1
|
Chen Y, Liu P, Sabo A, Guan D. Human genetic variation determines 24-hour rhythmic gene expression and disease risk. Nat Commun 2025; 16:4270. [PMID: 40341583 PMCID: PMC12062405 DOI: 10.1038/s41467-025-59524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
24-hour biological rhythms are essential to maintain physiological homeostasis. Disruption of these rhythms increases the risks of multiple diseases. Biological rhythms are known to have a genetic basis formed by core clock genes, but how individual genetic variation shapes the oscillating transcriptome and contributes to human chronophysiology and disease risk is largely unknown. Here, we mapped interactions between temporal gene expression and genotype to identify quantitative trait loci (QTLs) contributing to rhythmic gene expression. These newly identified QTLs were termed as rhythmic QTLs (rhyQTLs), which determine previously unappreciated rhythmic genes in human subpopulations with specific genotypes. Functionally, rhyQTLs and their associated rhythmic genes contribute extensively to essential chronophysiological processes, including bile acid and lipid metabolism. The identification of rhyQTLs sheds light on the genetic mechanisms of gene rhythmicity, offers mechanistic insights into variations in human disease risk, and enables precision chronotherapeutic approaches for patients.
Collapse
Affiliation(s)
- Ying Chen
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Panpan Liu
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Aniko Sabo
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Dongyin Guan
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Guo Y, Zheng W, Yue T, Baimakangzhuo, Qi X, Liu K, Li L, He Y, Su B. GCH1 contributes to high-altitude adaptation in Tibetans by regulating blood nitric oxide. J Genet Genomics 2025:S1673-8527(25)00114-6. [PMID: 40254159 DOI: 10.1016/j.jgg.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
Nitric oxide (NO) is a key vasodilator that regulates vascular pressure and blood flow. Tibetans have developed a "blunted" mechanism for regulating NO levels at high altitude, with GTP cyclohydrolase 1 (GCH1) identified as a key candidate gene. Here, we present comprehensive genetic and functional analyses of GCH1, which exhibits strong Darwinian positive selection in Tibetans. We show that Tibetan-enriched GCH1 variants down-regulate its expression in the blood of Tibetans. Based on this observation, we generate the heterozygous Gch1 knockout (Gch1+/-) mouse model to simulate its downregulation in Tibetans. We find that under prolonged hypoxia, the Gch1+/- mice have relatively higher blood NO and blood oxygen saturation levels compared to the wild-type (WT) controls, providing better oxygen supplies to the cardiovascular and pulmonary systems. Markedly, hypoxia-induced cardiac hypertrophy and pulmonary remodeling are significantly attenuated in the Gch1+/- mice compared with the WT controls, likely due to the adaptive changes in molecular regulations related to metabolism, inflammation, circadian rhythm, extracellular matrix, and oxidative stress. This study sheds light on the role of GCH1 in regulating blood NO, contributing to the physiological adaptation of the cardiovascular and pulmonary systems in Tibetans at high altitude.
Collapse
Affiliation(s)
- Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China; School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Baimakangzhuo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, Xizang 850000, China
| | - Xuebin Qi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650223, China
| | - Kai Liu
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Liya Li
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
3
|
Stewart D, Albrecht U. Beyond vision: effects of light on the circadian clock and mood-related behaviours. NPJ BIOLOGICAL TIMING AND SLEEP 2025; 2:12. [PMID: 40092590 PMCID: PMC11906358 DOI: 10.1038/s44323-025-00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Light is a crucial environmental factor that influences various aspects of life, including physiological and psychological processes. While light is well-known for its role in enabling humans and other animals to perceive their surroundings, its influence extends beyond vision. Importantly, light affects our internal time-keeping system, the circadian clock, which regulates daily rhythms of biochemical and physiological processes, ultimately impacting mood and behaviour. The 24-h availability of light can have profound effects on our well-being, both physically and mentally, as seen in cases of jet lag and shift work. This review summarizes the intricate relationships between light, the circadian clock, and mood-related behaviours, exploring the underlying mechanisms and its implications for health.
Collapse
Affiliation(s)
- Dean Stewart
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
4
|
Pereira Lobo F, Benjamim DM, da Silva TTM, de Oliveira MD. Molecular and Functional Convergences Associated with Complex Multicellularity in Eukarya. Mol Biol Evol 2025; 42:msaf013. [PMID: 39877976 PMCID: PMC11827588 DOI: 10.1093/molbev/msaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 01/31/2025] Open
Abstract
A key trait of Eukarya is the independent evolution of complex multicellularity in animals, land plants, fungi, brown algae, and red algae. This phenotype is characterized by the initial exaptation of cell-cell adhesion genes followed by the emergence of mechanisms for cell-cell communication, together with the expansion of transcription factor gene families responsible for cell and tissue identity. The number of cell types is commonly used as a quantitative proxy for biological complexity in comparative genomics studies. While expansions of individual gene families have been associated with variations in the number of cell types within individual complex multicellular lineages, the molecular and functional roles responsible for the independent evolution of complex multicellular across Eukarya remain poorly understood. We employed a phylogeny-aware strategy to conduct a genomic-scale search for associations between the number of cell types and the abundance of genomic components across a phylogenetically diverse set of 81 eukaryotic species, including species from all complex multicellular lineages. Our annotation schemas represent 2 complimentary aspects of genomic information: homology, represented by conserved sequences, and function, represented by Gene Ontology terms. We found many gene families sharing common biological themes that define complex multicellular to be independently expanded in 2 or more complex multicellular lineages, such as components of the extracellular matrix, cell-cell communication mechanisms, and developmental pathways. Additionally, we describe many previously unknown associations of biological themes and biological complexity, such as expansions of genes playing roles in wound response, immunity, cell migration, regulatory processes, and response to natural rhythms. Together, our findings unveil a set of functional and molecular convergences independently expanded in complex multicellular lineages likely due to the common selective pressures in their lifestyles.
Collapse
Affiliation(s)
- Francisco Pereira Lobo
- Laboratório de Algoritmos em Biologia, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dalbert Macedo Benjamim
- Laboratório de Algoritmos em Biologia, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thieres Tayroni Martins da Silva
- Laboratório de Algoritmos em Biologia, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maycon Douglas de Oliveira
- Laboratório de Algoritmos em Biologia, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Imamura K, Bota A, Shirafuji T, Takumi T. The blues and rhythm. Neurosci Res 2025; 211:49-56. [PMID: 38000448 DOI: 10.1016/j.neures.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023]
Abstract
Most organisms, including humans, show daily rhythms in many aspects of physiology and behavior, and abnormalities in the rhythms are potential risk factors for various diseases. Mood disorders such as depression are no exception. Accumulating evidence suggests strong associations between circadian disturbances and the development of depression. Numerous studies have shown that interventions to circadian rhythms trigger depression-like phenotypes in human cases and animal models. Conversely, mood changes can affect circadian rhythms as symptoms of depression. Our preliminary data suggest that the phosphorylation signal pathway of the clock protein may act as a common pathway for mood and clock regulation. We hypothesize that mood regulation and circadian rhythms may influence each other and may share a common regulatory mechanism. This review provides an overview of circadian disturbances in animal models and human patients with depression.
Collapse
Affiliation(s)
- Kiyomichi Imamura
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan
| | - Ayaka Bota
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan
| | - Toshihiko Shirafuji
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan; RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe 650-0047, Japan.
| |
Collapse
|
6
|
Tang Y, Zhang L, Huang P, She Z, Luo S, Peng H, Chen Y, Luo J, Duan W, Xiao Y, Liu L, Liu L. Understanding the intricacies of cellular mechanisms in remyelination: The role of circadian rhythm. Neurochem Int 2025; 183:105929. [PMID: 39756585 DOI: 10.1016/j.neuint.2025.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The term "circadian rhythm" refers to the 24-h oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis. Various studies have shown that the circadian rhythm regulates various cellular molecular mechanisms and signaling pathways involved in remyelination. The process of remyelination is primarily mediated by oligodendrocyte precursor cells (OPCs), oligodendrocytes, microglia, and astrocytes. OPCs are activated, proliferate, migrate, and ultimately differentiate into oligodendrocytes after demyelination, involving many key signaling pathway and regulatory factors. Activated microglia secretes important cytokines and chemokines, promoting OPC proliferation and differentiation, and phagocytoses myelin debris that inhibits remyelination. Astrocytes play a crucial role in supporting remyelination by secreting signals that promote remyelination or facilitate the phagocytosis of myelin debris by microglia. Additionally, cell-to-cell communication via gap junctions allows for intimate contact between astrocytes and oligodendrocytes, providing metabolic support for oligodendrocytes. Therefore, gaining a deeper understanding of the mechanisms and molecular pathways of the circadian rhythm at various stages of remyelination can help elucidate the fundamental characteristics of remyelination and provide insights into treating demyelinating disorders.
Collapse
Affiliation(s)
- Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| |
Collapse
|
7
|
Mao W, Ge X, Chen Q, Li JD. Epigenetic Mechanisms in the Transcriptional Regulation of Circadian Rhythm in Mammals. BIOLOGY 2025; 14:42. [PMID: 39857273 PMCID: PMC11762092 DOI: 10.3390/biology14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025]
Abstract
Almost all organisms, from the simplest bacteria to advanced mammals, havea near 24 h circadian rhythm. Circadian rhythms are highly conserved across different life forms and are regulated by circadian genes as well as by related transcription factors. Transcription factors are fundamental to circadian rhythms, influencing gene expression, behavior in plants and animals, and human diseases. This review examines the foundational research on transcriptional regulation of circadian rhythms, emphasizing histone modifications, chromatin remodeling, and Pol II pausing control. These studies have enhanced our understanding of transcriptional regulation within biological circadian rhythms and the importance of circadian biology in human health. Finally, we summarize the progress and challenges in these three areas of regulation to move the field forward.
Collapse
Affiliation(s)
- Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, China; (W.M.); (X.G.)
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xingnan Ge
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, China; (W.M.); (X.G.)
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, China; (W.M.); (X.G.)
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Jia-Da Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
8
|
Häggqvist IM, Kärhä P, Kautiainen H, Snellman E, Pasternack R, Partonen T. Infrared-A to improve mood: an exploratory study of water-filtered infrared-A (wIRA) exposure. Photochem Photobiol Sci 2024; 23:2045-2056. [PMID: 39441451 DOI: 10.1007/s43630-024-00650-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Diurnal preference to eveningness might predispose to depression. There is preliminary evidence of infrared-A (IR-A) induced whole-body hyperthermia (WBH) in the treatment of depression. In this exploratory study with 19 adults, we investigated the effects of a 20-min exposure of water-filtered IR-A (wIRA) to the skin of back and buttock area, without inducing WBH, on mood and assessed the outcome by diurnal preference (#R19047, approval on 7 May 2019). The skin received irradiation with an integrated power of 102.4 W in the wavelength region of 550-1350 nm and a total dose of 123 kJ over the total area of 0.0483 m2. The diurnal preference was assessed with a 6-item version of the Morningness-Eveningness Questionnaire (mMEQ). The 40-item Profile of Mood States (POMS) questionnaire was used to assess total mood disturbance (TMD). Core temperature was measured 30 min before, during and 30 min after the irradiation. Skin surface temperature was measured on baseline and every two minutes during the irradiation. The TMD improved immediately after the exposure, and this positive effect lasted for 24 h (p = 0.001) as well as for 2 weeks (p = 0.02). Concerning the diurnal preference, the positive effect on mood was immediate and lasted for 24 h in evening types (p = 0.02) and for 2 weeks in morning types (p = 0.04). During the exposure, core body temperature was constantly lower in morning types compared to evening types. This study gives us new information on the effects of near-infrared radiation, without inducing WBH, through the skin on mood.
Collapse
Affiliation(s)
- Iina-Maria Häggqvist
- Department of Dermatology, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland.
- Department of Dermatology and Allergology, Päijät-Häme Social and Health Care Group, Lahti, Finland.
- Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland.
| | - Petri Kärhä
- Metrology Research Institute, Aalto University, Espoo, Finland
| | - Hannu Kautiainen
- Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Erna Snellman
- Department of Dermatology, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
- Department of Allergology and Dermatology, Tampere University Hospital, Tampere, Finland
| | - Rafael Pasternack
- Department of Dermatology, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
- Department of Allergology and Dermatology, Tampere University Hospital, Tampere, Finland
| | - Timo Partonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
9
|
Zhou Q, Su Y, Wang R, Song Z, Ge H, Qin X. The nuclear transportation of CHRONO regulates the circadian rhythm. J Biol Chem 2024; 300:107917. [PMID: 39454958 PMCID: PMC11599456 DOI: 10.1016/j.jbc.2024.107917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The pace of the endogenous circadian clock is important for organisms to maintain homeostasis. CHRONO has been shown to be a core component of the mammalian clock and has recently been implicated to function in several important physiological aspects. To function properly, CHRONO needs to enter the nucleus to repress transcription. We have previously shown that the N terminus of CHRONO is required for its nuclear entry. However, how CHRONO enters the nucleus and regulates the circadian clock remains unknown. Here, we report that a novel nonclassical nuclear localization signal in the N terminus of CHRONO is responsible for its nuclear entry. Multiple nuclear transporters are identified that facilitate the nuclear import of CHRONO. We show that the Arg63 is the critical amino acid of the nuclear localization signal. Using prime editing technology, we precisely edit the Arg63 to Ala at the genomic loci and demonstrate that this mutation prolongs the circadian period, which is similar to knockdown of CHRONO. By using the CHRONO KO and R63A mutant cells, we also investigated the changes in the cytoplasmic/nuclear distribution of BMAL1. We show that BMAL1 localizes more in the cytoplasm in the deficiency of CHRONO nuclear entry. These results provide a model for CHRONO nuclear entry using a network of importins involved in the regulation of the circadian period.
Collapse
Affiliation(s)
- Qin Zhou
- Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunxia Su
- Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ruohan Wang
- Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Zhiyuan Song
- Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Honghua Ge
- Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China.
| | - Ximing Qin
- Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China.
| |
Collapse
|
10
|
Li W, Song J, Tu H, Jiang S, Pan B, Li J, Zhao Y, Chen L, Xu Q. Genome sequencing of Coryphaenoides yaquinae reveals convergent and lineage-specific molecular evolution in deep-sea adaptation. Mol Ecol Resour 2024; 24:e13989. [PMID: 38946220 DOI: 10.1111/1755-0998.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Abyssal (3501-6500 m) and hadal (>6500 m) fauna evolve under harsh abiotic stresses, characterized by high hydrostatic pressure, darkness and food shortage, providing unique opportunities to investigate mechanisms underlying environmental adaptation. Genomes of several hadal species have recently been reported. However, the genetic adaptation of deep sea species across a broad spectrum of ocean depths has yet to be thoroughly investigated, due to the challenges imposed by collecting the deep sea species. To elucidate the correlation between genetic innovation and vertical distribution, we generated a chromosome-level genome assembly of the macrourids Coryphaenoides yaquinae, which is widely distributed in the abyssal/hadal zone ranging from 3655 to 7259 m in depth. Genomic comparisons among shallow, abyssal and hadal-living species identified idiosyncratic and convergent genetic alterations underlying the extraordinary adaptations of deep-sea species including light perception, circadian regulation, hydrostatic pressure and hunger tolerance. The deep-sea fishes (Coryphaenoides Sp. and Pseudoliparis swirei) venturing into various ocean depths independently have undergone convergent amino acid substitutions in multiple proteins such as rhodopsin 1, pancreatic and duodenal homeobox 1 and melanocortin 4 receptor which are known or verified in zebrafish to be related with vision adaptation and energy expenditure. Convergent evolution events were also identified in heat shock protein 90 beta family member 1 and valosin-containing protein genes known to be related to hydrostatic pressure adaptation specifically in fishes found around the hadal range. The uncovering of the molecular convergence among the deep-sea species shed new light on the common genetic innovations required for deep-sea adaptation by the fishes.
Collapse
Affiliation(s)
- Wenhao Li
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Jie Song
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Huaming Tu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Shouwen Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Binbin Pan
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiazhen Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yongpeng Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| |
Collapse
|
11
|
Wang J, Liu S, Sun L, Kong Z, Chai J, Wen J, Tian X, Chen N, Xu C. Association of attenuated leptin signaling pathways with impaired cardiac function under prolonged high-altitude hypoxia. Sci Rep 2024; 14:10206. [PMID: 38702334 PMCID: PMC11068766 DOI: 10.1038/s41598-024-59559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024] Open
Abstract
Cardiovascular function and adipose metabolism were markedly influenced under high altitudes. However, the interplay between adipokines and heart under hypoxia remains to be elucidated. We aim to explore alterations of adipokines and underlying mechanisms in regulating cardiac function under high altitudes. We investigated the cardiopulmonary function and five adipokines in Antarctic expeditioners at Kunlun Station (4,087 m) for 20 days and established rats exposed to hypobaric hypoxia (5,000 m), simulating Kunlun Station. Antarctic expeditioners exhibited elevated heart rate, blood pressure, systemic vascular resistance, and decreased cardiac pumping function. Plasma creatine phosphokinase-MB (CK-MB) and platelet-endothelial cell adhesion molecule-1 (sPecam-1) increased, and leptin, resistin, and lipocalin-2 decreased. Plasma leptin significantly correlated with altered cardiac function indicators. Additionally, hypoxic rats manifested impaired left ventricular systolic and diastolic function, elevated plasma CK-MB and sPecam-1, and decreased plasma leptin. Chronic hypoxia for 14 days led to increased myocyte hypertrophy, fibrosis, apoptosis, and mitochondrial dysfunction, coupled with reduced protein levels of leptin signaling pathways in myocardial tissues. Cardiac transcriptome analysis revealed leptin was associated with downregulated genes involved in rhythm, Na+/K+ transport, and cell skeleton. In conclusion, chronic hypoxia significantly reduced leptin signaling pathways in cardiac tissues along with significant pathological changes, thus highlighting the pivotal role of leptin in regulation of cardiac function under high altitudes.
Collapse
Affiliation(s)
- Jianan Wang
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Shiying Liu
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Lihong Sun
- Center for Experimental Animal Research, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Zhanping Kong
- Qinghai Provincial People's Hospital, Xining, 810000, Qinghai, China
| | - Jiamin Chai
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jigang Wen
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xuan Tian
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Nan Chen
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Chengli Xu
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| |
Collapse
|
12
|
Pourali G, Ahmadzade AM, Arastonejad M, Pourali R, Kazemi D, Ghasemirad H, Khazaei M, Fiuji H, Nassiri M, Hassanian SM, Ferns GA, Avan A. The circadian clock as a potential biomarker and therapeutic target in pancreatic cancer. Mol Cell Biochem 2024; 479:1243-1255. [PMID: 37405534 DOI: 10.1007/s11010-023-04790-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
Pancreatic cancer (PC) has a very high mortality rate globally. Despite ongoing efforts, its prognosis has not improved significantly over the last two decades. Thus, further approaches for optimizing treatment are required. Various biological processes oscillate in a circadian rhythm and are regulated by an endogenous clock. The machinery controlling the circadian cycle is tightly coupled with the cell cycle and can interact with tumor suppressor genes/oncogenes; and can therefore potentially influence cancer progression. Understanding the detailed interactions may lead to the discovery of prognostic and diagnostic biomarkers and new potential targets for treatment. Here, we explain how the circadian system relates to the cell cycle, cancer, and tumor suppressor genes/oncogenes. Furthermore, we propose that circadian clock genes may be potential biomarkers for some cancers and review the current advances in the treatment of PC by targeting the circadian clock. Despite efforts to diagnose pancreatic cancer early, it still remains a cancer with poor prognosis and high mortality rates. While studies have shown the role of molecular clock disruption in tumor initiation, development, and therapy resistance, the role of circadian genes in pancreatic cancer pathogenesis is not yet fully understood and further studies are required to better understand the potential of circadian genes as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Mahmoud Ahmadzade
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahshid Arastonejad
- Department of Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Roozbeh Pourali
- Student Research Committee, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | - Hamidreza Ghasemirad
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, 4059, Australia.
- Translational Research Institute, Woolloongabba, 37 Kent Street, QLD, 4102, Australia.
| |
Collapse
|
13
|
Zhou Q, Wang R, Su Y, Wang B, Zhang Y, Qin X. The molecular circadian rhythms regulating the cell cycle. J Cell Biochem 2024; 125:e30539. [PMID: 38372014 DOI: 10.1002/jcb.30539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
The circadian clock controls the expression of a large proportion of protein-coding genes in mammals and can modulate a wide range of physiological processes. Recent studies have demonstrated that disruption or dysregulation of the circadian clock is involved in the development and progression of several diseases, including cancer. The cell cycle is considered to be the fundamental process related to cancer. Accumulating evidence suggests that the circadian clock can control the expression of a large number of genes related to the cell cycle. This article reviews the mechanism of cell cycle-related genes whose chromatin regulatory elements are rhythmically occupied by core circadian clock transcription factors, while their RNAs are rhythmically expressed. This article further reviews the identified oscillatory cell cycle-related genes in higher organisms such as baboons and humans. The potential functions of these identified genes in regulating cell cycle progression are also discussed. Understanding how the molecular clock controls the expression of cell cycle genes will be beneficial for combating and treating cancer.
Collapse
Affiliation(s)
- Qin Zhou
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ruohan Wang
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunxia Su
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Bowen Wang
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunfei Zhang
- Modern Experiment Technology Center, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ximing Qin
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| |
Collapse
|
14
|
Fernández-Martínez J, Ramírez-Casas Y, Yang Y, Aranda-Martínez P, Martínez-Ruiz L, Escames G, Acuña-Castroviejo D. From Chronodisruption to Sarcopenia: The Therapeutic Potential of Melatonin. Biomolecules 2023; 13:1779. [PMID: 38136651 PMCID: PMC10741491 DOI: 10.3390/biom13121779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Sarcopenia is an age-related condition that involves a progressive decline in muscle mass and function, leading to increased risk of falls, frailty, and mortality. Although the exact mechanisms are not fully understood, aging-related processes like inflammation, oxidative stress, reduced mitochondrial capacity, and cell apoptosis contribute to this decline. Disruption of the circadian system with age may initiate these pathways in skeletal muscle, preceding the onset of sarcopenia. At present, there is no pharmacological treatment for sarcopenia, only resistance exercise and proper nutrition may delay its onset. Melatonin, derived from tryptophan, emerges as an exceptional candidate for treating sarcopenia due to its chronobiotic, antioxidant, and anti-inflammatory properties. Its impact on mitochondria and organelle, where it is synthesized and crucial in aging skeletal muscle, further highlights its potential. In this review, we discuss the influence of clock genes in muscular aging, with special reference to peripheral clock genes in the skeletal muscle, as well as their relationship with melatonin, which is proposed as a potential therapy against sarcopenia.
Collapse
Affiliation(s)
- José Fernández-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Yolanda Ramírez-Casas
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China;
| | - Paula Aranda-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Laura Martínez-Ruiz
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Germaine Escames
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- UGC de Laboratorios Clínicos, Hospital Universitario San Cecilio, 18016 Granada, Spain
| |
Collapse
|
15
|
Nicolaides NC, Chrousos GP. The human glucocorticoid receptor. VITAMINS AND HORMONES 2023; 123:417-438. [PMID: 37717993 DOI: 10.1016/bs.vh.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Glucocorticoids are members of steroid hormones that are biosynthesized in the intermediate cellular zone of the adrenal cortex (zona fasciculata) and released into the peripheral blood as final products of the hypothalamic-pituitary-adrenal (HPA) axis, as well as under the control of the circadian biologic system. These molecules regulate every physiologic function of the organism as they bind to an almost ubiquitous hormone-activated transcription factor, the glucocorticoid receptor (GR), which influences the rate of transcription of a huge number of target genes amounting to up to 20% of the mammalian genome. The evolving progress of cellular, molecular and computational-structural biology and the implication of epigenetics in every-day clinical practice have enabled us a deeper and ever-increasing understanding of how target tissues respond to natural and synthetic glucocorticoids. In this chapter, we summarize the current knowledge on the structure, expression, function and signaling of the human glucocorticoid receptor in normal and pathologic conditions.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
16
|
Francis TC, Porcu A. Emotionally clocked out: cell-type specific regulation of mood and anxiety by the circadian clock system in the brain. Front Mol Neurosci 2023; 16:1188184. [PMID: 37441675 PMCID: PMC10333695 DOI: 10.3389/fnmol.2023.1188184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/29/2023] [Indexed: 07/15/2023] Open
Abstract
Circadian rhythms are self-sustained oscillations of biological systems that allow an organism to anticipate periodic changes in the environment and optimally align feeding, sleep, wakefulness, and the physiological and biochemical processes that support them within the 24 h cycle. These rhythms are generated at a cellular level by a set of genes, known as clock genes, which code for proteins that inhibit their own transcription in a negative feedback loop and can be perturbed by stress, a risk factor for the development of mood and anxiety disorders. A role for circadian clocks in mood and anxiety has been suggested for decades on the basis of clinical observations, and the dysregulation of circadian rhythms is a prominent clinical feature of stress-related disorders. Despite our understanding of central clock structure and function, the effect of circadian dysregulation in different neuronal subtypes in the suprachiasmatic nucleus (SCN), the master pacemaker region, as well as other brain systems regulating mood, including mesolimbic and limbic circuits, is just beginning to be elucidated. In the brain, circadian clocks regulate neuronal physiological functions, including neuronal activity, synaptic plasticity, protein expression, and neurotransmitter release which in turn affect mood-related behaviors via cell-type specific mechanisms. Both animal and human studies have revealed an association between circadian misalignment and mood disorders and suggest that internal temporal desynchrony might be part of the etiology of psychiatric disorders. To date, little work has been conducted associating mood-related phenotypes to cell-specific effects of the circadian clock disruptions. In this review, we discuss existing literature on how clock-driven changes in specific neuronal cell types might disrupt phase relationships among cellular communication, leading to neuronal circuit dysfunction and changes in mood-related behavior. In addition, we examine cell-type specific circuitry underlying mood dysfunction and discuss how this circuitry could affect circadian clock. We provide a focus for future research in this area and a perspective on chronotherapies for mood and anxiety disorders.
Collapse
Affiliation(s)
- T. Chase Francis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Alessandra Porcu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
17
|
Aranda-Martínez P, Fernández-Martínez J, Ramírez-Casas Y, Rodríguez-Santana C, Rusanova I, Escames G, Acuña-Castroviejo D. Chronodisruption and Loss of Melatonin Rhythm, Associated with Alterations in Daily Motor Activity and Mitochondrial Dynamics in Parkinsonian Zebrafish, Are Corrected by Melatonin Treatment. Antioxidants (Basel) 2023; 12:antiox12040954. [PMID: 37107331 PMCID: PMC10136267 DOI: 10.3390/antiox12040954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Beyond sleep/wake, clock genes regulate the daily rhythms of melatonin production, motor activity, innate immunity, and mitochondrial dynamics, among others. All these rhythms are affected in Parkinson's disease (PD), suggesting that chronodisruption may be an early stage of the disease. The aim of this study was to evaluate the connection between clock genes and these rhythms in PD, and whether melatonin administration reestablished the normal clock function. Parkinsonism was induced with 600 μM MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in 24-120 h post fertilization (hpf) zebrafish embryos and melatonin was administered at a dose of 1 μM. Day-night melatonin rhythm disappeared in MPTP-treated embryos, which showed an advance in the activity phase in parallel with changes in the rhythm of clock genes. An alteration in the fission-to-fusion mitochondrial dynamics was also detected in parkinsonian embryos, increasing the former and leading to apoptosis. Melatonin administration to MPTP-treated embryos fully restored the circadian system, including the rhythms of clock genes, motor activity, melatonin rhythm, and mitochondrial dynamics, and decreasing apoptosis. Because clock-controlled rhythms such as sleep/wake alterations are early events in PD, the data here reported may point to chronodisruption as one initial pathophysiological event of the disease.
Collapse
Affiliation(s)
- Paula Aranda-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| | - José Fernández-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| | - Yolanda Ramírez-Casas
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| | - César Rodríguez-Santana
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| | - Iryna Rusanova
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Ibs.Granada, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Germaine Escames
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Ibs.Granada, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Ibs.Granada, Hospital Universitario San Cecilio, 18016 Granada, Spain
- UGC de Laboratorios Clínicos, Hospital Universitario San Cecilio, 18016 Granada, Spain
| |
Collapse
|
18
|
Hoyt KR, Li A, Yoon H, Weisenseel Z, Watkins J, Fischer A, Obrietan K. Ribosomal S6 Kinase Regulates the Timing and Entrainment of the Mammalian Circadian Clock Located in the Suprachiasmatic Nucleus. Neuroscience 2023; 516:15-26. [PMID: 36796752 PMCID: PMC10099606 DOI: 10.1016/j.neuroscience.2023.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Previous work in the suprachiasmatic nucleus (SCN), the locus of the principal circadian clock, has shown that the activation state of the ERK/MAPK effector p90 ribosomal S6 kinase (RSK) is responsive to photic stimulation and is modulated across the circadian cycle. These data raise the prospect that RSK signaling contributes to both SCN clock timing and entrainment. Here, we found marked expression of the three main RSK isoforms (RSK1/2/3) within the SCN of C57/Bl6 mice. Further, using a combination of immunolabeling and proximity ligation assays, we show that photic stimulation led to the dissociation of RSK from ERK and the translocation of RSK from the cytoplasm to the nucleus. To test for RSK functionality following light treatment, animals received an intraventricular infusion of the selective RSK inhibitor, SL0101, 30 min prior to light (100 lux) exposure during the early circadian night (circadian time 15). Notably, the disruption of RSK signaling led to a significant reduction (∼45 min) in the phase delaying effects of light, relative to vehicle-infused mice. To test the potential contribution of RSK signaling to SCN pacemaker activity, slice cultures from a per1-Venus circadian reporter mouse line were chronically treated with SL0101. Suppression of RSK signaling led to a significant lengthening of the circadian period (∼40 min), relative to vehicle-treated slices. Together, these data reveal that RSK functions as a signaling intermediate that regulates light-evoked clock entrainment and the inherent time keeping properties of the SCN.
Collapse
Affiliation(s)
- Kari R Hoyt
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA.
| | - Aiqing Li
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Hyojung Yoon
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Zachary Weisenseel
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Jacob Watkins
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Alex Fischer
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
19
|
Xu L, Jia J, Miao S, Gong L, Wang J, He S, Zhang Y. Aerobic exercise reduced the amount of CHRONO bound to BMAL1 and ameliorated glucose metabolic dysfunction in skeletal muscle of high-fat diet-fed mice. Life Sci 2023; 324:121696. [PMID: 37061124 DOI: 10.1016/j.lfs.2023.121696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
AIMS The purpose of this study was to investigate the effects of aerobic exercise on the CHRONO-BMAL1 pathway and glucose metabolism in skeletal muscle of high-fat diet (HFD)-fed mice. MAIN METHODS Male C57BL/6J mice were randomly allocated into four groups: normal chow diet with control (NCD + CON), NCD with exercise (NCD + EXE), HFD with control (HFD + CON) and HFD with exercise (HFD + EXE). The NCD and HFD groups were respectively fed a diet of 10 % and 60 % kilocalories from fat for 12 weeks. During the dietary intervention, EXE groups were subjected to 70 % VO2max intensity of treadmill exercise six times per week for 12 weeks. Body weight, energy intake, fat weight, serum lipid profiles, systemic glucose homeostasis, the amount of CHRONO bound to BMAL1, the enzymatic activity, mRNA and protein expression involved in glucose metabolism of skeletal muscle were measured. KEY FINDINGS The results showed that the 12-week HFD feeding without exercise induced weight gain, serum dyslipidemia and insulin resistance. Furthermore, HFD increased the amount of CHRONO bound to BMAL1 and repressed the glucose metabolism in skeletal muscle. However, aerobic exercise prevented weight gain, serum dyslipidemia and systemic insulin resistance in the HFD-fed mice. Meanwhile, aerobic exercise also decreased the amount of CHRONO bound to BMAL1 and increased the glucose uptake, glucose oxidation and glycogenesis in skeletal muscle of the HFD-fed mice. SIGNIFICANCE These data suggested that aerobic exercise could counterbalance CHRONO interacted with BMAL1 and prevent glucose metabolism dysfunction of skeletal muscle, and finally maintain whole-body insulin sensitivity in the HFD-fed mice.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Jie Jia
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Shudan Miao
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Jin Wang
- College of Sports Science, Tianjin Normal University, Tianjin 300382, China
| | - Shiyi He
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China.
| | - Ying Zhang
- School of Sport Science, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
20
|
Courtin C, Marie-Claire C, Gross G, Hennion V, Mundwiller E, Guégan J, Meyrel M, Bellivier F, Etain B. Gene expression of circadian genes and CIART in bipolar disorder: A preliminary case-control study. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110691. [PMID: 36481223 DOI: 10.1016/j.pnpbp.2022.110691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Based on the observed circadian rhythms disruptions and sleep abnormalities in bipolar disorders (BD), a chronobiological model has been proposed suggesting that core clock genes play a central role in the vulnerability to the disorder. In this context, the analysis of circadian genes expression levels is particularly relevant, however studies focused on the whole set of core clock genes are scarce. We compared the levels of expression of 19 circadian genes (including the recently described circadian repressor (CIART)) in 37 euthymic individuals with BD and 20 healthy controls (HC), using data obtained by RNA sequencing of lymphoblastoid cell lines and validated the results using RT-qPCR. RNA sequencing data showed that CIART gene expression was correlated with those of ARNTL, ARNTL2, DBP, PER2 and TIMELESS. Data from RNA sequencing showed that the level of expression of four circadian genes (ARNTL, ARNTL2, BHLHE41 and CIART) discriminated individuals with BD from HC. We replicated this result using RT-qPCR for ARNTL and CIART. This study suggests that an imbalance between activation/repression of the transcription within the circadian system in individuals with BD as compared to HC and as such opens avenues for further research in larger independent samples combining both expression and epigenetic analyses.
Collapse
Affiliation(s)
- Cindie Courtin
- Université de Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, OTeN, Paris, France
| | - Cynthia Marie-Claire
- Université de Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, OTeN, Paris, France.
| | - Gregory Gross
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Vincent Hennion
- Université de Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, OTeN, Paris, France; Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | | | - Justine Guégan
- Data Analysis Core platform, Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Manon Meyrel
- Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | - Frank Bellivier
- Université de Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, OTeN, Paris, France; Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | - Bruno Etain
- Université de Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, OTeN, Paris, France; Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| |
Collapse
|
21
|
|
22
|
Costa R, Mangini C, Domenie ED, Zarantonello L, Montagnese S. Circadian rhythms and the liver. Liver Int 2023; 43:534-545. [PMID: 36577705 DOI: 10.1111/liv.15501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
This narrative review briefly describes the mammalian circadian timing system, the specific features of the liver clock, also by comparison with other peripheral clocks, the role of the liver clock in the preparation of food intake, and its relationship with energy metabolism. It then goes on to provide a chronobiological perspective of the pathophysiology and management of several types of liver disease, with a particular focus on metabolic-associated fatty liver disease (MAFLD), decompensated cirrhosis and liver transplantation. Finally, it provides some insight into the potential contribution of circadian principles and circadian hygiene practices in preventing MAFLD, improving the prognosis of advanced liver disease and modulating liver transplantation outcomes.
Collapse
Affiliation(s)
- Rodolfo Costa
- Institute of Neuroscience, National Research Council (CNR), Padova, Italy.,Department of Biology, University of Padova, Padova, Italy.,Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Chiara Mangini
- Department of Medicine, University of Padova, Padova, Italy
| | | | | | - Sara Montagnese
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
23
|
Albrecht U. The circadian system and mood related behavior in mice. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:269-291. [PMID: 37709379 DOI: 10.1016/bs.apcsb.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Most organisms on earth have evolved an internal clock in order to predict daily recurring events. This clock called circadian clock has a period of about 24 h and allows organisms to organize biochemical and physiological processes over one day. Changes in lighting conditions as they occur naturally over seasons, or man made by jet lag or shift work, advance or delay clock phase in order to synchronize an organism's physiology to the environment. A misalignment of the clock to its environment results in sleep disturbances and mood disorders. Although there are strong associations between the circadian clock and mood disorders such as depression, the underlying molecular mechanisms are not well understood. This review describes the currently known molecular links between circadian clock components and mood related behaviors in mice, which will help to understand the causal links between the clock and mood in humans in the future.
Collapse
Affiliation(s)
- U Albrecht
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
24
|
Mood phenotypes in rodent models with circadian disturbances. Neurobiol Sleep Circadian Rhythms 2022; 13:100083. [PMID: 36345502 PMCID: PMC9636574 DOI: 10.1016/j.nbscr.2022.100083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Many physiological functions with approximately 24-h rhythmicity (circadian rhythms) are generated by an internal time-measuring system of the circadian clock. While sleep/wake cycles, feeding patterns, and body temperature are the most widely known physiological functions under the regulation of the circadian clock, physiological regulation by the circadian clock extends to higher brain functions. Accumulating evidence suggests strong associations between the circadian clock and mood disorders such as depression, but the underlying mechanisms of the functional relationship between them are obscure. This review overviews rodent models with disrupted circadian rhythms on depression-related responses. The animal models with circadian disturbances (by clock gene mutations and artifactual interventions) will help understand the causal link between the circadian clock and depression. The molecular mechanisms of the mammalian circadian rhythm are systematically overviewed. We overview how genetic and pharmacological manipulations of clock (related) genes are linked to mood phenotypes. We overview how artificial perturbations, such as SCN lesions and aberrant light, affect circadian rhythm and mood.
Collapse
|
25
|
Skeletal-Muscle-Specific Overexpression of Chrono Leads to Disruption of Glucose Metabolism and Exercise Capacity. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081233. [PMID: 36013411 PMCID: PMC9410257 DOI: 10.3390/life12081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
Disruption of circadian rhythms is related to disorders of glucose metabolism, and the molecular clock also exists in skeletal muscle. The ChIP-derived repressor of network oscillator (Chrono) and brain and muscle ARNT-like 1 (Bmal1) are core circadian components. Chrono is considered to be the repressor of Bmal1, and the Chrono–Bmal1 pathway is important in regulating the circadian rhythm; it has been speculated that this pathway could be a new mechanism for regulating glucose metabolism. The purpose of this study was to investigate the effects of Chrono on glucose metabolism in skeletal muscle and exercise capacity by using mice with skeletal-muscle-specific overexpression of Chrono (Chrono TG) and wild-type (WT) mice as the animal models. The results of this cross-sectional study indicated that the Chrono TG mice had an impaired glucose tolerance, lower exercise capacity, and higher levels of nonfasted blood glucose and glycogen content in skeletal muscle compared to WT mice. In addition, the Chrono TG mice also showed a significant increase in the amount of Chrono bound to Bmal1 according to a co-IP analysis; a remarkable decrease in mRNA expression of Tbc1d1, Glut4, Hk2, Pfkm, Pdp1, Gbe1, and Phka1, as well as in activity of Hk and protein expression of Ldhb; but higher mRNA expression of Pdk4 and protein expression of Ldha compared with those of WT mice. These data suggested the skeletal-muscle-specific overexpression of Chrono led to a greater amount of Chrono bound to Bmal1, which then could affect the glucose transporter, glucose oxidation, and glycogen utilization in skeletal muscle, as well as exercise capacity.
Collapse
|
26
|
The duper mutation reveals previously unsuspected functions of Cryptochrome 1 in circadian entrainment and heart disease. Proc Natl Acad Sci U S A 2022; 119:e2121883119. [PMID: 35930669 PMCID: PMC9371649 DOI: 10.1073/pnas.2121883119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Cryptochrome 1 (Cry1)-deficient duper mutant hamster has a short free-running period in constant darkness (τDD) and shows large phase shifts in response to brief light pulses. We tested whether this measure of the lability of the circadian phase is a general characteristic of Cry1-null animals and whether it indicates resistance to jet lag. Upon advance of the light:dark (LD) cycle, both duper hamsters and Cry1-/- mice re-entrained locomotor rhythms three times as fast as wild types. However, accelerated re-entrainment was dissociated from the amplified phase-response curve (PRC): unlike duper hamsters, Cry1-/- mice show no amplification of the phase response to 15' light pulses. Neither the amplified acute shifts nor the increased rate of re-entrainment in duper mutants is due to acceleration of the circadian clock: when mutants drank heavy water to lengthen the period, these aspects of the phenotype persisted. In light of the health consequences of circadian misalignment, we examined effects of duper and phase shifts on a hamster model of heart disease previously shown to be aggravated by repeated phase shifts. The mutation shortened the lifespan of cardiomyopathic hamsters relative to wild types, but this effect was eliminated when mutants experienced 8-h phase shifts every second week, to which they rapidly re-entrained. Our results reveal previously unsuspected roles of Cry1 in phase shifting and longevity in the face of heart disease. The duper mutant offers new opportunities to understand the basis of circadian disruption and jet lag.
Collapse
|
27
|
Zhang K, Wu Q, Liu W, Wang Y, Zhao L, Chen J, Liu H, Liu S, Li J, Zhang W, Zhan Q. FAM135B sustains the reservoir of Tip60-ATM assembly to promote DNA damage response. Clin Transl Med 2022; 12:e945. [PMID: 35979619 PMCID: PMC9386324 DOI: 10.1002/ctm2.945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Recently, the mechanism by which cells adapt to intrinsic and extrinsic stresses has received considerable attention. Tat-interactive protein 60-kDa/ataxia-telangiectasia-mutated (TIP60/ATM) axis-mediated DNA damage response (DDR) is vital for maintaining genomic integrity. METHODS Protein levels were detected by western blot, protein colocalisation was examined by immunofluorescence (IF) and protein interactions were measured by co-immunoprecipitation, proximity ligation assay and GST pull-down assays. Flow cytometry, comet assay and IF assays were used to explore the biological functions of sequence similarity 135 family member B (FAM135B) in DDR. Xenograft tumour, FAM135B transgenic mouse models and immunohistochemistry were utilised to confirm in vitro observations. RESULTS We identified a novel DDR regulator FAM135B which could protect cancer cells from genotoxic stress in vitro and in vivo. The overexpression of FAM135B promoted the removal of γH2AX and 53BP1 foci, whereas the elimination of FAM135B attenuated these effects. Consistently, our findings revealed that FAM135B could promote homologous recombination and non-homologous end-joining repairs. Further study demonstrated that FAM135B physically bound to the chromodomain of TIP60 and improved its histone acetyltransferase activity. Moreover, FAM135B enhanced the interactions between TIP60 and ATM under resting conditions. Intriguingly, the protein levels of FAM135B dramatically decreased following DNA damage stress but gradually increased during the DNA repair period. Thus, we proposed a potential DDR mechanism where FAM135B sustains a reservoir of pre-existing TIP60-ATM assemblies under resting conditions. Once cancer cells suffer DNA damage, FAM135B is released from TIP60, and the functioning pre-assembled TIP60-ATM complex participates in DDR. CONCLUSIONS We characterised FAM135B as a novel DDR regulator and further elucidated the role of the TIP60-ATM axis in response to DNA damage, which suggests that targeting FAM135B in combination with radiation therapy or chemotherapy could be a potentially effective approach for cancer treatment.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
| | - Wenzhong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
| | - Lianmei Zhao
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
| | - Haoyu Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Siqi Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Jinting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
- Department of OncologyCancer InstitutePeking University Shenzhen HospitalShenzhen Peking University‐Hong Kong University of Science and Technology (PKU‐HKUST) Medical CenterShenzhenChina
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
- Department of OncologyCancer InstitutePeking University Shenzhen HospitalShenzhen Peking University‐Hong Kong University of Science and Technology (PKU‐HKUST) Medical CenterShenzhenChina
- Peking University International Cancer InstituteBeijingChina
| |
Collapse
|
28
|
Osorio-Méndez D, Miller A, Begeman IJ, Kurth A, Hagle R, Rolph D, Dickson AL, Chen CH, Halloran M, Poss KD, Kang J. Voltage-gated sodium channel scn8a is required for innervation and regeneration of amputated adult zebrafish fins. Proc Natl Acad Sci U S A 2022; 119:e2200342119. [PMID: 35867745 PMCID: PMC9282381 DOI: 10.1073/pnas.2200342119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Teleost fishes and urodele amphibians can regenerate amputated appendages, whereas this ability is restricted to digit tips in adult mammals. One key component of appendage regeneration is reinnervation of the wound area. However, how innervation is regulated in injured appendages of adult vertebrates has seen limited research attention. From a forward genetics screen for temperature-sensitive defects in zebrafish fin regeneration, we identified a mutation that disrupted regeneration while also inducing paralysis at the restrictive temperature. Genetic mapping and complementation tests identify a mutation in the major neuronal voltage-gated sodium channel (VGSC) gene scn8ab. Conditional disruption of scn8ab impairs early regenerative events, including blastema formation, but does not affect morphogenesis of established regenerates. Whereas scn8ab mutations reduced neural activity as expected, they also disrupted axon regrowth and patterning in fin regenerates, resulting in hypoinnervation. Our findings indicate that the activity of VGSCs plays a proregenerative role by promoting innervation of appendage stumps.
Collapse
Affiliation(s)
- Daniel Osorio-Méndez
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Andrew Miller
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Ian J. Begeman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Andrew Kurth
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Ryan Hagle
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Daniela Rolph
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Amy L. Dickson
- Duke Regeneration Center, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Mary Halloran
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Kenneth D. Poss
- Duke Regeneration Center, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| |
Collapse
|
29
|
Fernández-Ortiz M, Sayed RKA, Román-Montoya Y, de Lama MÁR, Fernández-Martínez J, Ramírez-Casas Y, Florido-Ruiz J, Rusanova I, Escames G, Acuña-Castroviejo D. Age and Chronodisruption in Mouse Heart: Effect of the NLRP3 Inflammasome and Melatonin Therapy. Int J Mol Sci 2022; 23:ijms23126846. [PMID: 35743288 PMCID: PMC9224376 DOI: 10.3390/ijms23126846] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 02/04/2023] Open
Abstract
Age and age-dependent inflammation are two main risk factors for cardiovascular diseases. Aging can also affect clock gene-related impairments such as chronodisruption and has been linked to a decline in melatonin synthesis and aggravation of the NF-κB/NLRP3 innate immune response known as inflammaging. The molecular drivers of these mechanisms remain unknown. This study investigated the impact of aging and NLRP3 expression on the cardiac circadian system, and the actions of melatonin as a potential therapy to restore daily rhythms by mitigating inflammaging. We analyzed the circadian expression and rhythmicity of clock genes in heart tissue of wild-type and NLRP3-knockout mice at 3, 12, and 24 months of age, with and without melatonin treatment. Our results support that aging, NLRP3 inflammasome, and melatonin affected the cardiac clock genes expression, except for Rev-erbα, which was not influenced by genotype. Aging caused small phase changes in Clock, loss of rhythmicity in Per2 and Rorα, and mesor dampening of Clock, Bmal1, and Per2. NLRP3 inflammasome influenced the acrophase of Clock, Per2, and Rorα. Melatonin restored the acrophase and the rhythm of clock genes affected by age or NLRP3 activation. The administration of melatonin re-established murine cardiac homeostasis by reversing age-associated chronodisruption. Altogether, these results highlight new findings about the effects aging and NLRP3 inflammasome have on clock genes in cardiac tissue, pointing to continuous melatonin as a promising therapy to placate inflammaging and restore circadian rhythm in heart muscle. Additionally, light microscopy analysis showed age-related morphological impairments in cardiomyocytes, which were less severe in mice lacking NLRP3. Melatonin supplementation preserved the structure of cardiac muscle fibers in all experimental groups.
Collapse
Affiliation(s)
- Marisol Fernández-Ortiz
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (Y.R.-C.); (J.F.-R.); (I.R.); (G.E.)
- Department of Pediatrics, Division of Hematology-Oncology, Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs), 18012 Granada, Spain
| | - Ramy K. A. Sayed
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (Y.R.-C.); (J.F.-R.); (I.R.); (G.E.)
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Yolanda Román-Montoya
- Departamento de Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain;
| | - María Ángeles Rol de Lama
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB–Arrixaca, 30100 Murcia, Spain;
| | - José Fernández-Martínez
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (Y.R.-C.); (J.F.-R.); (I.R.); (G.E.)
| | - Yolanda Ramírez-Casas
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (Y.R.-C.); (J.F.-R.); (I.R.); (G.E.)
| | - Javier Florido-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (Y.R.-C.); (J.F.-R.); (I.R.); (G.E.)
| | - Iryna Rusanova
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (Y.R.-C.); (J.F.-R.); (I.R.); (G.E.)
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs), 18012 Granada, Spain
| | - Germaine Escames
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (Y.R.-C.); (J.F.-R.); (I.R.); (G.E.)
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs), 18012 Granada, Spain
| | - Darío Acuña-Castroviejo
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (Y.R.-C.); (J.F.-R.); (I.R.); (G.E.)
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs), 18012 Granada, Spain
- UGC de Laboratorios Clínicos, Hospital Universitario San Cecilio, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958241000 (ext. 20196)
| |
Collapse
|
30
|
Epigenetics of Autism Spectrum Disorder: Histone Deacetylases. Biol Psychiatry 2022; 91:922-933. [PMID: 35120709 DOI: 10.1016/j.biopsych.2021.11.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/08/2023]
Abstract
The etiology of autism spectrum disorder (ASD) remains unknown, but gene-environment interactions, mediated through epigenetic mechanisms, are thought to be a key contributing factor. Prenatal environmental factors have been shown to be associated with both increased risk of ASD and altered histone deacetylases (HDACs) or acetylation levels. The relationship between epigenetic changes and gene expression in ASD suggests that alterations in histone acetylation, which lead to changes in gene transcription, may play a key role in ASD. Alterations in the acetylome have been demonstrated for several genes in ASD, including genes involved in synaptic function, neuronal excitability, and immune responses, which are mechanisms previously implicated in ASD. We review preclinical and clinical studies that investigated HDACs and autism-associated behaviors and discuss risk genes for ASD that code for proteins associated with HDACs. HDACs are also implicated in neurodevelopmental disorders with a known genetic etiology, such as 15q11-q13 duplication and Phelan-McDermid syndrome, which share clinical features and diagnostic comorbidities (e.g., epilepsy, anxiety, and intellectual disability) with ASD. Furthermore, we highlight factors that affect the behavioral phenotype of acetylome changes, including sensitive developmental periods and brain region specificity in the context of epigenetic programming.
Collapse
|
31
|
Becker-Krail DD, Walker WH, Nelson RJ. The Ventral Tegmental Area and Nucleus Accumbens as Circadian Oscillators: Implications for Drug Abuse and Substance Use Disorders. Front Physiol 2022; 13:886704. [PMID: 35574492 PMCID: PMC9094703 DOI: 10.3389/fphys.2022.886704] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Circadian rhythms convergently evolved to allow for optimal synchronization of individuals’ physiological and behavioral processes with the Earth’s 24-h periodic cycling of environmental light and temperature. Whereas the suprachiasmatic nucleus (SCN) is considered the primary pacemaker of the mammalian circadian system, many extra-SCN oscillatory brain regions have been identified to not only exhibit sustainable rhythms in circadian molecular clock function, but also rhythms in overall region activity/function and mediated behaviors. In this review, we present the most recent evidence for the ventral tegmental area (VTA) and nucleus accumbens (NAc) to serve as extra-SCN oscillators and highlight studies that illustrate the functional significance of the VTA’s and NAc’s inherent circadian properties as they relate to reward-processing, drug abuse, and vulnerability to develop substance use disorders (SUDs).
Collapse
Affiliation(s)
- Darius D Becker-Krail
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
32
|
McCarthy MJ, Gottlieb JF, Gonzalez R, McClung CA, Alloy LB, Cain S, Dulcis D, Etain B, Frey BN, Garbazza C, Ketchesin KD, Landgraf D, Lee H, Marie‐Claire C, Nusslock R, Porcu A, Porter R, Ritter P, Scott J, Smith D, Swartz HA, Murray G. Neurobiological and behavioral mechanisms of circadian rhythm disruption in bipolar disorder: A critical multi-disciplinary literature review and agenda for future research from the ISBD task force on chronobiology. Bipolar Disord 2022; 24:232-263. [PMID: 34850507 PMCID: PMC9149148 DOI: 10.1111/bdi.13165] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM Symptoms of bipolar disorder (BD) include changes in mood, activity, energy, sleep, and appetite. Since many of these processes are regulated by circadian function, circadian rhythm disturbance has been examined as a biological feature underlying BD. The International Society for Bipolar Disorders Chronobiology Task Force (CTF) was commissioned to review evidence for neurobiological and behavioral mechanisms pertinent to BD. METHOD Drawing upon expertise in animal models, biomarkers, physiology, and behavior, CTF analyzed the relevant cross-disciplinary literature to precisely frame the discussion around circadian rhythm disruption in BD, highlight key findings, and for the first time integrate findings across levels of analysis to develop an internally consistent, coherent theoretical framework. RESULTS Evidence from multiple sources implicates the circadian system in mood regulation, with corresponding associations with BD diagnoses and mood-related traits reported across genetic, cellular, physiological, and behavioral domains. However, circadian disruption does not appear to be specific to BD and is present across a variety of high-risk, prodromal, and syndromic psychiatric disorders. Substantial variability and ambiguity among the definitions, concepts and assumptions underlying the research have limited replication and the emergence of consensus findings. CONCLUSIONS Future research in circadian rhythms and its role in BD is warranted. Well-powered studies that carefully define associations between BD-related and chronobiologically-related constructs, and integrate across levels of analysis will be most illuminating.
Collapse
Affiliation(s)
- Michael J. McCarthy
- UC San Diego Department of Psychiatry & Center for Circadian BiologyLa JollaCaliforniaUSA
- VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - John F. Gottlieb
- Department of PsychiatryFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Robert Gonzalez
- Department of Psychiatry and Behavioral HealthPennsylvania State UniversityHersheyPennsylvaniaUSA
| | - Colleen A. McClung
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lauren B. Alloy
- Department of PsychologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Sean Cain
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
| | - Davide Dulcis
- UC San Diego Department of Psychiatry & Center for Circadian BiologyLa JollaCaliforniaUSA
| | - Bruno Etain
- Université de ParisINSERM UMR‐S 1144ParisFrance
| | - Benicio N. Frey
- Department Psychiatry and Behavioral NeuroscienceMcMaster UniversityHamiltonOntarioCanada
| | - Corrado Garbazza
- Centre for ChronobiologyPsychiatric Hospital of the University of Basel and Transfaculty Research Platform Molecular and Cognitive NeurosciencesUniversity of BaselBaselSwitzerland
| | - Kyle D. Ketchesin
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Dominic Landgraf
- Circadian Biology GroupDepartment of Molecular NeurobiologyClinic of Psychiatry and PsychotherapyUniversity HospitalLudwig Maximilian UniversityMunichGermany
| | - Heon‐Jeong Lee
- Department of Psychiatry and Chronobiology InstituteKorea UniversitySeoulSouth Korea
| | | | - Robin Nusslock
- Department of Psychology and Institute for Policy ResearchNorthwestern UniversityChicagoIllinoisUSA
| | - Alessandra Porcu
- UC San Diego Department of Psychiatry & Center for Circadian BiologyLa JollaCaliforniaUSA
| | | | - Philipp Ritter
- Clinic for Psychiatry and PsychotherapyCarl Gustav Carus University Hospital and Technical University of DresdenDresdenGermany
| | - Jan Scott
- Institute of NeuroscienceNewcastle UniversityNewcastleUK
| | - Daniel Smith
- Division of PsychiatryUniversity of EdinburghEdinburghUK
| | - Holly A. Swartz
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Greg Murray
- Centre for Mental HealthSwinburne University of TechnologyMelbourneVictoriaAustralia
| |
Collapse
|
33
|
Whiteley SL, Holleley CE, Georges A. Developmental dynamics of sex reprogramming by high incubation temperatures in a dragon lizard. BMC Genomics 2022; 23:322. [PMID: 35459109 PMCID: PMC9034607 DOI: 10.1186/s12864-022-08544-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In some vertebrate species, gene-environment interactions can determine sex, driving bipotential gonads to differentiate into either ovaries or testes. In the central bearded dragon (Pogona vitticeps), the genetic influence of sex chromosomes (ZZ/ZW) can be overridden by high incubation temperatures, causing ZZ male to female sex reversal. Previous research showed ovotestes, a rare gonadal phenotype with traits of both sexes, develop during sex reversal, leading to the hypothesis that sex reversal relies on high temperature feminisation to outcompete the male genetic cue. To test this, we conducted temperature switching experiments at key developmental stages, and analysed the effect on gonadal phenotypes using histology and transcriptomics. RESULTS We found sexual fate is more strongly influenced by the ZZ genotype than temperature. Any exposure to low temperatures (28 °C) caused testes differentiation, whereas sex reversal required longer exposure to high temperatures. We revealed ovotestes exist along a spectrum of femaleness to male-ness at the transcriptional level. We found inter-individual variation in gene expression changes following temperature switches, suggesting both genetic sensitivity to, and the timing and duration of the temperature cue influences sex reversal. CONCLUSIONS These findings bring new insights to the mechanisms underlying sex reversal, improving our understanding of thermosensitive sex systems in vertebrates.
Collapse
Affiliation(s)
- Sarah L Whiteley
- Institute for Applied Ecology, University of Canberra, Canberra, Australia.
- Australian National Wildlife Collection, CSIRO, Canberra, Australia.
| | - Clare E Holleley
- Australian National Wildlife Collection, CSIRO, Canberra, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| |
Collapse
|
34
|
Xie X, Wu P, Huang X, Bai W, Li B, Shi N. Retro-protein XXA is a remarkable solubilizing fusion tag for inclusion bodies. Microb Cell Fact 2022; 21:51. [PMID: 35366873 PMCID: PMC8977028 DOI: 10.1186/s12934-022-01776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background Producing large amounts of soluble proteins from bacteria remains a challenge, despite the help of current various solubilizing fusion tags. Thus, developing novel tags is necessary. Antifreeze protein (AFP) has excellent solubility and hydrophilicity, but there are no current reports on its use as a solubilizing fusion tag. Additionally, there is no precedent for using retro-proteins (reverse sequence) as solubilizing fusion tags. Therefore, we selected the antifreeze protein AXX and obtained its retro-protein XXA by synthesizing the XXA gene for the development of a new solubilizing fusion tag. Results XXA exhibits better stability and ease of expression than AXX; hence, we focused the development of the solubilizing fusion tag on XXA. XXA fused with the tested inclusion bodies, significantly increasing the soluble expression compared with commonly used solubilizing fusion tags such as GST, Trx, Sumo, MBP, and NusA. The tested proteins became soluble after fusion with the XXA tag, and they could be purified. They maintained a soluble form after XXA tag removal. Finally, we used enzymatic digestion reaction and western blot experiments to verify that bdNEDP1 and NbALFA, which were soluble expressed by fusion with XXA, were active. Conclusion We developed the novel solubilizing fusion tag XXA, which could more effectively facilitate the soluble expression of inclusion bodies compared with current commonly used tags. XXA could function at both low and high temperatures, and its moderate molecular weight has a limited impact on the output. These properties make XXA an ideal fusion tag for future research and industrial production. Moreover, for the first time, we highlighted the broad potential of antifreeze protein as a solubilizing fusion tag, bringing retro-protein into practical application. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01776-7.
Collapse
|
35
|
Chronbiologically-based sub-groups in bipolar I disorder: A latent profile analysis. J Affect Disord 2022; 299:691-697. [PMID: 34879259 DOI: 10.1016/j.jad.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Bipolar disorder presents with significant phenotypic heterogeneity. The aim of this study was to investigate whether bipolar disorder, type I (BDI) subjects could be meaningfully classified into homogeneous groups according to activity, sleep, and circadian characteristics using latent profile analysis (LPA). We hypothesized that distinct BDI sub-groups would be identified based primarily on circadian-associated markers. MATERIALS AND METHODS 105 individuals with BDI were included in the study. Seventeen activity, sleep, and circadian characteristics were assessed via actigraphy and clinical assessments. LPA was conducted to stratify our sample into homogenous sub-groups. Differences between groups on demographic, clinical, activity, sleep, and circadian characteristics were explored. RESULTS Two distinct groups were identified, a High Chronobiological Disturbance group (HCD) (56%, N = 59) and a Low Chronobiological Disturbance group (LCD) (41%; N = 46). Circadian variables were the defining characteristics in sub-group determination. Large effect sizes and magnitudes of association were noted in circadian variables between HCD and LCD sub-groups. Several circadian rhythm variables accounted for a large percentage of the variance between HCD and LCD sub-groups. No differences were noted between sub-groups on demographic characteristics and the psychiatric medications currently in use. Mood state did not significantly impact sub-group differences. LIMITATIONS The protocol was cross-sectional in design. Longitudinal studies are required to determine the stability of the identified sub-groups. CONCLUSION LPA was able to identify sub-groups in BDI with circadian variables being the most distinguishing factors in determining sub-group class membership. Future research should explore the role that circadian characteristics can play in defining sub-phenotypes of bipolar disorder.
Collapse
|
36
|
TRITHORAX-dependent arginine methylation of HSP68 mediates circadian repression by PERIOD in the monarch butterfly. Proc Natl Acad Sci U S A 2022; 119:2115711119. [PMID: 35064085 PMCID: PMC8795551 DOI: 10.1073/pnas.2115711119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 12/19/2022] Open
Abstract
Circadian repression drives the transcriptional feedback loops that keep circadian (∼24-h) time and synchronize an animal’s physiology and behavior to the daily environmental changes. Although PERIOD (PER) is known to initiate transcriptional repression by displacing the transcription activator CLOCK:BMAL1 from DNA, the underlying mechanism remains unknown. Using the monarch butterfly as a model harboring a simplified version of the mammalian circadian clock, we demonstrate that the binding of heat shock protein 68 (HSP68) to a region homologous to CLOCK mouse exon 19 is essential for CLK–PER interaction and PER repression. We further show that CLK–PER interaction and PER repression are promoted by the methylation of a single arginine methylation site (R45) on HSP68 via TRITHORAX catalytic activity. Transcriptional repression drives feedback loops that are central to the generation of circadian (∼24-h) rhythms. In mammals, circadian repression of circadian locomotor output cycles kaput, and brain and muscle ARNT-like 1 (CLOCK:BMAL1)-mediated transcription is provided by a complex formed by PERIOD (PER) and CRYPTOCHROME (CRY) proteins. PER initiates transcriptional repression by binding CLK:BMAL1, which ultimately results in their removal from DNA. Although PER’s ability to repress transcription is widely recognized, how PER binding triggers repression by removing CLK:BMAL1 from DNA is not known. Here, we use the monarch butterfly as a model system to address this problem because it harbors a simplified version of the CLK:BMAL1-activated circadian clock present in mammals. We report that an intact CLOCK mouse exon 19 homologous region (CLKe19r) and the histone methyltransferase TRITHORAX (TRX) are both necessary for monarch CLK:BMAL1-mediated transcriptional activation, CLK–PER interaction, and PER repression. Our results show that TRX catalytic activity is essential for CLK–PER interaction and PER repression via the methylation of a single arginine methylation site (R45) on heat shock protein 68 (HSP68). Our study reveals TRX and HSP68 as essential links between circadian activation and PER-mediated repression and suggests a potential conserved clock function for HSPs in eukaryotes.
Collapse
|
37
|
Tartour K, Padmanabhan K. The Clock Takes Shape-24 h Dynamics in Genome Topology. Front Cell Dev Biol 2022; 9:799971. [PMID: 35047508 PMCID: PMC8762244 DOI: 10.3389/fcell.2021.799971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
Circadian rhythms orchestrate organismal physiology and behavior in order to anticipate daily changes in the environment. Virtually all cells have an internal rhythm that is synchronized every day by Zeitgebers (environmental cues). The synchrony between clocks within the animal enables the fitness and the health of organisms. Conversely, disruption of rhythms is linked to a variety of disorders: aging, cancer, metabolic diseases, and psychological disorders among others. At the cellular level, mammalian circadian rhythms are built on several layers of complexity. The transcriptional-translational feedback loop (TTFL) was the first to be described in the 90s. Thereafter oscillations in epigenetic marks highlighted the role of chromatin state in organizing the TTFL. More recently, studies on the 3D organization of the genome suggest that genome topology could be yet another layer of control on cellular circadian rhythms. The dynamic nature of genome topology over a solar day implies that the 3D mammalian genome has to be considered in the fourth dimension-in time. Whether oscillations in genome topology are a consequence of 24 h gene-expression or a driver of transcriptional cycles remains an open question. All said and done, circadian clock-gated phenomena such as gene expression, DNA damage response, cell metabolism and animal behavior-go hand in hand with 24 h rhythms in genome topology.
Collapse
Affiliation(s)
- Kévin Tartour
- Institut de Genomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard, Lyon, France
| | - Kiran Padmanabhan
- Institut de Genomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard, Lyon, France
| |
Collapse
|
38
|
Wu Y, Tian T, Wu Y, Yang Y, Zhang Y, Qin X. Systematic Studies of the Circadian Clock Genes Impact on Temperature Compensation and Cell Proliferation Using CRISPR Tools. BIOLOGY 2021; 10:biology10111204. [PMID: 34827197 PMCID: PMC8614980 DOI: 10.3390/biology10111204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary One of the major characteristics of the circadian clock is temperature compensation, and previous studies suggested a single clock gene may determine the temperature compensation. In this study, we report the first full collection of clock gene knockout cell lines using CRISPR/Cas9 tools. Our full collections indicate that the temperature compensation is a complex gene regulation system instead of being regulated by any single gene. Besides, we systematically compared the proliferation rates and circadian periods using our full collections, and we found that the cell growth rate is not dependent on the circadian period. Therefore, complex interaction between clock genes and their protein products may underlie the mechanism of temperature compensation, which needs further investigations. Abstract Mammalian circadian genes are capable of producing a self-sustained, autonomous oscillation whose period is around 24 h. One of the major characteristics of the circadian clock is temperature compensation. However, the mechanism underlying temperature compensation remains elusive. Previous studies indicate that a single clock gene may determine the temperature compensation in several model organisms. In order to understand the influence of each individual clock gene on the temperature compensation, twenty-three well-known mammalian clock genes plus Timeless and Myc genes were knocked out individually, using a powerful gene-editing tool, CRISPR/Cas9. First, Bmal1, Cry1, and Cry2 were knocked out as examples to verify that deleting genes by CRISPR is effective and precise. Cell lines targeting twenty-two genes were successfully edited in mouse fibroblast NIH3T3 cells, and off-target analysis indicated these genes were correctly knocked out. Through measuring the luciferase reporters, the circadian periods of each cell line were recorded under two different temperatures, 32.5 °C and 37 °C. The temperature compensation coefficient Q10 was subsequently calculated for each cell line. Estimations of the Q10 of these cell lines showed that none of the individual cell lines can adversely affect the temperature compensation. Cells with a longer period at lower temperature tend to have a shorter period at higher temperature, while cells with a shorter period at lower temperature tend to be longer at higher temperature. Thus, the temperature compensation is a fundamental property to keep cellular homeostasis. We further conclude that the temperature compensation is a complex gene regulation system instead of being regulated by any single gene. We also estimated the proliferation rates of these cell lines. After systematically comparing the proliferation rates and circadian periods, we found that the cell growth rate is not dependent on the circadian period.
Collapse
Affiliation(s)
- Yue Wu
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
| | - Tian Tian
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
| | - Yin Wu
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
| | - Yu Yang
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
| | - Yunfei Zhang
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
- Moeden Experiment Technology Center, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Correspondence: (Y.Z.); (X.Q.)
| | - Ximing Qin
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
- Correspondence: (Y.Z.); (X.Q.)
| |
Collapse
|
39
|
CHRONO and DEC1/DEC2 compensate for lack of CRY1/CRY2 in expression of coherent circadian rhythm but not in generation of circadian oscillation in the neonatal mouse SCN. Sci Rep 2021; 11:19240. [PMID: 34584158 PMCID: PMC8479135 DOI: 10.1038/s41598-021-98532-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Clock genes Cry1 and Cry2, inhibitory components of core molecular feedback loop, are regarded as critical molecules for the circadian rhythm generation in mammals. A double knockout of Cry1 and Cry2 abolishes the circadian behavioral rhythm in adult mice under constant darkness. However, robust circadian rhythms in PER2::LUC expression are detected in the cultured suprachiasmatic nucleus (SCN) of Cry1/Cry2 deficient neonatal mice and restored in adult SCN by co-culture with wild-type neonatal SCN. These findings led us to postulate the compensatory molecule(s) for Cry1/Cry2 deficiency in circadian rhythm generation. We examined the roles of Chrono and Dec1/Dec2 proteins, the suppressors of Per(s) transcription similar to CRY(s). Unexpectedly, knockout of Chrono or Dec1/Dec2 in the Cry1/Cry2 deficient mice did not abolish but decoupled the coherent circadian rhythm into three different periodicities or significantly shortened the circadian period in neonatal SCN. DNA microarray analysis for the SCN of Cry1/Cry2 deficient mice revealed substantial increases in Per(s), Chrono and Dec(s) expression, indicating disinhibition of the transactivation by BMAL1/CLOCK. Here, we conclude that Chrono and Dec1/Dec2 do not compensate for absence of CRY1/CRY2 in the circadian rhythm generation but contribute to the coherent circadian rhythm expression in the neonatal mouse SCN most likely through integration of cellular circadian rhythms.
Collapse
|
40
|
The role of clock genes in sleep, stress and memory. Biochem Pharmacol 2021; 191:114493. [DOI: 10.1016/j.bcp.2021.114493] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/23/2022]
|
41
|
Straat ME, Hogenboom R, Boon MR, Rensen PCN, Kooijman S. Circadian control of brown adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158961. [PMID: 33933649 DOI: 10.1016/j.bbalip.2021.158961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Disruption of circadian (~24 h) rhythms is associated with an increased risk of cardiometabolic diseases. Therefore, unravelling how circadian rhythms are regulated in different metabolic tissues has become a prominent research focus. Of particular interest is brown adipose tissue (BAT), which combusts triglyceride-derived fatty acids and glucose into heat and displays a circannual and diurnal rhythm in its thermogenic activity. In this review, the genetic, neuronal and endocrine generation of these rhythms in BAT is discussed. In addition, the potential risks of disruption or attenuation of these rhythms in BAT, and possible factors influencing these rhythms, are addressed.
Collapse
Affiliation(s)
- Maaike E Straat
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Rick Hogenboom
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
42
|
Differential gene expression of the healthy conjunctiva during the day. Cont Lens Anterior Eye 2021; 45:101494. [PMID: 34315655 DOI: 10.1016/j.clae.2021.101494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE To determine if there is diurnal variation in gene expression in normal healthy conjunctival cells. METHODS Bulbar conjunctival swab samples were collected from four healthy subjects in the morning and evening of the same day. The two swab samples were taken from one eye of each participant, with a minimum of five hours gap between the two samples. RNA was extracted and analysed using RNA sequencing (RNA-Seq). RESULTS A total of 121 genes were differentially expressed between the morning and the evening conjunctival samples, of which 94 genes were upregulated in the morning, and 27 genes were upregulated in the evening. Many of the genes that were upregulated in the morning were involved in defence, cell turnover and regulation of gene expression, while the genes upregulated in the evening were involved in signalling and mucin production. CONCLUSIONS This study has identified several genes whose expression changes over the course of the day. Knowledge of diurnal variations of conjunctival gene expression provides an insight into the regulatory status of the healthy eye and provides a baseline for examining changes during ocular surface disease.
Collapse
|
43
|
Schober A, Blay RM, Saboor Maleki S, Zahedi F, Winklmaier AE, Kakar MY, Baatsch IM, Zhu M, Geißler C, Fusco AE, Eberlein A, Li N, Megens RTA, Banafsche R, Kumbrink J, Weber C, Nazari-Jahantigh M. MicroRNA-21 Controls Circadian Regulation of Apoptosis in Atherosclerotic Lesions. Circulation 2021; 144:1059-1073. [PMID: 34233454 DOI: 10.1161/circulationaha.120.051614] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The necrotic core partly formed by ineffective efferocytosis increases the risk of an atherosclerotic plaque rupture. microRNAs contribute to necrotic core formation by regulating efferocytosis and macrophage apoptosis. Atherosclerotic plaque rupture occurs at increased frequency in the early morning, indicating diurnal changes in plaque vulnerability. Although circadian rhythms play a role in atherosclerosis, the molecular clock output pathways that control plaque composition and rupture susceptibility are unclear. Methods: Circadian gene expression, necrotic core size, and apoptosis and efferocytosis in aortic lesions were investigated at different times of the day in Apoe-/-Mir21+/+ mice and Apoe-/- Mir21-/- mice after consumption of a high-fat diet for 12 weeks feeding. Genome-wide gene expression and lesion formation were analyzed in bone marrow (BM)-transplanted mice. Diurnal changes in apoptosis and clock gene expression were determined in human atherosclerotic lesions. Results: The expression of molecular clock genes, lesional apoptosis, and necrotic core size were diurnally regulated in Apoe-/- mice. Efferocytosis did not match the diurnal increase in apoptosis at the beginning of the active phase. However, in parallel with apoptosis, expression levels of oscillating Mir21 strands decreased in the mouse atherosclerotic aorta. Mir21 knockout abolished circadian regulation of apoptosis and reduced necrotic core size, but did not affect core clock gene expression. Further, Mir21 knockout upregulated expression of pro-apoptotic XIAP associated factor 1 (Xaf1) in the atherosclerotic aorta, which abolished circadian expression of Xaf1. The anti-apoptotic effect of Mir21 was mediated by non-canonical targeting of Xaf1 through both Mir21 strands. Mir21 knockout in BM cells also reduced atherosclerosis and necrotic core size. Circadian regulation of clock gene expression was confirmed in human atherosclerotic lesions. Apoptosis oscillated diurnally in phase with XAF1 expression, demonstrating an early morning peak anti-phase to that of the Mir21 strands. Conclusions: Our findings suggest that the molecular clock in atherosclerotic lesions induces a diurnal rhythm of apoptosis regulated by circadian Mir21 expression in macrophages that is not matched by efferocytosis, thus increasing the size of the necrotic core.
Collapse
Affiliation(s)
- Andreas Schober
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany; DZHK, German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Richard M Blay
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Saffiyeh Saboor Maleki
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Farima Zahedi
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Anja E Winklmaier
- Department of Vascular Surgery, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Mati Y Kakar
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Isabelle M Baatsch
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Mengyu Zhu
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Claudia Geißler
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Anja E Fusco
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Anna Eberlein
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Nan Li
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany; Cardiovascular Research Institute Maastricht (CARIM), Department of Biomedical Engineering, Maastricht University, Maastricht, the Netherlands
| | - Ramin Banafsche
- Department of Vascular Surgery, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Jörg Kumbrink
- Institute for Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany; DZHK, German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Maliheh Nazari-Jahantigh
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany; DZHK, German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
44
|
Yi JS, Díaz NM, D'Souza S, Buhr ED. The molecular clockwork of mammalian cells. Semin Cell Dev Biol 2021; 126:87-96. [PMID: 33810978 DOI: 10.1016/j.semcdb.2021.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022]
Abstract
Most organisms contain self-sustained circadian clocks. These clocks can be synchronized by environmental stimuli, but can also oscillate indefinitely in isolation. In mammals this is true at the molecular level for the majority of cell types that have been examined. A core set of "clock genes" form a transcriptional/translational feedback loop (TTFL) which repeats with a period of approximately 24 h. The exact mechanism of the TTFL differs slightly in various cell types, but all involve similar family members of the core cohort of clock genes. The clock has many outputs which are unique for different tissues. Cells in diverse tissues will convert the timing signals provided by the TTFL into uniquely orchestrated transcriptional oscillations of many clock-controlled genes and cellular processes.
Collapse
Affiliation(s)
- Jonathan S Yi
- University of Washington, Dept. of Ophthalmology, 750 Republican St., Seattle, WA 98109, USA
| | - Nicolás M Díaz
- University of Washington, Dept. of Ophthalmology, 750 Republican St., Seattle, WA 98109, USA
| | - Shane D'Souza
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Ethan D Buhr
- University of Washington, Dept. of Ophthalmology, 750 Republican St., Seattle, WA 98109, USA.
| |
Collapse
|
45
|
Hu X, Liu X, Li C, Zhang Y, Li C, Li Y, Chen Y, Guo H, Bai X, Liu M. Time-resolved transcriptional profiling of Trichinella-infected murine myocytes helps to elucidate host-pathogen interactions in the muscle stage. Parasit Vectors 2021; 14:130. [PMID: 33648561 PMCID: PMC7919990 DOI: 10.1186/s13071-021-04624-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/03/2021] [Indexed: 11/30/2022] Open
Abstract
Background Parasites of the genus Trichinella are the pathogenic agents of trichinellosis, which is a widespread and severe foodborne parasitic disease. Trichinella spiralis resides primarily in mammalian skeletal muscle cells. After invading the cells of the host organism, T. spiralis must elude or invalidate the host’s innate and adaptive immune responses to survive. It is necessary to characterize the pathogenesis of trichinellosis to help to prevent the occurrence and further progression of this disease. The aims of this study were to elucidate the mechanisms of nurse cell formation, pathogenesis and immune evasion of T. spiralis, to provide valuable information for further research investigating the basic cell biology of Trichinella-infected muscle cells and the interaction between T. spiralis and its host. Methods We performed transcriptome profiling by RNA sequencing to identify global changes at 1, 3, 7, 10 and 15 days post-infection (dpi) in gene expression in the diaphragm after the parasite entered and persisted within the murine myocytes; the mice were infected by intravenous injection of newborn larvae. Gene expression analysis was based on the alignment results. Differentially expressed genes (DEGs) were identified based on their expression levels in various samples, and functional annotation and enrichment analysis were performed. Results The most extensive and dynamic gene expression responses in host diaphragms were observed during early infection (1 dpi). The number of DEGs and genes annotated in the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases decreased significantly in the infected mice compared to the uninfected mice at 3 and 7 dpi, suddenly increased sharply at 10 dpi, and then decreased to a lower level at 15 dpi, similar to that observed at 3 and 7 dpi. The massive initial reaction of the murine muscle cells to Trichinella infection steadied in the later stages of infection, with little additional changes detected for the remaining duration of the studied process. Although there were hundreds of DEGs at each time point, only 11 genes were consistently up- or downregulated at all 5 time points. Conclusions The gene expression patterns identified in this study can be employed to characterize the coordinated response of T. spiralis-infected myocytes in a time-resolved manner. This comprehensive dataset presents a distinct and sensitive picture of the interaction between host and parasite during intracellular infection, which can help to elucidate how pathogens evade host defenses and coordinate the biological functions of host cells to survive in the mammalian environment. ![]()
Collapse
Affiliation(s)
- Xiaoxiang Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Chen Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yulu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Chengyao Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yanfeng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yingxi Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Heng Guo
- Beijing Hi-Tech Institute, Beijing, 100085, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.
| |
Collapse
|
46
|
Bonmati-Carrion MA, Tomas-Loba A. Melatonin and Cancer: A Polyhedral Network Where the Source Matters. Antioxidants (Basel) 2021; 10:antiox10020210. [PMID: 33535472 PMCID: PMC7912767 DOI: 10.3390/antiox10020210] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Melatonin is one of the most phylogenetically conserved signals in biology. Although its original function was probably related to its antioxidant capacity, this indoleamine has been “adopted” by multicellular organisms as the “darkness signal” when secreted in a circadian manner and is acutely suppressed by light at night by the pineal gland. However, melatonin is also produced by other tissues, which constitute its extrapineal sources. Apart from its undisputed chronobiotic function, melatonin exerts antioxidant, immunomodulatory, pro-apoptotic, antiproliferative, and anti-angiogenic effects, with all these properties making it a powerful antitumor agent. Indeed, this activity has been demonstrated to be mediated by interfering with various cancer hallmarks, and different epidemiological studies have also linked light at night (melatonin suppression) with a higher incidence of different types of cancer. In 2007, the World Health Organization classified night shift work as a probable carcinogen due to circadian disruption, where melatonin plays a central role. Our aim is to review, from a global perspective, the role of melatonin both from pineal and extrapineal origin, as well as their possible interplay, as an intrinsic factor in the incidence, development, and progression of cancer. Particular emphasis will be placed not only on those mechanisms related to melatonin’s antioxidant nature but also on the recently described novel roles of melatonin in microbiota and epigenetic regulation.
Collapse
Affiliation(s)
- Maria-Angeles Bonmati-Carrion
- Chronobiology Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable, 28090 Madrid, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| | - Antonia Tomas-Loba
- Circadian Rhythm and Cancer Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| |
Collapse
|
47
|
Nathan P, Gibbs JE, Rainger GE, Chimen M. Changes in Circadian Rhythms Dysregulate Inflammation in Ageing: Focus on Leukocyte Trafficking. Front Immunol 2021; 12:673405. [PMID: 34054857 PMCID: PMC8160305 DOI: 10.3389/fimmu.2021.673405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/13/2021] [Indexed: 01/21/2023] Open
Abstract
Leukocyte trafficking shows strong diurnal rhythmicity and is tightly regulated by circadian rhythms. As we age, leukocyte trafficking becomes dysregulated, contributing to the increased systemic, low-grade, chronic inflammation observed in older adults. Ageing is also associated with diminished circadian outputs and a dysregulation of the circadian rhythm. Despite this, there is little evidence to show the direct impact of age-associated dampening of circadian rhythms on the dysregulation of leukocyte trafficking. Here, we review the core mammalian circadian clock machinery and discuss the changes that occur in this biological system in ageing. In particular, we focus on the changes that occur to leukocyte trafficking rhythmicity with increasing age and consider how this impacts inflammation and the development of immune-mediated inflammatory disorders (IMIDs). We aim to encourage future ageing biology research to include a circadian approach in order to fully elucidate whether age-related circadian changes occur as a by-product of healthy ageing, or if they play a significant role in the development of IMIDs.
Collapse
Affiliation(s)
- Poppy Nathan
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Julie Elizabeth Gibbs
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - G. Ed Rainger
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Myriam Chimen
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Myriam Chimen,
| |
Collapse
|
48
|
Lim ASP. Diurnal and seasonal molecular rhythms in the human brain and their relation to Alzheimer disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:271-284. [PMID: 34225968 DOI: 10.1016/b978-0-12-819975-6.00017-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diurnal and seasonal rhythms influence many aspects of human physiology including brain function. Moreover, altered diurnal and seasonal behavioral and physiological rhythms have been linked to Alzheimer's disease and related dementias (ADRD). Understanding the molecular basis for these links may lead to identification of novel targets to mitigate the negative impact of normal and abnormal diurnal and seasonal rhythms on ADRD or to alleviate the adverse consequences of ADRD on normal diurnal and seasonal rhythms. Diurnally and seasonally rhythmic gene expression and epigenetic modification in the human neocortex may be a key mechanism underlying these links. This chapter will first review the observed epidemiological links between normal and abnormal diurnal and seasonal rhythmicity, cognitive impairment, and ADRD. Then it will review normal diurnal and seasonal rhythms of brain epigenetic modification and gene expression in model organisms. Finally, it will review evidence for diurnal and seasonal rhythms of epigenetic modification and gene expression the human brain in aging, Alzheimer's disease, and other brain disorders.
Collapse
Affiliation(s)
- Andrew S P Lim
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
49
|
von Schantz M, Leocadio-Miguel MA, McCarthy MJ, Papiol S, Landgraf D. Genomic perspectives on the circadian clock hypothesis of psychiatric disorders. ADVANCES IN GENETICS 2020; 107:153-191. [PMID: 33641746 DOI: 10.1016/bs.adgen.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Circadian rhythm disturbances are frequently described in psychiatric disorders such as major depressive disorder, bipolar disorder, and schizophrenia. Growing evidence suggests a biological connection between mental health and circadian rhythmicity, including the circadian influence on brain function and mood and the requirement for circadian entrainment by external factors, which is often impaired in mental illness. Mental (as well as physical) health is also adversely affected by circadian misalignment. The marked interindividual differences in this combined susceptibility, in addition to the phenotypic spectrum in traits related both to circadian rhythms and mental health, suggested the possibility of a shared genetic background and that circadian clock genes may also be candidate genes for psychiatric disorders. This hypothesis was further strengthened by observations in animal models where clock genes had been knocked out or mutated. The introduction of genome-wide association studies (GWAS) enabled hypothesis-free testing. GWAS analysis of chronotype confirmed the prominent role of circadian genes in these phenotypes and their extensive polygenicity. However, in GWAS on psychiatric traits, only one clock gene, ARNTL (BMAL1) was identified as one of the few loci differentiating bipolar disorder from schizophrenia, and macaque monkeys where the ARNTL gene has been knocked out display symptoms similar to schizophrenia. Another lesson from genomic analyses is that chronotype has an important genetic correlation with several psychiatric disorders and that this effect is unidirectional. We conclude that the effect of circadian disturbances on psychiatric disorders probably relates to modulation of rhythm parameters and extend beyond the core clock genes themselves.
Collapse
Affiliation(s)
- Malcolm von Schantz
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom; Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Mario A Leocadio-Miguel
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom; Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Michael J McCarthy
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Sergi Papiol
- Department of Psychiatry, University Hospital, Munich, Germany; Institute of Psychiatric Phenomics and Genomics (IPPG), Munich, Germany
| | - Dominic Landgraf
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy, University Hospital, Munich, Germany
| |
Collapse
|
50
|
Kim YH, Lazar MA. Transcriptional Control of Circadian Rhythms and Metabolism: A Matter of Time and Space. Endocr Rev 2020; 41:5835826. [PMID: 32392281 PMCID: PMC7334005 DOI: 10.1210/endrev/bnaa014] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
All biological processes, living organisms, and ecosystems have evolved with the Sun that confers a 24-hour periodicity to life on Earth. Circadian rhythms arose from evolutionary needs to maximize daily organismal fitness by enabling organisms to mount anticipatory and adaptive responses to recurrent light-dark cycles and associated environmental changes. The clock is a conserved feature in nearly all forms of life, ranging from prokaryotes to virtually every cell of multicellular eukaryotes. The mammalian clock comprises transcription factors interlocked in negative feedback loops, which generate circadian expression of genes that coordinate rhythmic physiology. In this review, we highlight previous and recent studies that have advanced our understanding of the transcriptional architecture of the mammalian clock, with a specific focus on epigenetic mechanisms, transcriptomics, and 3-dimensional chromatin architecture. In addition, we discuss reciprocal ways in which the clock and metabolism regulate each other to generate metabolic rhythms. We also highlight implications of circadian biology in human health, ranging from genetic and environment disruptions of the clock to novel therapeutic opportunities for circadian medicine. Finally, we explore remaining fundamental questions and future challenges to advancing the field forward.
Collapse
Affiliation(s)
- Yong Hoon Kim
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|