genome from a population of cells taken from a single fish. We propose the name Candidatus Epulopiscium viviparus to describe populations of this best-characterized Epulopiscium species. Metabolic reconstruction reveals more than 5% of the genome codes for carbohydrate active enzymes, which likely degrade recalcitrant host-diet algal polysaccharides into substrates that may be fermented to acetate, the most abundant short-chain fatty acid in the intestinal tract. Moreover, transcriptome analyses and the concentration of sodium ions in the host intestinal tract suggest that the use of a sodium motive force (SMF) to drive ATP synthesis and flagellar rotation is integral to symbiont metabolism and cellular biology. In natural populations, genes encoding both F-type and V-type ATPases and SMF generation via oxaloacetate decarboxylation are among the most highly expressed, suggesting that ATPases synthesize ATP and balance ion concentrations across the cell membrane. High expression of these and other integral membrane proteins may allow for the growth of its extensive intracellular membrane system. Further, complementary metabolism between microbe and host is implied with the potential provision of nitrogen and B vitamins to reinforce this nutritional symbiosis. The few features shared by all bacterial behemoths include extreme polyploidy, polyphosphate synthesis, and thus far, they have all resisted cultivation in the lab.
Collapse
Affiliation(s)
| | | | - Charles Pepe-Ranney
- Soil & Crop Sciences Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY14853
| | - Wenbo Chen
- Department of Microbiology, Cornell University, Ithaca, NY14853
| | - Jean-Marie Volland
- Laboratory for Research in Complex Systems, Menlo Park, CA94025
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Nathalie H. Elisabeth
- Department of Energy Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | | |
Collapse
|
10
|
Kunkle DE, Skaar EP. Moving metals: How microbes deliver metal cofactors to metalloproteins. Mol Microbiol 2023; 120:547-554. [PMID: 37408317 PMCID: PMC10592388 DOI: 10.1111/mmi.15117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
First row d-block metal ions serve as vital cofactors for numerous essential enzymes and are therefore required nutrients for all forms of life. Despite this requirement, excess free transition metals are toxic. Free metal ions participate in the production of noxious reactive oxygen species and mis-metalate metalloproteins, rendering enzymes catalytically inactive. Thus, bacteria require systems to ensure metalloproteins are properly loaded with cognate metal ions to maintain protein function, while avoiding metal-mediated cellular toxicity. In this perspective we summarize the current mechanistic understanding of bacterial metallocenter maturation with specific emphasis on metallochaperones; a group of specialized proteins that both shield metal ions from inadvertent reactions and distribute them to cognate target metalloproteins. We highlight several recent advances in the field that have implicated new classes of proteins in the distribution of metal ions within bacterial proteins, while speculating on the future of the field of bacterial metallobiology.
Collapse
Affiliation(s)
- Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
11
|
Vaccaro FA, Faber DA, Andree GA, Born DA, Kang G, Fonseca DR, Jost M, Drennan CL. Structural insight into G-protein chaperone-mediated maturation of a bacterial adenosylcobalamin-dependent mutase. J Biol Chem 2023; 299:105109. [PMID: 37517695 PMCID: PMC10481361 DOI: 10.1016/j.jbc.2023.105109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023] Open
Abstract
G-protein metallochaperones are essential for the proper maturation of numerous metalloenzymes. The G-protein chaperone MMAA in humans (MeaB in bacteria) uses GTP hydrolysis to facilitate the delivery of adenosylcobalamin (AdoCbl) to AdoCbl-dependent methylmalonyl-CoA mutase, an essential metabolic enzyme. This G-protein chaperone also facilitates the removal of damaged cobalamin (Cbl) for repair. Although most chaperones are standalone proteins, isobutyryl-CoA mutase fused (IcmF) has a G-protein domain covalently attached to its target mutase. We previously showed that dimeric MeaB undergoes a 180° rotation to reach a state capable of GTP hydrolysis (an active G-protein state), in which so-called switch III residues of one protomer contact the G-nucleotide of the other protomer. However, it was unclear whether other G-protein chaperones also adopted this conformation. Here, we show that the G-protein domain in a fused system forms a similar active conformation, requiring IcmF oligomerization. IcmF oligomerizes both upon Cbl damage and in the presence of the nonhydrolyzable GTP analog, guanosine-5'-[(β,γ)-methyleno]triphosphate, forming supramolecular complexes observable by mass photometry and EM. Cryo-EM structural analysis reveals that the second protomer of the G-protein intermolecular dimer props open the mutase active site using residues of switch III as a wedge, allowing for AdoCbl insertion or damaged Cbl removal. With the series of structural snapshots now available, we now describe here the molecular basis of G-protein-assisted AdoCbl-dependent mutase maturation, explaining how GTP binding prepares a mutase for cofactor delivery and how GTP hydrolysis allows the mutase to capture the cofactor.
Collapse
Affiliation(s)
- Francesca A Vaccaro
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daphne A Faber
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gisele A Andree
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - David A Born
- Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gyunghoon Kang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dallas R Fonseca
- Amgen Scholar Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Marco Jost
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
12
|
Nim YS, Fong IYH, Deme J, Tsang KL, Caesar J, Johnson S, Pang LTH, Yuen NMH, Ng TLC, Choi T, Wong YYH, Lea SM, Wong KB. Delivering a toxic metal to the active site of urease. SCIENCE ADVANCES 2023; 9:eadf7790. [PMID: 37083535 PMCID: PMC10121161 DOI: 10.1126/sciadv.adf7790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Urease is a nickel (Ni) enzyme that is essential for the colonization of Helicobacter pylori in the human stomach. To solve the problem of delivering the toxic Ni ion to the active site without diffusing into the cytoplasm, cells have evolved metal carrier proteins, or metallochaperones, to deliver the toxic ions to specific protein complexes. Ni delivery requires urease to form an activation complex with the urease accessory proteins UreFD and UreG. Here, we determined the cryo-electron microscopy structures of H. pylori UreFD/urease and Klebsiella pneumoniae UreD/urease complexes at 2.3- and 2.7-angstrom resolutions, respectively. Combining structural, mutagenesis, and biochemical studies, we show that the formation of the activation complex opens a 100-angstrom-long tunnel, where the Ni ion is delivered through UreFD to the active site of urease.
Collapse
Affiliation(s)
- Yap Shing Nim
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ivan Yu Hang Fong
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Justin Deme
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Center for Structural Biology, CCR, NCI, Boyles Street, Frederick, MD 21702, USA
| | - Ka Lung Tsang
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph Caesar
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Center for Structural Biology, CCR, NCI, Boyles Street, Frederick, MD 21702, USA
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Center for Structural Biology, CCR, NCI, Boyles Street, Frederick, MD 21702, USA
| | - Longson Tsz Hin Pang
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Nicholas Man Hon Yuen
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tin Long Chris Ng
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tung Choi
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yakie Yat Hei Wong
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Susan M. Lea
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Center for Structural Biology, CCR, NCI, Boyles Street, Frederick, MD 21702, USA
| | - Kam-Bo Wong
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Xiong Z, Zhang N, Xu L, Deng Z, Limwachiranon J, Guo Y, Han Y, Yang W, Scharf DH. Urease of Aspergillus fumigatus Is Required for Survival in Macrophages and Virulence. Microbiol Spectr 2023; 11:e0350822. [PMID: 36916906 PMCID: PMC10100864 DOI: 10.1128/spectrum.03508-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/09/2023] [Indexed: 03/16/2023] Open
Abstract
The number of patients suffering from fungal diseases has constantly increased during the last decade. Among the fungal pathogens, the airborne filamentous fungus Aspergillus fumigatus can cause chronic and fatal invasive mold infections. So far, only three major classes of drugs (polyenes, azoles, and echinocandins) are available for the treatment of life-threatening fungal infections, and all present pharmacological drawbacks (e.g., low solubility or toxicity). Meanwhile, clinical antifungal-resistant isolates are continuously emerging. Therefore, there is a high demand for novel antifungal drugs, preferentially those that act on new targets. We studied urease and the accessory proteins in A. fumigatus to determine their biochemical roles and their influence on virulence. Urease is crucial for the growth on urea as the sole nitrogen source, and the transcript and protein levels are elevated on urea media. The urease deficient mutant displays attenuated virulence, and its spores are more susceptible to macrophage-mediated killing. We demonstrated that this observation is associated with an inability to prevent the acidification of the phagosome. Furthermore, we could show that a nickel-chelator inhibits growth on urea. The nickel chelator is also able to reverse the effects of urease on macrophage killing and phagosome acidification, thereby reducing virulence in systemic and trachea infection models. IMPORTANCE The development of antifungal drugs is an urgent task, but it has proven to be difficult due to many similarities between fungal and animal cells. Here, we characterized the urease system in A. fumigatus, which depends on nickel for activity. Notably, nickel is not a crucial element for humans. Therefore, we went further to explore the role of nickel-dependent urease in host-pathogen interactions. We were able to show that urease is important in preventing the acidification of the phagosome and therefore reduces the killing of conidia by macrophages. Furthermore, the deletion of urease shows reduced virulence in murine infection models. Taken together, we identified urease as an essential virulence factor of A. fumigatus. We were able to show that the application of the nickel-chelator dimethylglyoxime is effective in both in vitro and in vivo infection models. This suggests that nickel chelators or urease inhibitors are potential candidates for the development of novel antifungal drugs.
Collapse
Affiliation(s)
- Zhenzhen Xiong
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Zhang
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Liru Xu
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiduo Deng
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jarukitt Limwachiranon
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaojie Guo
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Han
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yang
- Department of Biophysics and Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Daniel H. Scharf
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
14
|
Zambelli B, Basak P, Hu H, Piccioli M, Musiani F, Broll V, Imbert L, Boisbouvier J, Maroney MJ, Ciurli S. The structure of the high-affinity nickel-binding site in the Ni,Zn-HypA•UreE2 complex. Metallomics 2023; 15:mfad003. [PMID: 36638839 PMCID: PMC10001889 DOI: 10.1093/mtomcs/mfad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The maturation pathway for the nickel-dependent enzyme urease utilizes the protein UreE as a metallochaperone to supply Ni(II) ions. In Helicobacter pylori urease maturation also requires HypA and HypB, accessory proteins that are commonly associated with hydrogenase maturation. Herein we report on the characterization of a protein complex formed between HypA and the UreE2 dimer. Nuclear magnetic resonance (NMR) coupled with molecular modelling show that the protein complex apo, Zn-HypA•UreE2, forms between the rigorously conserved Met-His-Glu (MHE motif) Ni-binding N-terminal sequence of HypA and the two conserved His102A and His102B located at the dimer interface of UreE2. This complex forms in the absence of Ni(II) and is supported by extensive protein contacts that include the use of the C-terminal sequences of UreE2 to form additional strands of β-sheet with the Ni-binding domain of HypA. The Ni-binding properties of apo, Zn-HypA•UreE2 and the component proteins were investigated by isothermal titration calorimetry using a global fitting strategy that included all of the relevant equilibria, and show that the Ni,Zn-HypA•UreE2 complex contains a single Ni(II)-binding site with a sub-nanomolar KD. The structural features of this novel Ni(II) site were elucidated using proteins produced with specifically deuterated amino acids, protein point mutations, and the analyses of X-ray absorption spectroscopy, hyperfine shifted NMR features, as well as molecular modeling coupled with quantum-mechanical calculations. The results show that the complex contains a six-coordinate, high-spin Ni(II) site with ligands provided by both component proteins.
Collapse
Affiliation(s)
- Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Priyanka Basak
- Department of Chemistry and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Heidi Hu
- Department of Chemistry and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Mario Piccioli
- Centre for Magnetic Resonance, Department of Chemistry, University of Florence, Florence Italy
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Valquiria Broll
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Lionel Imbert
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Jerome Boisbouvier
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Michael J Maroney
- Department of Chemistry and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Centre for Magnetic Resonance, Department of Chemistry, University of Florence, Florence Italy
| |
Collapse
|
15
|
Vaccaro FA, Born DA, Drennan CL. Structure of metallochaperone in complex with the cobalamin-binding domain of its target mutase provides insight into cofactor delivery. Proc Natl Acad Sci U S A 2023; 120:e2214085120. [PMID: 36787360 PMCID: PMC9974510 DOI: 10.1073/pnas.2214085120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/13/2023] [Indexed: 02/15/2023] Open
Abstract
G-protein metallochaperone MeaB in bacteria [methylmalonic aciduria type A (MMAA) in humans] is responsible for facilitating the delivery of adenosylcobalamin (AdoCbl) to methylmalonyl-CoA mutase (MCM), the only AdoCbl-dependent enzyme in humans. Genetic defects in the switch III region of MMAA lead to the genetic disorder methylmalonic aciduria in which the body is unable to process certain lipids. Here, we present a crystal structure of Methylobacterium extorquens MeaB bound to a nonhydrolyzable guanosine triphosphate (GTP) analog guanosine-5'-[(β,γ)-methyleno]triphosphate (GMPPCP) with the Cbl-binding domain of its target mutase enzyme (MeMCMcbl). This structure provides an explanation for the stimulation of the GTP hydrolyase activity of MeaB afforded by target protein binding. We find that upon MCMcbl association, one protomer of the MeaB dimer rotates ~180°, such that the inactive state of MeaB is converted to an active state in which the nucleotide substrate is now surrounded by catalytic residues. Importantly, it is the switch III region that undergoes the largest change, rearranging to make direct contacts with the terminal phosphate of GMPPCP. These structural data additionally provide insights into the molecular basis by which this metallochaperone contributes to AdoCbl delivery without directly binding the cofactor. Our data suggest a model in which GTP-bound MeaB stabilizes a conformation of MCM that is open for AdoCbl insertion, and GTP hydrolysis, as signaled by switch III residues, allows MCM to close and trap its cofactor. Substitutions of switch III residues destabilize the active state of MeaB through loss of protein:nucleotide and protein:protein interactions at the dimer interface, thus uncoupling GTP hydrolysis from AdoCbl delivery.
Collapse
Affiliation(s)
- Francesca A. Vaccaro
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA01239
| | - David A. Born
- Graduate Program in Biophysics, Harvard University, Cambridge, MA01238
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA01239
| | - Catherine L. Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA01239
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA01239
- HHMI,Massachusetts Institute of Technology, Cambridge, MA01239
| |
Collapse
|
16
|
Liu J, Li X, Zhu Y, Ge R. Molecular Mechanisms of Bismuth-containing Drugs Against Helicobacter pylori: a Further Update. CURRENT PHARMACOLOGY REPORTS 2022; 9:59-65. [DOI: 10.1007/s40495-022-00305-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 01/04/2025]
|
17
|
Novel Copper Oxide Bio-Nanocrystals to Target Outer Membrane Lectin of Vancomycin-Resistant Enterococcus faecium (VREfm): In Silico, Bioavailability, Antimicrobial, and Anticancer Potential. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227957. [PMID: 36432057 PMCID: PMC9696412 DOI: 10.3390/molecules27227957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
In present study, we used Olea europaea leaf extract to biosynthesize in situ Copper Oxide nanocrystals (CuO @OVLe NCs) with powerful antibacterial and anti-cancer capabilities. Physio-chemical analyses, such as UV/Vis, FTIR, XRD, EDX, SEM, and TEM, were applied to characterize CuO @OVLe NCs. The UV/Vis spectrum demonstrated a strong peak at 345 nm. Furthermore, FTIR, XRD, and EDX validated the coating operation's contact with colloidal CuO @OVLe NCs. According to TEM and SEM analyses, CuO @OVLe NCs exhibited a spherical shape and uniform distribution of size with aggregation, for an average size of ~75 nm. The nanoparticles demonstrated a considerable antibacterial effect against E. faecium bacterial growth, as well as an increased inhibition rate in a dose-dependent manner on the MCF-7, PC3, and HpeG2 cancer cell lines and a decreased inhibition rate on WRL-68. Molecular docking and MD simulation were used to demonstrate the high binding affinity of a ligand (Oleuropein) toward the lectin receptor complex of the outer membrane to vancomycin-resistant E. faecium (VREfm) via amino acids (Leu 195, Thr 288, His 165, and Ser 196). Hence, our results expand the accessibility of OVLe's bioactive components as a promising natural source for the manufacture of physiologically active components and the creation of green biosynthesis of metal nanocrystals.
Collapse
|
18
|
Silva LOS, Moreira TR, Gonçales RA, Tomazett MV, Parente-Rocha JA, Mattos K, Paccez JD, Ruiz OH, Pereira M, Soares CMDA, Weber SS, Cruz-Leite VRM, Borges CL. Paracoccidioides lutzii Formamidase Contributes to Fungal Survival in Macrophages. Microorganisms 2022; 10:microorganisms10102011. [PMID: 36296287 PMCID: PMC9608497 DOI: 10.3390/microorganisms10102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Nitrogen is a crucial nutrient for microorganisms that compose essential biomolecules. However, hosts limit this nutrient as a strategy to counter infections, therefore, pathogens use adaptive mechanisms to uptake nitrogen from alternative sources. In fungi, nitrogen catabolite repression (NCR) activates transcription factors to acquire nitrogen from alternative sources when preferential sources are absent. Formamidase has been related to nitrogen depletion in Aspergillus nidulans through formamide degradation to use the released ammonia as a nitrogen source. In Paracoccidioides spp., formamidase is highly expressed in transcriptomic and proteomic analyses. Here, we aim to investigate the importance of formamidase to Paracoccidioides lutzii. Thereby, we developed a P. lutzii silenced strain of fmd gene (AsFmd) by antisense RNA technology using Agrobacterium tumefaciens-mediated transformation (ATMT). The AsFmd strain led to increased urease expression, an enzyme related to nitrogen assimilation in other fungi, suggesting that P. lutzii might explore urease as an alternative route for ammonia metabolism as a nitrogen source. Moreover, formamidase was important for fungal survival inside macrophages, as fungal recovery after macrophage infection was lower in AsFmd compared to wild-type (WT) strain. Our findings suggest potential alternatives of nitrogen acquisition regulation in P. lutzii, evidencing formamidase influence in fungal virulence.
Collapse
Affiliation(s)
- Lana O’Hara Souza Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Thalison Rodrigues Moreira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Relber Aguiar Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4700-000 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4800-000 Braga, Portugal
| | - Mariana Vieira Tomazett
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Juliana Alves Parente-Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Karine Mattos
- Bioscience Laboratory, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Juliano Domiraci Paccez
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Orville Hernandez Ruiz
- MICROBA Research Group—Cellular and Molecular Biology Unit—CIB, School of Microbiology, University of Antioquia, Medellín 050010, Colombia
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Simone Schneider Weber
- Bioscience Laboratory, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Vanessa Rafaela Milhomem Cruz-Leite
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
- Correspondence: (V.R.M.C.-L.); (C.L.B.); Tel.: +55-62-3521-1110 (C.L.B.)
| | - Clayton Luiz Borges
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
- Correspondence: (V.R.M.C.-L.); (C.L.B.); Tel.: +55-62-3521-1110 (C.L.B.)
| |
Collapse
|
19
|
Koning K, McFarlane R, Gosse JT, Lawrence S, Carr L, Horne D, Van Wagoner N, Boddy CN, Cheeptham N. Biomineralization in Cave Bacteria—Popcorn and Soda Straw Crystal Formations, Morphologies, and Potential Metabolic Pathways. Front Microbiol 2022; 13:933388. [PMID: 35847116 PMCID: PMC9283089 DOI: 10.3389/fmicb.2022.933388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Caves are extreme, often oligotrophic, environments that house diverse groups of microorganisms. Many of these microbes can perform microbiologically induced carbonate precipitation (MICP) to form crystalline secondary cave deposits known as speleothems. The urease family is a group of enzymes involved in MICP that catalyze the breakdown of urea, which is a source of energy, into ammonia and carbonate. Carbonate anions are effluxed to the extracellular surface of the bacterium where it then binds to environmental calcium to form calcium carbonate which then continues to grow in crystal form. Here, we studied bacterial communities from speleothems collected from the Iron Curtain Cave (ICC) in Chilliwack, B.C., Canada, to characterize these organisms and determine whether urease-positive (U+) bacteria were present in the cave and their potential impact on speleothem formation. The ICC is a carbonate cave located on the northside of Chipmunk Ridge, presenting a unique environment with high iron content sediment and limestone structures throughout. With six pools of water throughout the cave, the environment is highly humid, with temperatures ranging between 4 and 12°C depending on the time of year. Ninety-nine bacterial strains were isolated from popcorn (PCS) and soda straw (SSS) speleothems. These isolates were screened for urease enzymatic activity, with 11 candidates found to be urease-positive. After incubation, species-specific crystal morphologies were observed. Popcorn speleothem provided more bacterial diversity overall when compared to soda straw speleothem when examined under a culture-based method. Nearly twice as many U+ isolates were isolated from popcorn speleothems compared to soda straw speleothems. The U+ candidates were identified to the genus level by 16S rRNA analysis, and two isolates underwent whole-genome sequencing. Two novel species were identified as Sphingobacterium sp. PCS056 and Pseudarthrobacter sp. SSS035. Both isolates demonstrated the most crystal production as well as the most morphologically dissimilar crystal shapes in broth culture and were found to produce crystals as previously observed in both agar and broth media. The results from this study are consistent with the involvement of urease-positive bacteria isolated from the ICC in the formation of cave speleothems. 16S rRNA sequencing revealed a diverse set of microbes inhabiting the speleothems that have urease activity. Whole-genome sequencing of the two chosen isolates confirmed the presence of urease pathways, while revealing differences in urease pathway structure and number. This research contributes to understanding microbial-associated cave formation and degradation, with applications to cave conservation, microbiota composition, and their role in shaping the cave environment.
Collapse
Affiliation(s)
- Keegan Koning
- Department of Biology, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Richenda McFarlane
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Jessica T. Gosse
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sara Lawrence
- Department of Biology, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Lynnea Carr
- Department of Biology, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Derrick Horne
- The University of British Columbia Bioimaging Facility, Biological Sciences Building, Vancouver, BC, Canada
| | - Nancy Van Wagoner
- Department of Physical Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Christopher N. Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Naowarat Cheeptham
- Department of Biology, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
- *Correspondence: Naowarat Cheeptham,
| |
Collapse
|
20
|
Vaccaro FA, Drennan CL. The role of nucleoside triphosphate hydrolase metallochaperones in making metalloenzymes. Metallomics 2022; 14:6575898. [PMID: 35485745 PMCID: PMC9164220 DOI: 10.1093/mtomcs/mfac030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022]
Abstract
Metalloenzymes catalyze a diverse set of challenging chemical reactions that are essential for life. These metalloenzymes rely on a wide range of metallocofactors, from single metal ions to complicated metallic clusters. Incorporation of metal ions and metallocofactors into apo-proteins often requires the assistance of proteins known as metallochaperones. Nucleoside triphosphate hydrolases (NTPases) are one important class of metallochaperones and are found widely distributed throughout the domains of life. These proteins use the binding and hydrolysis of nucleoside triphosphates, either adenosine triphosphate (ATP) or guanosine triphosphate (GTP), to carry out highly specific and regulated roles in the process of metalloenzyme maturation. Here, we review recent literature on NTPase metallochaperones and describe the current mechanistic proposals and available structural data. By using representative examples from each type of NTPase, we also illustrate the challenges in studying these complicated systems. We highlight open questions in the field and suggest future directions. This minireview is part of a special collection of articles in memory of Professor Deborah Zamble, a leader in the field of nickel biochemistry.
Collapse
Affiliation(s)
- Francesca A Vaccaro
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
21
|
Kumar S, Vinella D, De Reuse H. Nickel, an essential virulence determinant of Helicobacter pylori: Transport and trafficking pathways and their targeting by bismuth. Adv Microb Physiol 2022; 80:1-33. [PMID: 35489790 DOI: 10.1016/bs.ampbs.2022.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Metal acquisition and intracellular trafficking are crucial for all cells and metal ions have been recognized as virulence determinants in bacterial pathogens. Nickel is required for the pathogenicity of H. pylori. This bacterial pathogen colonizes the stomach of about half of the human population worldwide and is associated with gastric cancer that is responsible for 800,000 deaths per year. H. pylori possesses two nickel-enzymes that are essential for in vivo colonization, a [NiFe] hydrogenase and an abundant urease responsible for resistance to gastric acidity. Because of these two enzymes, survival of H. pylori relies on an important supply of nickel, implying tight control strategies to avoid its toxic accumulation or deprivation. H. pylori possesses original mechanisms for nickel uptake, distribution, storage and trafficking that will be discussed in this review. During evolution, acquisition of nickel transporters and specific nickel-binding proteins has been a decisive event to allow Helicobacter species to become able to colonize the stomach. Accordingly, many of the factors involved in these mechanisms are required for mouse colonization by H. pylori. These mechanisms are controlled at different levels including protein interaction networks, transcriptional, post-transcriptional and post-translational regulation. Bismuth is another metal used in combination with antibiotics to efficiently treat H. pylori infections. Although the precise mode of action of bismuth is unknown, many targets have been identified in H. pylori and there is growing evidence that bismuth interferes with the essential nickel pathways. Understanding the metal pathways will help improve treatments against H. pylori and other pathogens.
Collapse
Affiliation(s)
- Sumith Kumar
- Unité Pathogenèse de Helicobacter, CNRS UMR6047, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Daniel Vinella
- Unité Pathogenèse de Helicobacter, CNRS UMR6047, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Hilde De Reuse
- Unité Pathogenèse de Helicobacter, CNRS UMR6047, Département de Microbiologie, Institut Pasteur, Paris, France.
| |
Collapse
|
22
|
Liu S, Wu W, Zhao Q, Liang H, Che S, Zhang H, Liu R, Zhang Q, Bartlam M. Structural characterization of the urease accessory protein UreF from Klebsiella pneumoniae. Acta Crystallogr F Struct Biol Commun 2022; 78:75-80. [PMID: 35102896 PMCID: PMC8805216 DOI: 10.1107/s2053230x22000474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/12/2022] [Indexed: 02/03/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen that mostly affects those with weakened immune systems. Urease is a vital enzyme that can hydrolyze urea to ammonia and carbon dioxide as a source of nitrogen for growth. Urease is also a K. pneumoniae virulence factor that enables survival of the bacterium under nutrient-limiting conditions. UreF, an important nickel-binding urease accessory protein, is involved in the insertion of Ni2+ into the active site of urease. Here, the crystal structure of UreF from K. pneumoniae (KpUreF) is reported. Functional data show that KpUreF forms a stable dimer in solution. These results may provide a starting point for the design of urease inhibitors.
Collapse
Affiliation(s)
- Shimeng Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Wenyue Wu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Qi Zhao
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Han Liang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Shiyou Che
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Hao Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Ruihua Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Qionglin Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China,Correspondence e-mail: ,
| | - Mark Bartlam
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China,Correspondence e-mail: ,
| |
Collapse
|
23
|
Abstract
Hydrogenases and ureases play vital metabolic functions in all three domains of life. However, nickel ions are cytotoxic because they can inactivate enzymes that require less competitive ions (e.g. Mg2+) in the Irving-Williams series to function. Life has evolved elegant mechanisms to solve the problem of delivering the toxic metal to the active site of nickel-containing enzymes inside the cells. Here, we review our current understanding of nickel trafficking along the hydrogenase and urease maturation pathways. Metallochaperones and accessory proteins (SlyD, HypA, HypB, UreD, UreE, UreF, and UreG) form specific protein complexes to allow the transfer of nickel from one protein to another without releasing the toxic metal into the cytoplasm. The role of SlyD is not fully understood, but it can interact with and transfer its nickel to HypB. In the hydrogenase maturation pathway, nickel is transferred from HypB to HypA, which can then deliver its nickel to the hydrogenase large subunit precursor. In Helicobacter pylori, the urease maturation pathway receives its nickel from HypA of the hydrogenase maturation pathway via the formation of a HypA/UreE2 complex. Guanosine triphosphate (GTP) binding promotes the formation of a UreE2G2 complex, where UreG receives a nickel from UreE. In the final step of the urease maturation, nickel/GTP-bound UreG forms an activation complex with UreF, UreD, and apo-urease. Upon GTP hydrolysis, nickel is released from UreG to the urease. Finally, some common themes learned from the hydrogenase-urease maturation pathway are discussed.
Collapse
Affiliation(s)
- Ka Lung Tsang
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kam-Bo Wong
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
24
|
Sharaf M, Arif M, Hamouda HI, Khan S, Abdalla M, Shabana S, Rozan HE, Khan TU, Chi Z, Liu C. Preparation, urease inhibition mechanisms, and anti- Helicobacter pylori activities of hesperetin-7-rhamnoglucoside. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 3:100103. [PMID: 35024644 PMCID: PMC8732090 DOI: 10.1016/j.crmicr.2021.100103] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This work investigated the effects of the bioflavonoid hesperetin-7-rhamnoglucoside isolated from Citrus uranium fruit peel on Helicobacter pylori (H. pylori). Separation and purity, crystalline state, and urease inhibition assays were carried out. Then, molecular docking and molecular dynamics (MD) simulations were conducted with urease as the target protein. Hesp was isolated from citrus peel with a purity of 95.14 µg mg-1 of dry raw material. X-ray diffraction analysis, hydrogen-1 nuclear magnetic resonance, Fourier transform infrared spectroscopy, and differential scanning calorimetry revealed that pure Hesp had the same crystallinity rating as the Hesp standard. The kinetic inhibition study demonstrated that Hesp inhibited H. pylori urease in a competitive and concentration-dependent manner with jack bean urease. In addition, bioimaging studies with laser scanning confocal microscopy and scanning electron microscopy illustrated that Hesp interacted with bacterial cells and induced membrane disruption by creating holes in the outer membranes of the bacterial cells, resulting in the leakage of amino acids. Importantly, molecular docking and 20 ns MD simulations revealed that Hesp inhibited the target protein through slow-binding inhibition and hydrogen bond interactions with active site residues, namely, Gly11 (O⋯H distance = 2.2 Å), Gly13 (O⋯H distance = 2.4 Å), Ser12 (O⋯H distance = 3.3 Å), Lys14 (O⋯H distance = 3.3 Å), and Arg179 (O⋯H distance = 2.7 Å). This work presents novel anti- H. pylori agents from natural sources.
Collapse
Affiliation(s)
- Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Muhammad Arif
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Hamed I. Hamouda
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
- Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Sohaib Khan
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province, 250012, PR China
| | - Samah Shabana
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Hussein. E. Rozan
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Tehsin Ullah Khan
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Zhe Chi
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Chenguang Liu
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
25
|
Griffith DM, Li H, Werrett MV, Andrews PC, Sun H. Medicinal chemistry and biomedical applications of bismuth-based compounds and nanoparticles. Chem Soc Rev 2021; 50:12037-12069. [PMID: 34533144 DOI: 10.1039/d0cs00031k] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bismuth as a relatively non-toxic and inexpensive metal with exceptional properties has numerous biomedical applications. Bismuth-based compounds are used extensively as medicines for the treatment of gastrointestinal disorders including dyspepsia, gastric ulcers and H. pylori infections. Recently, its medicinal application was further extended to potential treatments of viral infection, multidrug resistant microbial infections, cancer and also imaging, drug delivery and biosensing. In this review we have highlighted the unique chemistry and biological chemistry of bismuth-209 as a prelude to sections covering the unique antibacterial activity of bismuth including a description of research undertaken to date to elucidate key molecular mechanisms of action against H. pylori, the development of novel compounds to treat infection from microbes beyond H. pylori and the significant role bismuth compounds can play as resistance breakers. Furthermore we have provided an account of the potential therapeutic application of bismuth-213 in targeted alpha therapy as well as a summary of the biomedical applications of bismuth-based nanoparticles and composites. Ultimately this review aims to provide the state of the art, highlight the untapped biomedical potential of bismuth and encourage original contributions to this exciting and important field.
Collapse
Affiliation(s)
- Darren M Griffith
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.,SSPC, Synthesis and Solid State Pharmaceutical Centre, Ireland
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | | | - Philip C Andrews
- School of Chemistry, Monash University, Melbourne, VIC, Australia
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
26
|
Edmonds KA, Jordan MR, Giedroc DP. COG0523 proteins: a functionally diverse family of transition metal-regulated G3E P-loop GTP hydrolases from bacteria to man. Metallomics 2021; 13:6327566. [PMID: 34302342 PMCID: PMC8360895 DOI: 10.1093/mtomcs/mfab046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
Transition metal homeostasis ensures that cells and organisms obtain sufficient metal to meet cellular demand while dispensing with any excess so as to avoid toxicity. In bacteria, zinc restriction induces the expression of one or more Zur (zinc-uptake repressor)-regulated Cluster of Orthologous Groups (COG) COG0523 proteins. COG0523 proteins encompass a poorly understood sub-family of G3E P-loop small GTPases, others of which are known to function as metallochaperones in the maturation of cobalamin (CoII) and NiII cofactor-containing metalloenzymes. Here, we use genomic enzymology tools to functionally analyse over 80 000 sequences that are evolutionarily related to Acinetobacter baumannii ZigA (Zur-inducible GTPase), a COG0523 protein and candidate zinc metallochaperone. These sequences segregate into distinct sequence similarity network (SSN) clusters, exemplified by the ZnII-Zur-regulated and FeIII-nitrile hydratase activator CxCC (C, Cys; X, any amino acid)-containing COG0523 proteins (SSN cluster 1), NiII-UreG (clusters 2, 8), CoII-CobW (cluster 4), and NiII-HypB (cluster 5). A total of five large clusters that comprise ≈ 25% of all sequences, including cluster 3 which harbors the only structurally characterized COG0523 protein, Escherichia coli YjiA, and many uncharacterized eukaryotic COG0523 proteins. We also establish that mycobacterial-specific protein Y (Mpy) recruitment factor (Mrf), which promotes ribosome hibernation in actinomycetes under conditions of ZnII starvation, segregates into a fifth SSN cluster (cluster 17). Mrf is a COG0523 paralog that lacks all GTP-binding determinants as well as the ZnII-coordinating Cys found in CxCC-containing COG0523 proteins. On the basis of this analysis, we discuss new perspectives on the COG0523 proteins as cellular reporters of widespread nutrient stress induced by ZnII limitation.
Collapse
Affiliation(s)
- Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Matthew R Jordan
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
27
|
Nickel as a virulence factor in the Class I bacterial carcinogen, Helicobacter pylori. Semin Cancer Biol 2021; 76:143-155. [PMID: 33865991 DOI: 10.1016/j.semcancer.2021.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/12/2021] [Indexed: 01/16/2023]
Abstract
Helicobacter pylori is a human bacterial pathogen that causes peptic ulcers and has been designated a Class I carcinogen by the International Agency for Research on Cancer (IARC). Its ability to survive in the acid environment of the stomach, to colonize the stomach mucosa, and to cause cancer, are linked to two enzymes that require nickel-urease and hydrogenase. Thus, nickel is an important virulence factor and the proteins involved in nickel trafficking are potential antibiotic targets. This review summarizes the nickel biochemistry of H. pylori with a focus on the roles of nickel in virulence, nickel homeostasis, maturation of urease and hydrogenase, and the unique nickel trafficking that occurs between the hydrogenase maturation pathway and urease nickel incorporation that is mediated by the metallochaperone HypA and its partner, HypB.
Collapse
|
28
|
Osman D, Cooke A, Young TR, Deery E, Robinson NJ, Warren MJ. The requirement for cobalt in vitamin B 12: A paradigm for protein metalation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118896. [PMID: 33096143 PMCID: PMC7689651 DOI: 10.1016/j.bbamcr.2020.118896] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Vitamin B12, cobalamin, is a cobalt-containing ring-contracted modified tetrapyrrole that represents one of the most complex small molecules made by nature. In prokaryotes it is utilised as a cofactor, coenzyme, light sensor and gene regulator yet has a restricted role in assisting only two enzymes within specific eukaryotes including mammals. This deployment disparity is reflected in another unique attribute of vitamin B12 in that its biosynthesis is limited to only certain prokaryotes, with synthesisers pivotal in establishing mutualistic microbial communities. The core component of cobalamin is the corrin macrocycle that acts as the main ligand for the cobalt. Within this review we investigate why cobalt is paired specifically with the corrin ring, how cobalt is inserted during the biosynthetic process, how cobalt is made available within the cell and explore the cellular control of cobalt and cobalamin levels. The partitioning of cobalt for cobalamin biosynthesis exemplifies how cells assist metalation.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Anastasia Cooke
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Tessa R Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
29
|
Zhang X, Zhao S, He Y, Zheng N, Yan X, Wang J. Pipeline for Targeted Meta-Proteomic Analyses to Assess the Diversity of Cattle Rumen Microbial Urease. Front Microbiol 2020; 11:573414. [PMID: 33072036 PMCID: PMC7531017 DOI: 10.3389/fmicb.2020.573414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/21/2020] [Indexed: 01/01/2023] Open
Abstract
In the rumen of cattle, urease produced by ureolytic bacteria catalyzes the hydrolysis of urea to ammonia, which plays an important role in nitrogen metabolism and animal production. A high diversity of rumen bacterial urease genes was observed in our previous study; however, information on urease protein diversity could not be determined due to technical limitations. Here, we developed a targeted meta-proteomic pipeline to analyze rumen urease protein diversity. Protein extraction (duration of cryomilling in liquid nitrogen), protein digestion state (in-solution or in-gel), and the digestion enzyme used (trypsin or Glu-C/Lys-C) were optimized, and the digested peptides were analyzed by LC-MS/MS. Four minutes was the best duration for cryomilling and yielded the highest urease activity. Trypsin digestion of in-gel proteins outperformed other digestion methods and yielded the greatest number of identifications and superior peptide performance in regards to the digestion efficiency and high-score peptide. The annotation of peptides by PEAKS software revealed diversity among urease proteins, with the predominant proteins being from Prochlorococcus, Helicobacter, and uncultured bacteria. In conclusion, trypsin digestion of in-gel proteins was the optimal method for the meta-proteomic pipeline analyzing rumen microbial ureases. This pipeline provides a guide for targeted meta-proteomic analyses in other ecosystems.
Collapse
Affiliation(s)
- Xiaoyin Zhang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue He
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianghua Yan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
30
|
Zhang X, Zhao S, He Y, Zheng N, Yan X, Wang J. Substitution of residues in UreG to investigate UreE interactions and nickel binding in a predominant urease gene cluster from the ruminal metagenome. Int J Biol Macromol 2020; 161:1591-1601. [PMID: 32755703 DOI: 10.1016/j.ijbiomac.2020.07.260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022]
Abstract
Microbial ureases catalyze the hydrolysis of urea to ammonia, and inhibition of these enzymes in rumen has the potential to improve urea utilization efficiency and reduce urinary nitrogen excretion. Urease activity is catalyzed by a protein complex encoded by a gene cluster, and its accessory proteins (especially UreE and UreG) play important roles in transferring nickel to the active site for urease maturation. In this study, a predominant urease gene cluster (5290 bp) from the ruminal microbial metagenome was identified. Isothermal titration calorimetry (ITC) and analytical ultracentrifugation (AUC) analyses showed that the reaction of identified UreE with UreG was endothermic, and was dominated by a hydrophobic interaction, in which each UreE dimer bound 2 M equivalents of UreG monomer to form a UreE2-2UreG complex. Mutagenesis analyses showed that the UreG residues Glu-23, Asp-41, Glu-46, Glu-66, Cys-70, His-72, Asp-78, and Asp-118 were involved in the GTPase activity of UreG. Furthermore, variants of Cys-70 and His-72 involved in CPH motif of UreG, as well as the nearby Glu-66 and Asp-78, not only prevented interactions with UreE, but also prevented nickel binding. These data provide additional information regarding UreG residues that may be targeted for the design of new urease inhibitors.
Collapse
Affiliation(s)
- Xiaoyin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue He
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianghua Yan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
31
|
Pierro A, Etienne E, Gerbaud G, Guigliarelli B, Ciurli S, Belle V, Zambelli B, Mileo E. Nickel and GTP Modulate Helicobacter pylori UreG Structural Flexibility. Biomolecules 2020; 10:E1062. [PMID: 32708696 PMCID: PMC7408563 DOI: 10.3390/biom10071062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
UreG is a P-loop GTP hydrolase involved in the maturation of nickel-containing urease, an essential enzyme found in plants, fungi, bacteria, and archaea. This protein couples the hydrolysis of GTP to the delivery of Ni(II) into the active site of apo-urease, interacting with other urease chaperones in a multi-protein complex necessary for enzyme activation. Whereas the conformation of Helicobacter pylori (Hp) UreG was solved by crystallography when it is in complex with two other chaperones, in solution the protein was found in a disordered and flexible form, defining it as an intrinsically disordered enzyme and indicating that the well-folded structure found in the crystal state does not fully reflect the behavior of the protein in solution. Here, isothermal titration calorimetry and site-directed spin labeling coupled to electron paramagnetic spectroscopy were successfully combined to investigate HpUreG structural dynamics in solution and the effect of Ni(II) and GTP on protein mobility. The results demonstrate that, although the protein maintains a flexible behavior in the metal and nucleotide bound forms, concomitant addition of Ni(II) and GTP exerts a structural change through the crosstalk of different protein regions.
Collapse
Affiliation(s)
- Annalisa Pierro
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France; (A.P.); (E.E.); (G.G.); (B.G.); (V.B.)
| | - Emilien Etienne
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France; (A.P.); (E.E.); (G.G.); (B.G.); (V.B.)
| | - Guillaume Gerbaud
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France; (A.P.); (E.E.); (G.G.); (B.G.); (V.B.)
| | - Bruno Guigliarelli
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France; (A.P.); (E.E.); (G.G.); (B.G.); (V.B.)
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy;
| | - Valérie Belle
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France; (A.P.); (E.E.); (G.G.); (B.G.); (V.B.)
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy;
| | - Elisabetta Mileo
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France; (A.P.); (E.E.); (G.G.); (B.G.); (V.B.)
| |
Collapse
|
32
|
Targeting the Protein Tunnels of the Urease Accessory Complex: A Theoretical Investigation. Molecules 2020; 25:molecules25122911. [PMID: 32599898 PMCID: PMC7355429 DOI: 10.3390/molecules25122911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Urease is a nickel-containing enzyme that is essential for the survival of several and often deadly pathogenic bacterial strains, including Helicobacter pylori. Notwithstanding several attempts, the development of direct urease inhibitors without side effects for the human host remains, to date, elusive. The recently solved X-ray structure of the HpUreDFG accessory complex involved in the activation of urease opens new perspectives for structure-based drug discovery. In particular, the quaternary assembly and the presence of internal tunnels for nickel translocation offer an intriguing possibility to target the HpUreDFG complex in the search of indirect urease inhibitors. In this work, we adopted a theoretical framework to investigate such a hypothesis. Specifically, we searched for putative binding sites located at the protein–protein interfaces on the HpUreDFG complex, and we challenged their druggability through structure-based virtual screening. We show that, by virtue of the presence of tunnels, some protein–protein interfaces on the HpUreDFG complex are intrinsically well suited for hosting small molecules, and, as such, they possess good potential for future drug design endeavors.
Collapse
|
33
|
Alfano M, Cavazza C. Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Sci 2020; 29:1071-1089. [PMID: 32022353 DOI: 10.1002/pro.3836] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/17/2022]
Abstract
Nickel enzymes, present in archaea, bacteria, plants, and primitive eukaryotes are divided into redox and nonredox enzymes and play key functions in diverse metabolic processes, such as energy metabolism and virulence. They catalyze various reactions by using active sites of diverse complexities, such as mononuclear nickel in Ni-superoxide dismutase, glyoxylase I and acireductone dioxygenase, dinuclear nickel in urease, heteronuclear metalloclusters in [NiFe]-carbon monoxide dehydrogenase, acetyl-CoA decarbonylase/synthase and [NiFe]-hydrogenase, and even more complex cofactors in methyl-CoM reductase and lactate racemase. The presence of metalloenzymes in a cell necessitates a tight regulation of metal homeostasis, in order to maintain the appropriate intracellular concentration of nickel while avoiding its toxicity. As well, the biosynthesis and insertion of nickel active sites often require specific and elaborated maturation pathways, allowing the correct metal to be delivered and incorporated into the target enzyme. In this review, the phylogenetic distribution of nickel enzymes will be briefly described. Their tridimensional structures as well as the complexity of their active sites will be discussed. In view of the latest findings on these enzymes, a special focus will be put on the biosynthesis of their active sites and nickel activation of apo-enzymes.
Collapse
Affiliation(s)
- Marila Alfano
- University of Grenoble Alpes, CEA, CNRS, IRIG, CBM, Grenoble, France
| | - Christine Cavazza
- University of Grenoble Alpes, CEA, CNRS, IRIG, CBM, Grenoble, France
| |
Collapse
|
34
|
Zambelli B, Mazzei L, Ciurli S. Intrinsic disorder in the nickel-dependent urease network. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:307-330. [DOI: 10.1016/bs.pmbts.2020.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Lian DW, Xu YF, Deng QH, Lin XM, Huang B, Xian SX, Huang P. Effect of patchouli alcohol on macrophage mediated Helicobacter pylori digestion based on intracellular urease inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 65:153097. [PMID: 31568921 DOI: 10.1016/j.phymed.2019.153097] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Helicobacter pylori infects almost half of the world population and is listed as a type I carcinoma factor since 1994. Pogostemon cablin (Blanco) Benth. (Labiatae) has been used to treat gastro-intestinal diseases for thousands of years in many east Asian countries, and the key ingredient, patchouli alcohol (PA), has been observed to exert anti-H. pylori and anti-urease activities. PURPOSE We investigated the effect of PA on H. pylori urease and its subsequent influence on macrophage phagosome maturation and function. METHODS In H. pylori experiment, the berthelot method and pH shock assay were adopted to evaluate the effect of PA on extracellular and intracellular H. pylori urease. And then, Q-PCR and Western blot were carried out to analyze the alterations in the expression of urease-related genes and proteins after PA treatment. In the H. pylori and macrophage cell (RAW264.7) co-culture experiment, the effects of PA on H. pylori-induced phagocytosis and intracellular killing of RAW264.7 were investigated using gentamycin protection assay, and the underlying mechanism was explored by immunofluorescence. RESULTS PA at 25 and 50 μM inhibited intracellular H. pylori urease activity but not isolated urease by down-regulating the gene expression levels of ureB, ureE, ureI and nixA and reducing the protein expression level of UreB, thereby inhibiting the acid resistance of H. pylori. PA also recovered the function of macrophage bacterial digestion, and prior treatment with ammonium chloride inhibited the efficacy of PA. CONCLUSION PA suppressed intracellular H. pylori urease function and maturation, which increased macrophage digestion ability.
Collapse
Affiliation(s)
- D W Lian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, PR China; Lingnan Medical Research Center, Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, PR China; Postdoctoral Research Station of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Y F Xu
- Shenzhen Traditional Chinese Medicine Hospital, The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China; Postdoctoral Research Station of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Q H Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - X M Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - B Huang
- Shenzhen Traditional Chinese Medicine Hospital, The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China
| | - S X Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, PR China; Lingnan Medical Research Center, Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, PR China.
| | - P Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| |
Collapse
|
36
|
Veaudor T, Cassier-Chauvat C, Chauvat F. Genomics of Urea Transport and Catabolism in Cyanobacteria: Biotechnological Implications. Front Microbiol 2019; 10:2052. [PMID: 31551986 PMCID: PMC6737895 DOI: 10.3389/fmicb.2019.02052] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are widely-diverse prokaryotes that colonize our planet. They use solar energy to assimilate huge amounts of atmospheric CO2 and produce a large part of the biomass and oxygen that sustain most life forms. Cyanobacteria are therefore increasingly studied for basic research objectives, as well as for the photosynthetic production of chemicals with industrial interests. One potential approach to reduce the cost of future bioproduction processes is to couple them with wastewater treatment, often polluted with urea, which in any case is cheaper than nitrate. As of yet, however, research has mostly focused on a very small number of model cyanobacteria growing on nitrate. Thus, the genetic inventory of the cyanobacterial phylum is still insufficiently employed to meaningfully select the right host for the right purpose. This review reports what is known about urea transport and catabolism in cyanobacteria, and what can be inferred from the comparative analysis of the publicly available genome sequence of the 308 cyanobacteria. We found that most cyanobacteria mostly harbor the genes encoding the urea catabolytic enzymes urease (ureABCDEFG), but not systematically, together with the urea transport (urtABCDE). These findings are consistent with the capacity of the few tested cyanobacteria that grow on urea as the sole nitrogen source. They also indicate that urease is important for the detoxification of internally generated urea (re-cycling its carbon and nitrogen). In contrast, several cyanobacteria have urtABCDE but not ureABCDEFG, suggesting that urtABCDE could operate in the transport of not only urea but also of other nutrients. Only four cyanobacteria appeared to have the genes encoding the urea carboxylase (uc) and allophanate hydrolase (ah) enzymes that sequentially catabolize urea. Three of these cyanobacteria belongs to the genera Gloeobacter and Gloeomargarita that have likely diverged early from other cyanobacteria, suggesting that the urea carboxylase and allophanate hydrolase enzymes appeared in cyanobacteria before urease.
Collapse
Affiliation(s)
- Théo Veaudor
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Corinne Cassier-Chauvat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Franck Chauvat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
37
|
Abstract
Nickel is essential for the survival of many pathogenic bacteria. E. coli and H. pylori require nickel for [NiFe]-hydrogenases. H. pylori also requires nickel for urease. At high concentrations nickel can be toxic to the cell, therefore, nickel concentrations are tightly regulated. Metalloregulators help to maintain nickel concentration in the cell by regulating the expression of the genes associated with nickel import and export. Nickel import into the cell, delivery of nickel to target proteins, and export of nickel from the cell is a very intricate and well-choreographed process. The delivery of nickel to [NiFe]-hydrogenase and urease is complex and involves several chaperones and accessory proteins. A combination of biochemical, crystallographic, and spectroscopic techniques has been utilized to study the structures of these proteins, as well as protein-protein interactions resulting in an expansion of our knowledge regarding how these proteins sense and bind nickel. In this review, recent advances in the field will be discussed, focusing on the metal site structures of nickel bound to metalloregulators and chaperones.
Collapse
|
38
|
Abstract
Maturation of urease involves post-translational insertion of nickel ions to form an active site with a carbamylated lysine ligand and is assisted by urease accessory proteins UreD, UreE, UreF and UreG. Here, we review our current understandings on how these urease accessory proteins facilitate the urease maturation. The urease maturation pathway involves the transfer of Ni2+ from UreE → UreG → UreF/UreD → urease. To avoid the release of the toxic metal to the cytoplasm, Ni2+ is transferred from one urease accessory protein to another through specific protein–protein interactions. One central theme depicts the role of guanosine triphosphate (GTP) binding/hydrolysis in regulating the binding/release of nickel ions and the formation of the protein complexes. The urease and [NiFe]-hydrogenase maturation pathways cross-talk with each other as UreE receives Ni2+ from hydrogenase maturation factor HypA. Finally, the druggability of the urease maturation pathway is reviewed.
Collapse
|
39
|
Gupta N, Maurya S, Verma H, Verma VK. Unraveling the factors and mechanism involved in persistence: Host-pathogen interactions in Helicobacter pylori. J Cell Biochem 2019; 120:18572-18587. [PMID: 31237031 DOI: 10.1002/jcb.29201] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori and humans have one of the most complex relationships in nature. How a bacterium manages to live in one of the harshest and hostile environments is a topic of unraveling mysteries. H. pylori is a prevalent species and it colonizes the human gut of more than 50% of the world population. It infects the epithelial region of antrum and persists there for a long period. Over the time of evolution, H. pylori has developed complex strategies to extend the degree of inflammation in gastric mucosa. H. pylori needs specific adaptations for initial colonization into the host environment like helical shape, flagellar movement, chemotaxis, and the production of urease enzyme that neutralizes acidic environment of the stomach. There are several factors from the bacterium as well as from the host that participate in these complex interactions. On the other hand, to establish the persistent infection, H. pylori escapes the immune system by mimicking the host antigens. This pathogen has the ability to dodge the immune system and then persist there in the form of host cell, which leads to immune tolerance. H. pylori has an ability to manipulate its own pathogen-associated molecular patterns, which leads to an inhibition in the binding with specific pattern recognition receptors of the host to avoid immune cell detection. Also, it manipulates the host metabolic homeostasis in the gastric epithelium. Besides, it has several genes, which may get involved in the acquisition of nutrition from the host to survive longer in the host. Due to the persistence of H. pylori, it causes chronic inflammation and raises the chances of gastric cancer. This review highlights the important elements, which are certainly responsible for the persistence of H. pylori in the human host.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| | - Shweta Maurya
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| | - Harshvardhan Verma
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| | - Vijay K Verma
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| |
Collapse
|
40
|
Wang H, Yan A, Liu Z, Yang X, Xu Z, Wang Y, Wang R, Koohi-Moghadam M, Hu L, Xia W, Tang H, Wang Y, Li H, Sun H. Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli. PLoS Biol 2019; 17:e3000292. [PMID: 31181061 PMCID: PMC6557469 DOI: 10.1371/journal.pbio.3000292] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/13/2019] [Indexed: 12/17/2022] Open
Abstract
Despite the broad-spectrum antimicrobial activities of silver, its internal usage is restricted, owing to the toxicity. Strategies to enhance its efficacy are highly desirable but rely heavily on the understanding of its molecular mechanism of action. However, up to now, no direct silver-targeting proteins have been mined at a proteome-wide scale, which hinders systemic studies on the biological pathways interrupted by silver. Herein, we build up a unique system, namely liquid chromatography gel electrophoresis inductively coupled plasma mass spectrometry (LC-GE-ICP-MS), allowing 34 proteins directly bound by silver ions to be identified in Escherichia coli. By using integrated omic approaches, including metalloproteomics, metabolomics, bioinformatics, and systemic biology, we delineated the first dynamic antimicrobial actions of silver (Ag+) in E. coli, i.e., it primarily damages multiple enzymes in glycolysis and tricarboxylic acid (TCA) cycle, leading to the stalling of the oxidative branch of the TCA cycle and an adaptive metabolic divergence to the reductive glyoxylate pathway. It then further damages the adaptive glyoxylate pathway and suppresses the cellular oxidative stress responses, causing systemic damages and death of the bacterium. To harness these novel findings, we coadministrated metabolites involved in the Krebs cycles with Ag+ and found that they can significantly potentiate the efficacy of silver both in vitro and in an animal model. Our study reveals the comprehensive and dynamic mechanisms of Ag+ toxicity in E. coli cells and offers a novel and general approach for deciphering molecular mechanisms of metallodrugs in various pathogens and cells to facilitate the development of new therapeutics.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, P. R. China
| | - Zhigang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xinming Yang
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Zeling Xu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, P. R. China
| | - Yuchuan Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Runming Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | | | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China
| | - Wei Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Fudan University, Shanghai International Centre for Molecular Phenomics, Collaborative Innovation Centre for Genetics and Development, Shanghai, P. R. China
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
41
|
Abstract
Covering: up to the end of 2017 The human body is composed of an equal number of human and microbial cells. While the microbial community inhabiting the human gastrointestinal tract plays an essential role in host health, these organisms have also been connected to various diseases. Yet, the gut microbial functions that modulate host biology are not well established. In this review, we describe metabolic functions of the human gut microbiota that involve metalloenzymes. These activities enable gut microbial colonization, mediate interactions with the host, and impact human health and disease. We highlight cases in which enzyme characterization has advanced our understanding of the gut microbiota and examples that illustrate the diverse ways in which metalloenzymes facilitate both essential and unique functions of this community. Finally, we analyze Human Microbiome Project sequencing datasets to assess the distribution of a prominent family of metalloenzymes in human-associated microbial communities, guiding future enzyme characterization efforts.
Collapse
|
42
|
Bankeu JJK, Sattar H, Fongang YSF, Muhammadi SW, Simoben CV, Ntie-Kang F, Feuya GRT, Tchuenmogne MAT, Lateef M, Lenta BN, Ali MS, Ngouela AS. Synthesis, Urease Inhibition and Molecular Modelling Studies of Novel Derivatives of the Naturally Occurring β-Amyrenone. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:49-59. [PMID: 30488317 PMCID: PMC6328428 DOI: 10.1007/s13659-018-0193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Urease enzyme (UE) has been reported to be a potent virulence factor for Helicobacter pylori (HP) bacteria indicated to be responsible for various gastrointestinal diseases. Therefore, the spread of HP, currently regarded by the World Health Organization as a class 1 carcinogen, could be better controlled by targeting UE. It is in this line that we have synthesized three new derivatives (2-4) of the naturally occurring olean-12-en-3-one (1), which was previously isolated from the figs of Ficus vallis-choudae Delile (Moraceae). Among the synthesized compounds, 3 and 4 contain an indole moiety. Their structures were unambiguously assigned by spectroscopic and spectrometric techniques (1D-NMR, 2D-NMR and MS). The starting material and the synthesized compounds were screened for UE inhibition activity, and showed significant activities with IC50 values ranging from 14.5 to 24.6 μM, with compound (1) being the most potent as compared to the positive control thiourea (IC50 = 21.6 μM). Amongst the synthetic derivatives, compound 4 was the most potent (IC50 = 17.9 μM), while the others showed activities close to that of the control. In addition, molecular docking study of target compounds 2-4 was performed in an attempt to explore their binding mode for the design of more potent UE inhibitors.
Collapse
Affiliation(s)
- Jean J K Bankeu
- Department of Chemistry, Faculty of Science, The University of Bamenda, P.O. Box 39, Bambili, Cameroon.
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Hira Sattar
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Yannick S F Fongang
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Department of Chemistry, Higher Teacher Training College, University of Maroua, P.O. Box 55, Maroua, Cameroon
| | - Syeda W Muhammadi
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Conrad V Simoben
- Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Fidele Ntie-Kang
- Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany.
- Department of Chemistry, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon.
| | - Guy R T Feuya
- Department of Chemistry, Faculty of Science, Scientific and Technical University of Masuku, Box 943, Franceville, Gabon
| | - Marthe A T Tchuenmogne
- Department of Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Mehreen Lateef
- Multi-Disciplinary Research Laboratory (MDRL), Bahria University Medical and Dental College, Bahria University, Karachi, Pakistan
| | - Bruno N Lenta
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon.
| | - Muhammad S Ali
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Augustin S Ngouela
- Department of Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
43
|
Lasek R, Szuplewska M, Mitura M, Decewicz P, Chmielowska C, Pawłot A, Sentkowska D, Czarnecki J, Bartosik D. Genome Structure of the Opportunistic Pathogen Paracoccus yeei ( Alphaproteobacteria) and Identification of Putative Virulence Factors. Front Microbiol 2018; 9:2553. [PMID: 30410477 PMCID: PMC6209633 DOI: 10.3389/fmicb.2018.02553] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
Bacteria of the genus Paracoccus are common components of the microbiomes of many naturally- and anthropogenically shaped environments. One species, Paracoccus yeei, is unique within the genus because it is associated with opportunistic human infections. Therefore, strains of P. yeei may serve as an interesting model to study the transition from a saprophytic to a pathogenic lifestyle in environmental bacteria. Unfortunately, knowledge concerning the biology, genetics and genomic content of P. yeei is fragmentary; also the mechanisms of pathogenicity of this bacterium remain unclear. In this study we provide the first insight into the genome composition and metabolic potential of a clinical isolate, P. yeei CCUG 32053. This strain has a multipartite genome (4,632,079 bp) composed of a circular chromosome plus eight extrachromosomal replicons pYEE1–8: 3 chromids and 5 plasmids, with a total size of 1,247,173 bp. The genome has been significantly shaped by the acquisition of genomic islands, prophages (Myoviridae and Siphoviridae phage families) and numerous insertion sequences (ISs) representing seven IS families. Detailed comparative analysis with other complete genomic sequences of Paracoccus spp. (including P. yeei FDAARGOS_252 and TT13, as well as non-pathogenic strains of other species in this genus) enabled us to identify P. yeei species-specific genes and to predict putative determinants of virulence. This is the first attempt to identify pathoadaptive genetic information of P. yeei and to estimate the role of the mobilome in the evolution of pathogenicity in this species.
Collapse
Affiliation(s)
- Robert Lasek
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Szuplewska
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Monika Mitura
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Przemysław Decewicz
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Cora Chmielowska
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Pawłot
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dorota Sentkowska
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jakub Czarnecki
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
44
|
Li C, Huang P, Wong K, Xu Y, Tan L, Chen H, Lu Q, Luo C, Tam C, Zhu L, Su Z, Xie J. Coptisine-induced inhibition of Helicobacter pylori: elucidation of specific mechanisms by probing urease active site and its maturation process. J Enzyme Inhib Med Chem 2018; 33:1362-1375. [PMID: 30191728 PMCID: PMC6136390 DOI: 10.1080/14756366.2018.1501044] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In this study, we examined the anti-Helicobactor pylori effects of the main protoberberine-type alkaloids in Rhizoma Coptidis. Coptisine exerted varying antibacterial and bactericidal effects against three standard H. pylori strains and eleven clinical isolates, including four drug-resistant strains, with minimum inhibitory concentrations ranging from 25 to 50 μg/mL and minimal bactericidal concentrations ranging from 37.5 to 125 μg/mL. Coptisine’s anti-H. pylori effects derived from specific inhibition of urease in vivo. In vitro, coptisine inactivated urease in a concentration-dependent manner through slow-binding inhibition and involved binding to the urease active site sulfhydryl group. Coptisine inhibition of H. pylori urease (HPU) was mixed type, while inhibition of jack bean urease was non-competitive. Importantly, coptisine also inhibited HPU by binding to its nickel metallocentre. Besides, coptisine interfered with urease maturation by inhibiting activity of prototypical urease accessory protein UreG and formation of UreG dimers and by promoting dissociation of nickel from UreG dimers. These findings demonstrate that coptisine inhibits urease activity by targeting its active site and inhibiting its maturation, thereby effectively inhibiting H. pylori. Coptisine may thus be an effective anti-H. pylori agent.
Collapse
Affiliation(s)
- Cailan Li
- a Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| | - Ping Huang
- b School of Pharmaceutical Sciences , Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| | - Kambo Wong
- c School of Life Sciences , Center for Protein Science and Crystallography, The Chinese University of Hong Kong , P. R. China
| | - Yifei Xu
- b School of Pharmaceutical Sciences , Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| | - Lihua Tan
- a Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| | - Hanbin Chen
- d The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| | - Qiang Lu
- e Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education and Research Center of Chinese Herbal Resource Science and Engineering , Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| | - Chaodan Luo
- a Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| | - Chunlai Tam
- c School of Life Sciences , Center for Protein Science and Crystallography, The Chinese University of Hong Kong , P. R. China
| | - Lixiang Zhu
- b School of Pharmaceutical Sciences , Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| | - Ziren Su
- a Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| | - Jianhui Xie
- f Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome , The Second Affiliated Hospital, Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| |
Collapse
|
45
|
Spronk CAEM, Żerko S, Górka M, Koźmiński W, Bardiaux B, Zambelli B, Musiani F, Piccioli M, Basak P, Blum FC, Johnson RC, Hu H, Merrell DS, Maroney M, Ciurli S. Structure and dynamics of Helicobacter pylori nickel-chaperone HypA: an integrated approach using NMR spectroscopy, functional assays and computational tools. J Biol Inorg Chem 2018; 23:1309-1330. [PMID: 30264175 DOI: 10.1007/s00775-018-1616-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/05/2018] [Indexed: 01/03/2023]
Abstract
Helicobacter pylori HypA (HpHypA) is a metallochaperone necessary for maturation of [Ni,Fe]-hydrogenase and urease, the enzymes required for colonization and survival of H. pylori in the gastric mucosa. HpHypA contains a structural Zn(II) site and a unique Ni(II) binding site at the N-terminus. X-ray absorption spectra suggested that the Zn(II) coordination depends on pH and on the presence of Ni(II). This study was performed to investigate the structural properties of HpHypA as a function of pH and Ni(II) binding, using NMR spectroscopy combined with DFT and molecular dynamics calculations. The solution structure of apo,Zn-HpHypA, containing Zn(II) but devoid of Ni(II), was determined using 2D, 3D and 4D NMR spectroscopy. The structure suggests that a Ni-binding and a Zn-binding domain, joined through a short linker, could undergo mutual reorientation. This flexibility has no physiological effect on acid viability or urease maturation in H. pylori. Atomistic molecular dynamics simulations suggest that Ni(II) binding is important for the conformational stability of the N-terminal helix. NMR chemical shift perturbation analysis indicates that no structural changes occur in the Zn-binding domain upon addition of Ni(II) in the pH 6.3-7.2 range. The structure of the Ni(II) binding site was probed using 1H NMR spectroscopy experiments tailored to reveal hyperfine-shifted signals around the paramagnetic metal ion. On this basis, two possible models were derived using quantum-mechanical DFT calculations. The results provide a comprehensive picture of the Ni(II) mode to HpHypA, important to rationalize, at the molecular level, the functional interactions of this chaperone with its protein partners.
Collapse
Affiliation(s)
- Chris A E M Spronk
- JSC Spronk, Vilnius, Lithuania.,Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Szymon Żerko
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Michał Górka
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.,Faculty of Physics, Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127, Bologna, Italy
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127, Bologna, Italy
| | - Mario Piccioli
- Center for Magnetic Resonance, Department of Chemistry, University of Florence, Florence, Italy
| | - Priyanka Basak
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Faith C Blum
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Ryan C Johnson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Heidi Hu
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Michael Maroney
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127, Bologna, Italy. .,Center for Magnetic Resonance, Department of Chemistry, University of Florence, Florence, Italy.
| |
Collapse
|
46
|
Tarsia C, Danielli A, Florini F, Cinelli P, Ciurli S, Zambelli B. Targeting Helicobacter pylori urease activity and maturation: In-cell high-throughput approach for drug discovery. Biochim Biophys Acta Gen Subj 2018; 1862:2245-2253. [PMID: 30048738 DOI: 10.1016/j.bbagen.2018.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Helicobacter pylori is a bacterium strongly associated with gastric cancer. It thrives in the acidic environment of the gastric niche of large portions of the human population using a unique adaptive mechanism that involves the catalytic activity of the nickel-dependent enzyme urease. Targeting urease represents a key strategy for drug design and H. pylori eradication. METHOD Here, we describe a novel method to screen, directly in the cellular environment, urease inhibitors. A ureolytic Escherichia coli strain was engineered by cloning the entire urease operon in an expression plasmid and used to test in-cell urease inhibition with a high-throughput colorimetric assay. A two-plasmid system was further developed to evaluate the ability of small peptides to block the protein interactions that lead to urease maturation. RESULTS The developed assay is a robust cellular model to test, directly in the cell environment, urease inhibitors. The efficacy of a co-expressed peptide to affect the interaction between UreF and UreD, two accessory proteins necessary for urease activation, was observed. This event involves a process that occurs through folding upon binding, pointing to the importance of intrinsically disordered hot spots in protein interfaces. CONCLUSIONS The developed system allows the concomitant screening of a large number of drug candidates that interfere with the urease activity both at the level of the enzyme catalysis and maturation. GENERAL SIGNIFICANCE As inhibition of urease has the potential of being a global antibacterial strategy for a large number of infections, this work paves the way for the development of new candidates for antibacterial drugs.
Collapse
Affiliation(s)
- Cinzia Tarsia
- Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Alberto Danielli
- Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Francesca Florini
- Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Paolo Cinelli
- Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Stefano Ciurli
- Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Barbara Zambelli
- Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy.
| |
Collapse
|
47
|
Krajaejun T, Rujirawat T, Kanpanleuk T, Santanirand P, Lohnoo T, Yingyong W, Kumsang Y, Sae-Chew P, Kittichotirat W, Patumcharoenpol P. Biochemical and genetic analyses of the oomycete Pythium insidiosum provide new insights into clinical identification and urease-based evolution of metabolism-related traits. PeerJ 2018; 6:e4821. [PMID: 29888122 PMCID: PMC5993020 DOI: 10.7717/peerj.4821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
The oomycete microorganism, Pythium insidiosum, causes the life-threatening infectious condition, pythiosis, in humans and animals worldwide. Affected individuals typically endure surgical removal of the infected organ(s). Detection of P. insidiosum by the established microbiological, immunological, or molecular methods is not feasible in non-reference laboratories, resulting in delayed diagnosis. Biochemical assays have been used to characterize P. insidiosum, some of which could aid in the clinical identification of this organism. Although hydrolysis of maltose and sucrose has been proposed as the key biochemical feature useful in discriminating P. insidiosum from other oomycetes and fungi, this technique requires a more rigorous evaluation involving a wider selection of P. insidiosum strains. Here, we evaluated 10 routinely available biochemical assays for characterization of 26 P. insidiosum strains, isolated from different hosts and geographic origins. Initial assessment revealed diverse biochemical characteristics across the P. insidiosum strains tested. Failure to hydrolyze sugars is observed, especially in slow-growing strains. Because hydrolysis of maltose and sucrose varied among different strains, use of the biochemical assays for identification of P. insidiosum should be cautioned. The ability of P. insidiosum to hydrolyze urea is our focus, because this metabolic process relies on the enzyme urease, an important virulence factor of other pathogens. The ability to hydrolyze urea varied among P. insidiosum strains and was not associated with growth rates. Genome analyses demonstrated that urease- and urease accessory protein-encoding genes are present in both urea-hydrolyzing and non-urea-hydrolyzing strains of P. insidiosum. Urease genes are phylogenetically conserved in P. insidiosum and related oomycetes, while the presence of urease accessory protein-encoding genes is markedly diverse in these organisms. In summary, we dissected biochemical characteristics and drew new insights into clinical identification and urease-related evolution of P. insidiosum.
Collapse
Affiliation(s)
- Theerapong Krajaejun
- Department of Pathology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thidarat Rujirawat
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Molecular Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Teerat Kanpanleuk
- Department of Pathology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pitak Santanirand
- Department of Pathology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Tassanee Lohnoo
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wanta Yingyong
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Yothin Kumsang
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pattarana Sae-Chew
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Weerayuth Kittichotirat
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Preecha Patumcharoenpol
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
48
|
Hu HQ, Huang HT, Maroney MJ. The Helicobacter pylori HypA·UreE 2 Complex Contains a Novel High-Affinity Ni(II)-Binding Site. Biochemistry 2018; 57:2932-2942. [PMID: 29708738 DOI: 10.1021/acs.biochem.8b00127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Helicobacter pylori is a human pathogen that colonizes the stomach, is the major cause of ulcers, and has been associated with stomach cancers. To survive in the acidic environment of the stomach, H. pylori uses urease, a nickel-dependent enzyme, to produce ammonia for maintenance of cellular pH. The bacteria produce apo-urease in large quantities and activate it by incorporating nickel under acid shock conditions. Urease nickel incorporation requires the urease-specific metallochaperone UreE and the (UreFGH)2 maturation complex. In addition, the H. pylori nickel urease maturation pathway recruits accessory proteins from the [NiFe] hydrogenase maturation pathway, namely, HypA and HypB. HypA and UreE dimers (UreE2) are known to form a protein complex, the role of which in urease maturation is largely unknown. Herein, we examine the nickel-binding properties and protein-protein interactions of HypA and UreE2 using isothermal titration calorimetry and fluorometric methods under neutral and acidic pH conditions to gain insight into the roles played by HypA in urease maturation. The results reveal that HypA and UreE2 form a stable complex with micromolar affinity that protects UreE from hydrolytic degradation. The HypA·UreE2 complex contains a unique high-affinity (nanomolar) Ni2+-binding site that is maintained under conditions designed to mimic acid shock (pH 6.3). The data are interpreted in terms of a proposed mechanism wherein HypA and UreE2 act as co-metallochaperones that target the delivery of Ni2+ to apo-urease with high fidelity.
Collapse
|
49
|
A Structural Model of the Urease Activation Complex Derived from Ion Mobility-Mass Spectrometry and Integrative Modeling. Structure 2018; 26:599-606.e3. [PMID: 29576318 DOI: 10.1016/j.str.2018.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 12/16/2017] [Accepted: 02/28/2018] [Indexed: 01/14/2023]
Abstract
The synthesis of active Klebsiella aerogenes urease via an 18-subunit enzyme apoprotein-accessory protein pre-activation complex has been well studied biochemically, but thus far this complex has remained refractory to direct structural characterization. Using ion mobility-mass spectrometry, we characterized several protein complexes between the core urease apoprotein and its accessory proteins, including the 610-kDa (UreABC)3(UreDFG)3 complex. Using our recently developed computational modeling workflow, we generated ensembles of putative (UreABC)3(UreDFG)3 species consistent with experimental restraints and characterized the structural ambiguity present in these models. By integrating structural information from previous studies, we increased the resolution of the ion mobility-mass spectrometry-derived models substantially, and we observe a discrete population of structures consistent with all of the available data for this complex.
Collapse
|
50
|
Beck C, Knoop H, Steuer R. Modules of co-occurrence in the cyanobacterial pan-genome reveal functional associations between groups of ortholog genes. PLoS Genet 2018. [PMID: 29522508 PMCID: PMC5862535 DOI: 10.1371/journal.pgen.1007239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cyanobacteria are a monophyletic phylogenetic group of global importance and have received considerable attention as potential host organisms for the renewable synthesis of chemical bulk products from atmospheric CO2. The cyanobacterial phylum exhibits enormous metabolic diversity with respect to morphology, lifestyle and habitat. As yet, however, research has mostly focused on few model strains and cyanobacterial diversity is insufficiently understood. In this respect, the increasing availability of fully sequenced bacterial genomes opens new and unprecedented opportunities to investigate the genetic inventory of organisms in the context of their pan-genome. Here, we seek understand cyanobacterial diversity using a comparative genome analysis of 77 fully sequenced and assembled cyanobacterial genomes. We use phylogenetic profiling to analyze the co-occurrence of clusters of likely ortholog genes (CLOGs) and reveal novel functional associations between CLOGs that are not captured by co-localization of genes. Going beyond pair-wise co-occurrences, we propose a network approach that allows us to identify modules of co-occurring CLOGs. The extracted modules exhibit a high degree of functional coherence and reveal known as well as previously unknown functional associations. We argue that the high functional coherence observed for the modules is a consequence of the similar-yet-diverse nature of cyanobacteria. Our approach highlights the importance of a multi-strain analysis to understand gene functions and environmental adaptations, with implications beyond the cyanobacterial phylum. The analysis is augmented with a simple toolbox that facilitates further analysis to investigate the co-occurrence neighborhood of specific CLOGs of interest. Cyanobacteria are photoautotrophic prokaryotes of global importance and offer great potential as host organisms for the renewable synthesis of chemical bulk products, including biofuels, from atmospheric CO2. As yet, however, research has mostly focussed on a small number of model strains and the genetic inventory of the cyanobacterial phylum is still insufficiently understood. The rapidly increasing availability of fully sequenced cyanobacterial genomes opens new and unprecendented possibilities to study the diversity of cyanobacterial strain in the context of the cyanobacterial pan-genome. Here, we seek to understand the genetic inventory of individual cyanobacterial strains based on the hypothesis that genes that are functionally related also co-occur within the genomes of different strains. We confirm this hypothesis by in depth analysis of co-occurrence that goes beyond pair-wise co-occurrences. We show that co-occurrence does not imply co-localization on the genome. Our work provides a novel approach to infer gene function and highlights the importance of a multi-strain analysis, with implications beyond the analysis of the cyanobacterial phylum.
Collapse
Affiliation(s)
- Christian Beck
- Humboldt-Universität zu Berlin, Institut für Theoretische Biologie (ITB), Berlin, Germany
| | - Henning Knoop
- Humboldt-Universität zu Berlin, Institut für Theoretische Biologie (ITB), Berlin, Germany
| | - Ralf Steuer
- Humboldt-Universität zu Berlin, Institut für Theoretische Biologie (ITB), Berlin, Germany
- * E-mail:
| |
Collapse
|