1
|
Adhikary K, Kapoor S, Kotak S. A cortical pool of LIN-5 (NuMA) controls cytokinetic furrow formation and cytokinesis completion. J Cell Biol 2025; 224:e202406059. [PMID: 40304693 PMCID: PMC12042773 DOI: 10.1083/jcb.202406059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 02/26/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
In animal cells, cleavage furrow formation is controlled by localized activation of the GTPase RhoA at the equatorial membrane using cues transmitted from the spindle. Here, we explore the function of LIN-5, a well-studied protein known for its role in aster separation and spindle positioning in cleavage furrow formation. We show that the cortical pool of LIN-5, recruited by GPR-1/2 and important for cortical force generation, regulates cleavage furrow formation independently of its roles in aster separation and spindle positioning. Instead, our data suggest that enrichment of LIN-5/GPR-1/2 at the polar cortical region is essential to ensure the timely accumulation of contractile ring components-myosin II and Anillin at the equatorial cortex. We additionally define a late cytokinesis role of cortical LIN-5/GPR-1/2 in midbody stabilization and abscission. These results indicate that the cortical LIN-5/GPR-1/2 complex contributes to multiple aspects of cytokinesis independently of its roles in spindle positioning and elongation.
Collapse
Affiliation(s)
- Kuheli Adhikary
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore, India
| | - Sukriti Kapoor
- Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
2
|
McArthur SJ, Umeda K, Kodera N. Nano-Scale Video Imaging of Motility Machinery by High-Speed Atomic Force Microscopy. Biomolecules 2025; 15:257. [PMID: 40001560 PMCID: PMC11852755 DOI: 10.3390/biom15020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Motility is a vital aspect of many forms of life, with a wide range of highly conserved as well as highly unique systems adapted to the needs of various organisms and environments. While many motility systems are well studied using structural techniques like X-ray crystallography and electron microscopy, as well as fluorescence microscopy methodologies, it is difficult to directly determine the relationship between the shape and movement of a motility system due to a notable gap in spatiotemporal resolution. Bridging this gap as well as understanding the dynamic molecular movements that underpin motility mechanisms has been challenging. The advent of high-speed atomic force microscopy (HS-AFM) has provided a new window into understanding these nano-scale machines and the dynamic processes underlying motility. In this review, we highlight some of the advances in this field, ranging from reconstituted systems and purified higher-order supramolecular complexes to live cells, in both prokaryotic and eukaryotic contexts.
Collapse
Affiliation(s)
- Steven John McArthur
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan and Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| |
Collapse
|
3
|
Ando T, Fukuda S, Ngo KX, Flechsig H. High-Speed Atomic Force Microscopy for Filming Protein Molecules in Dynamic Action. Annu Rev Biophys 2024; 53:19-39. [PMID: 38060998 DOI: 10.1146/annurev-biophys-030722-113353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Structural biology is currently undergoing a transformation into dynamic structural biology, which reveals the dynamic structure of proteins during their functional activity to better elucidate how they function. Among the various approaches in dynamic structural biology, high-speed atomic force microscopy (HS-AFM) is unique in the ability to film individual molecules in dynamic action, although only topographical information is acquirable. This review provides a guide to the use of HS-AFM for biomolecular imaging and showcases several examples, as well as providing information on up-to-date progress in HS-AFM technology. Finally, we discuss the future prospects of HS-AFM in the context of dynamic structural biology in the upcoming era.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Shingo Fukuda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Kien X Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| |
Collapse
|
4
|
do Rosário CF, Zhang Y, Stadnicki J, Ross JL, Wadsworth P. Lateral and longitudinal compaction of PRC1 overlap zones drives stabilization of interzonal microtubules. Mol Biol Cell 2023; 34:ar100. [PMID: 37467037 PMCID: PMC10551706 DOI: 10.1091/mbc.e23-02-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
During anaphase, antiparallel-overlapping midzone microtubules elongate and form bundles, contributing to chromosome segregation and the location of contractile ring formation. Midzone microtubules are dynamic in early but not late anaphase; however, the kinetics and mechanisms of stabilization are incompletely understood. Using photoactivation of cells expressing PA-EGFP-α-tubulin we find that immediately after anaphase onset, a single highly dynamic population of midzone microtubules is present; as anaphase progresses, both dynamic and stable populations of midzone microtubules coexist. By mid-cytokinesis, only static, non-dynamic microtubules are detected. The velocity of microtubule sliding also decreases as anaphase progresses, becoming undetectable by late anaphase. Following depletion of PRC1, midzone microtubules remain highly dynamic in anaphase and fail to form static arrays in telophase despite furrowing. Cells depleted of Kif4a contain elongated PRC1 overlap zones and fail to form static arrays in telophase. Cells blocked in cytokinesis form short PRC1 overlap zones that do not coalesce laterally; these cells also fail to form static arrays in telophase. Together, our results demonstrate that dynamic turnover and sliding of midzone microtubules is gradually reduced during anaphase and that the final transition to a static array in telophase requires both lateral and longitudinal compaction of PRC1 containing overlap zones.
Collapse
Affiliation(s)
- Carline Fermino do Rosário
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst MA 01003
| | - Ying Zhang
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
| | - Jennifer Stadnicki
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst MA 01003
| | | | - Patricia Wadsworth
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst MA 01003
| |
Collapse
|
5
|
Xiao L, Pang J, Qin H, Dou L, Yang M, Wang J, Zhou X, Li Y, Duan J, Sun Z. Amorphous silica nanoparticles cause abnormal cytokinesis and multinucleation through dysfunction of the centralspindlin complex and microfilaments. Part Fibre Toxicol 2023; 20:34. [PMID: 37608338 PMCID: PMC10464468 DOI: 10.1186/s12989-023-00544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND With the large-scale production and application of amorphous silica nanoparticles (aSiNPs), its adverse health effects are more worthy of our attention. Our previous research has demonstrated for the first time that aSiNPs induced cytokinesis failure, which resulted in abnormally high incidences of multinucleation in vitro, but the underlying mechanisms remain unclear. Therefore, the purpose of this study was firstly to explore whether aSiNPs induced multinucleation in vivo, and secondly to investigate the underlying mechanism of how aSiNPs caused abnormal cytokinesis and multinucleation. METHODS Male ICR mice with intratracheal instillation of aSiNPs were used as an experimental model in vivo. Human hepatic cell line (L-02) was introduced for further mechanism study in vitro. RESULTS In vivo, histopathological results showed that the rate of multinucleation was significantly increased in the liver and lung tissue after aSiNPs treatment. In vitro, immunofluorescence results manifested that aSiNPs directly caused microfilaments aggregation. Following mechanism studies indicated that aSiNPs increased ROS levels. The accumulation of ROS further inhibited the PI3k 110β/Aurora B pathway, leading to a decrease in the expression of centralspindlin subunits MKLP1 and CYK4 as well as downstream cytokines regulation related proteins Ect2, Cep55, CHMP2A and RhoA. Meanwhile, the particles caused abnormal co-localization of the key mitotic regulatory kinase Aurora B and the centralspindlin complex by inhibiting the PI3k 110β/Aurora B pathway. PI3K activator IGF increased the phosphorylation level of Aurora B and improved the relative ratio of the centralspindlin cluster. And ROS inhibitors NAC reduced the ratio of multinucleation, alleviated the PI3k 110β/Aurora B pathway inhibition, and then increased the expression of MKLP1, CYK4 and cytokinesis-related proteins, whilst NAC restored the clustering of the centralspindlin. CONCLUSION This study demonstrated that aSiNPs led to multinucleation formation both in vivo and in vitro. ASiNPs exposure caused microfilaments aggregation and inhibited the PI3k 110β/Aurora B pathway through excessive ROS, which then hindered the centralspindlin cluster as well as restrained the expression of centralspindlin subunits and cytokinesis-related proteins, which ultimately resulted in cytokinesis failure and the formation of multinucleation.
Collapse
Affiliation(s)
- Liyan Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
| | - Jinyan Pang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
| | - Hua Qin
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Department of Chemistry, College of Sciences, Northeastern University, 110819, Shenyang, P.R. China
| | - Liyang Dou
- Department of Geriatric Medicine, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, P.R. China
| | - Man Yang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
| | - Ji Wang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
| | - Xianqing Zhou
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
| | - Yang Li
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China.
| | - Junchao Duan
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
| |
Collapse
|
6
|
Bai M, Liu X. Diagnostic biomarker KIF23 is associated with immune infiltration and immunotherapy response in gastric cancer. Front Oncol 2023; 13:1191009. [PMID: 37483517 PMCID: PMC10361780 DOI: 10.3389/fonc.2023.1191009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Kinesin family member 23 (KIF23), an index of tumor proliferation, can serve as a prognostic marker in numerous tumors. However, the relationship between KIF23 expression and diagnostic value, immune infiltration, and immunotherapy response remains unclear in gastric cancer(GC). We primarily demonstrated that GC tissue had higher levels of KIF23 expression than the adjacent normal tissue on mRNA and protein levels. The ROC analysis revealed KIF23 had an outstanding diagnostic value of GC in the training and validation set (AUC = 0.958, and AUC = 0.86793, respectively). We discovered that KIF23 was positively associated with age, histological type, and H. pylori infection of GC. Subsequently, the KIF23 expression level was correlated with the gene mutation, function enrichment, immune cell infiltration, and immune cell marker of GC based on multiple online websites and R software. KIF23 expression was related to the infiltration of CD8+ T cells, CD4+T cells, macrophages, and dendritic cells in GC. Especially, KIF23 expression was positively significantly associated with the Th1 cell marker STAT1 (Signal transducer and activator of transcription 1). Patients with high KIF23 expression exhibited greater immune cell infiltrates, including T cell CD4+ memory helper, Treg, and M1 cells, which indicated that high KIF23 expression is more conducive to immunosuppression. Finally, KIF23 expression had a positive relationship with TMB and MSI, and affected the immune microenvironment in GC tissues by increased expression of ICPs such as CD274(PD-L1), CTLA4, HAVCR2, and LAG3. Our study uncovered that KIF23 can serve as an immune-related biomarker for diagnosis and immunotherapy response of GC.
Collapse
Affiliation(s)
- Maoshu Bai
- Department of Oncology, Dazhou Integrated Traditional Chinese Medicine and Western Medicine Hospital, Dazhou Second People’s Hospital, Dazhou, Sichuan, China
| | - Xin Liu
- Molecular Diagnosis Center, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
7
|
Radhakrishnan RM, Kizhakkeduth ST, Nair VM, Ayyappan S, Lakshmi RB, Babu N, Prasannajith A, Umeda K, Vijayan V, Kodera N, Manna TK. Kinetochore-microtubule attachment in human cells is regulated by the interaction of a conserved motif of Ska1 with EB1. J Biol Chem 2023; 299:102853. [PMID: 36592928 PMCID: PMC9926122 DOI: 10.1016/j.jbc.2022.102853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 01/02/2023] Open
Abstract
The kinetochore establishes the linkage between chromosomes and the spindle microtubule plus ends during mitosis. In vertebrates, the spindle-kinetochore-associated (Ska1,2,3) complex stabilizes kinetochore attachment with the microtubule plus ends, but how Ska is recruited to and stabilized at the kinetochore-microtubule interface is not understood. Here, our results show that interaction of Ska1 with the general microtubule plus end-associated protein EB1 through a conserved motif regulates Ska recruitment to kinetochores in human cells. Ska1 forms a stable complex with EB1 via interaction with the motif in its N-terminal disordered loop region. Disruption of this interaction either by deleting or mutating the motif disrupts Ska complex recruitment to kinetochores and induces chromosome alignment defects, but it does not affect Ska complex assembly. Atomic-force microscopy imaging revealed that Ska1 is anchored to the C-terminal region of the EB1 dimer through its loop and thereby promotes formation of extended structures. Furthermore, our NMR data showed that the Ska1 motif binds to the residues in EB1 that are the binding sites of other plus end targeting proteins that are recruited to microtubules by EB1 through a similar conserved motif. Collectively, our results demonstrate that EB1-mediated Ska1 recruitment onto the microtubule serves as a general mechanism for the formation of vertebrate kinetochore-microtubule attachments and metaphase chromosome alignment.
Collapse
Affiliation(s)
- Renjith M Radhakrishnan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Safwa T Kizhakkeduth
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Vishnu M Nair
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Shine Ayyappan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - R Bhagya Lakshmi
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Neethu Babu
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Anjaly Prasannajith
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Kenichi Umeda
- Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
8
|
Motor generated torque drives coupled yawing and orbital rotations of kinesin coated gold nanorods. Commun Biol 2022; 5:1368. [PMID: 36539506 PMCID: PMC9767927 DOI: 10.1038/s42003-022-04304-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Kinesin motor domains generate impulses of force and movement that have both translational and rotational (torque) components. Here, we ask how the torque component influences function in cargo-attached teams of weakly processive kinesins. Using an assay in which kinesin-coated gold nanorods (kinesin-GNRs) translocate on suspended microtubules, we show that for both single-headed KIF1A and dimeric ZEN-4, the intensities of polarized light scattered by the kinesin-GNRs in two orthogonal directions periodically oscillate as the GNRs crawl towards microtubule plus ends, indicating that translocating kinesin-GNRs unidirectionally rotate about their short (yaw) axes whilst following an overall left-handed helical orbit around the microtubule axis. For orientations of the GNR that generate a signal, the period of this short axis rotation corresponds to two periods of the overall helical trajectory. Torque force thus drives both rolling and yawing of near-spherical cargoes carrying rigidly-attached weakly processive kinesins, with possible relevance to intracellular transport.
Collapse
|
9
|
Poulos A, Budaitis BG, Verhey KJ. Single-motor and multi-motor motility properties of kinesin-6 family members. Biol Open 2022; 11:276958. [PMID: 36178151 PMCID: PMC9581516 DOI: 10.1242/bio.059533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/22/2022] [Indexed: 12/31/2022] Open
Abstract
Kinesin motor proteins are responsible for orchestrating a variety of microtubule-based processes including intracellular transport, cell division, cytoskeletal organization, and cilium function. Members of the kinesin-6 family play critical roles in anaphase and cytokinesis during cell division as well as in cargo transport and microtubule organization during interphase, however little is known about their motility properties. We find that truncated versions of MKLP1 (HsKIF23), MKLP2 (HsKIF20A), and HsKIF20B largely interact statically with microtubules as single molecules but can also undergo slow, processive motility, most prominently for MKLP2. In multi-motor assays, all kinesin-6 proteins were able to drive microtubule gliding and MKLP1 and KIF20B were also able to drive robust transport of both peroxisomes, a low-load cargo, and Golgi, a high-load cargo, in cells. In contrast, MKLP2 showed minimal transport of peroxisomes and was unable to drive Golgi dispersion. These results indicate that the three mammalian kinesin-6 motor proteins can undergo processive motility but differ in their ability to generate forces needed to drive cargo transport and microtubule organization in cells.
Collapse
Affiliation(s)
- Andrew Poulos
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Breane G. Budaitis
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Authors for correspondence (; )
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Authors for correspondence (; )
| |
Collapse
|
10
|
Anchoring geometry is a significant factor in determining the direction of kinesin-14 motility on microtubules. Sci Rep 2022; 12:15417. [PMID: 36104376 PMCID: PMC9474454 DOI: 10.1038/s41598-022-19589-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Kinesin-14 microtubule-based motors have an N-terminal tail attaching the catalytic core to its load and usually move towards microtubule minus ends, whilst most other kinesins have a C-terminal tail and move towards plus ends. Loss of conserved sequences external to the motor domain causes kinesin-14 to switch to plus-end motility, showing that an N-terminal attachment is compatible with plus-end motility. However, there has been no systematic study on the role of attachment position in minus-end motility. We therefore examined the motility of monomeric kinesin-14s differing only in their attachment point. We find that a C-terminal attachment point causes kinesin-14s to become plus-end-directed, with microtubule corkscrewing rotation direction and pitch in motility assays similar to that of kinesin-1, suggesting that both C-kinesin kinesins-14 and N-kinesin kinesin-1 share a highly conserved catalytic core function with an intrinsic plus-end bias. Thus, an N-terminal attachment is one of the requirements for minus-end motility in kinesin-14.
Collapse
|
11
|
Hirsch SM, Edwards F, Shirasu-Hiza M, Dumont J, Canman JC. Functional midbody assembly in the absence of a central spindle. J Cell Biol 2022; 221:e202011085. [PMID: 34994802 PMCID: PMC8751756 DOI: 10.1083/jcb.202011085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 10/13/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022] Open
Abstract
Contractile ring constriction during cytokinesis is thought to compact central spindle microtubules to form the midbody, an antiparallel microtubule bundle at the intercellular bridge. In Caenorhabditis elegans, central spindle microtubule assembly requires targeting of the CLASP family protein CLS-2 to the kinetochores in metaphase and spindle midzone in anaphase. CLS-2 targeting is mediated by the CENP-F-like HCP-1/2, but their roles in cytokinesis and midbody assembly are not known. We found that although HCP-1 and HCP-2 mostly function cooperatively, HCP-1 plays a more primary role in promoting CLS-2-dependent central spindle microtubule assembly. HCP-1/2 codisrupted embryos did not form central spindles but completed cytokinesis and formed functional midbodies capable of supporting abscission. These central spindle-independent midbodies appeared to form via contractile ring constriction-driven bundling of astral microtubules at the furrow tip. This work suggests that, in the absence of a central spindle, astral microtubules can support midbody assembly and that midbody assembly is more predictive of successful cytokinesis than central spindle assembly.
Collapse
Affiliation(s)
- Sophia M. Hirsch
- Department of Genetics and Development, Columbia University Medical Center, New York, NY
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| | - Frances Edwards
- Institut Jacques Monod, Centre national de la recherche scientifique, Université de Paris, Paris, France
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, NY
| | - Julien Dumont
- Institut Jacques Monod, Centre national de la recherche scientifique, Université de Paris, Paris, France
| | - Julie C. Canman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| |
Collapse
|
12
|
Mechanistic insights into central spindle assembly mediated by the centralspindlin complex. Proc Natl Acad Sci U S A 2021; 118:2112039118. [PMID: 34588311 PMCID: PMC8501884 DOI: 10.1073/pnas.2112039118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Centralspindlin bundles microtubules to assemble the central spindle, being essential for cytokinesis of the cell. It is a heterotetramer formed by ZEN-4 and CYK-4 in a 2:2 manner. We determined the crystal structures of centralspindlin, which revealed the detailed mechanism of complex formation. We found that centralspindlin clustered to undergo liquid–liquid phase separation (LLPS), which depended on the complementary charged residues located at ZEN-4 and CYK-4, respectively, explaining the synergy of the two subunits for the function. The LLPS of centralspindlin is critical for the microtubule bundling activity in vitro and the assembly of the central spindle in vivo. Together, our study provides angstrom-to-micron mechanistic insights into central spindle assembly mediated by the centralspindlin complex. The central spindle spatially and temporally regulates the formation of division plane during cytokinesis in animal cells. The heterotetrameric centralspindlin complex bundles microtubules to assemble the central spindle, the mechanism of which is poorly understood. Here, we determined the crystal structures of the molecular backbone of ZEN-4/CYK-4 centralspindlin from Caenorhabditis elegans, which revealed the detailed mechanism of complex formation. The molecular backbone of centralspindlin has the intrinsic propensity to undergo liquid–liquid phase separation. The condensation of centralspindlin requires two patches of basic residues at ZEN-4 and multiple acidic residues at the intrinsically disordered region of CYK-4, explaining the synergy of the two subunits for the function. These complementary charged residues were critical for the microtubule bundling activity of centralspindlin in vitro and for the assembly of the central spindle in vivo. Together, our findings provide insights into the mechanism of central spindle assembly mediated by centralspindlin through charge-driven macromolecular condensation.
Collapse
|
13
|
Nakamura M, Verboon JM, Prentiss CL, Parkhurst SM. The kinesin-like protein Pavarotti functions noncanonically to regulate actin dynamics. J Cell Biol 2021; 219:151940. [PMID: 32673395 PMCID: PMC7480107 DOI: 10.1083/jcb.201912117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/07/2020] [Accepted: 06/09/2020] [Indexed: 01/03/2023] Open
Abstract
Pavarotti, the Drosophila MKLP1 orthologue, is a kinesin-like protein that works with Tumbleweed (MgcRacGAP) as the centralspindlin complex. This complex is essential for cytokinesis, where it helps to organize the contractile actomyosin ring at the equator of dividing cells by activating the RhoGEF Pebble. Actomyosin rings also function as the driving force during cell wound repair. We previously showed that Tumbleweed and Pebble are required for the cell wound repair process. Here, we show that Pavarotti also functions during wound repair and confirm that while Pavarotti, Tumbleweed, and Pebble are all used during this cellular repair, each has a unique localization pattern and knockdown phenotype, demonstrating centralspindlin-independent functions. Surprisingly, we find that the classically microtubule-associated Pavarotti binds directly to actin in vitro and in vivo and has a noncanonical role directly regulating actin dynamics. Finally, we demonstrate that this actin regulation by Pavarotti is not specific to cellular wound repair but is also used in normal development.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jeffrey M Verboon
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Clara L Prentiss
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
14
|
Chapa-Y-Lazo B, Hamanaka M, Wray A, Balasubramanian MK, Mishima M. Polar relaxation by dynein-mediated removal of cortical myosin II. J Cell Biol 2021; 219:151836. [PMID: 32497213 PMCID: PMC7401816 DOI: 10.1083/jcb.201903080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 02/03/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Nearly six decades ago, Lewis Wolpert proposed the relaxation of the polar cell cortex by the radial arrays of astral microtubules as a mechanism for cleavage furrow induction. While this mechanism has remained controversial, recent work has provided evidence for polar relaxation by astral microtubules, although its molecular mechanisms remain elusive. Here, using C. elegans embryos, we show that polar relaxation is achieved through dynein-mediated removal of myosin II from the polar cortexes. Mutants that position centrosomes closer to the polar cortex accelerated furrow induction, whereas suppression of dynein activity delayed furrowing. We show that dynein-mediated removal of myosin II from the polar cortexes triggers a bidirectional cortical flow toward the cell equator, which induces the assembly of the actomyosin contractile ring. These results provide a molecular mechanism for the aster-dependent polar relaxation, which works in parallel with equatorial stimulation to promote robust cytokinesis.
Collapse
Affiliation(s)
- Bernardo Chapa-Y-Lazo
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Motonari Hamanaka
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK.,Hokkaido University, Sapporo, Japan
| | - Alexander Wray
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK.,University of Nottingham, Nottingham, UK
| | - Mohan K Balasubramanian
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Masanori Mishima
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| |
Collapse
|
15
|
Maruyama Y, Sugawa M, Yamaguchi S, Davies T, Osaki T, Kobayashi T, Yamagishi M, Takeuchi S, Mishima M, Yajima J. CYK4 relaxes the bias in the off-axis motion by MKLP1 kinesin-6. Commun Biol 2021; 4:180. [PMID: 33568771 PMCID: PMC7876049 DOI: 10.1038/s42003-021-01704-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Centralspindlin, a complex of the MKLP1 kinesin-6 and CYK4 GAP subunits, plays key roles in metazoan cytokinesis. CYK4-binding to the long neck region of MKLP1 restricts the configuration of the two MKLP1 motor domains in the centralspindlin. However, it is unclear how the CYK4-binding modulates the interaction of MKLP1 with a microtubule. Here, we performed three-dimensional nanometry of a microbead coated with multiple MKLP1 molecules on a freely suspended microtubule. We found that beads driven by dimeric MKLP1 exhibited persistently left-handed helical trajectories around the microtubule axis, indicating torque generation. By contrast, centralspindlin, like monomeric MKLP1, showed similarly left-handed but less persistent helical movement with occasional rightward movements. Analysis of the fluctuating helical movement indicated that the MKLP1 stochastically makes off-axis motions biased towards the protofilament on the left. CYK4-binding to the neck domains in MKLP1 enables more flexible off-axis motion of centralspindlin, which would help to avoid obstacles along crowded spindle microtubules. Analysing the 3D movement of MKLP1 motors, Maruyama et al. find that dimeric C. elegans MKLP1 drives a left-handed helical motion around the microtubule with minimum protofilament switching to the right side whereas less persistent motions are driven by monomers or by heterotetramers with CYK4. These findings suggest how obstacles along crowded spindle microtubules may be avoided by CYK4 binding to MKLP1.
Collapse
Affiliation(s)
- Yohei Maruyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Mitsuhiro Sugawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan.,Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Shin Yamaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Tim Davies
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Department of Biosciences, Durham University, Durham, UK
| | - Toshihisa Osaki
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Takuya Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Masahiko Yamagishi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan.,Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, Japan.,Research Center for complex Systems Biology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Masanori Mishima
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Junichiro Yajima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan. .,Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo, Japan. .,Research Center for complex Systems Biology, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
16
|
Resolving the data asynchronicity in high-speed atomic force microscopy measurement via the Kalman Smoother. Sci Rep 2020; 10:18393. [PMID: 33110182 PMCID: PMC7592071 DOI: 10.1038/s41598-020-75463-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/14/2020] [Indexed: 11/09/2022] Open
Abstract
High-speed atomic force microscopy (HS-AFM) is a scanning probe microscopy that can capture structural dynamics of biomolecules in real time at single molecule level near physiological condition. Albeit much improvement, while scanning one frame of HS-AFM movies, biomolecules often change their conformations largely. Thus, the obtained frame images can be hampered by the time-difference, the asynchronicity, in the data acquisition. Here, to resolve this data asynchronicity in the HS-AFM movie, we developed Kalman filter and smoother methods, some of the sequential Bayesian filtering approaches. The Kalman filter/smoother methods use alternative steps of a short time-propagation by a linear dynamical system and a correction by the likelihood of AFM data acquired pixel by pixel. We first tested the method using a toy model of a diffusing cone, showing that the Kalman smoother method outperforms to reproduce the ground-truth movie. We then applied the Kalman smoother to a synthetic movie for conformational change dynamics of a motor protein, i.e., dynein, confirming the superiority of the Kalman smoother. Finally, we applied the Kalman smoother to two real HS-AFM movies, FlhAC and centralspindlin, reducing distortion and noise in the AFM movies. The method is general and can be applied to any HS-AFM movies.
Collapse
|
17
|
Abstract
The active form of the small GTPase RhoA is necessary and sufficient for formation of a cytokinetic furrow in animal cells. Despite the conceptual simplicity of the process, the molecular mechanisms that control it are intricate and involve redundancy at multiple levels. Here, we discuss our current knowledge of the mechanisms underlying spatiotemporal regulation of RhoA during cytokinesis by upstream activators. The direct upstream activator, the RhoGEF Ect2, requires activation due to autoinhibition. Ect2 is primarily activated by the centralspindlin complex, which contains numerous domains that regulate its subcellular localization, oligomeric state, and Ect2 activation. We review the functions of these domains and how centralspindlin is regulated to ensure correctly timed, equatorial RhoA activation. Highlighting recent evidence, we propose that although centralspindlin does not always prominently accumulate on the plasma membrane, it is the site where it promotes RhoA activation during cytokinesis.
Collapse
|
18
|
Costa MFA, Ohkura H. The molecular architecture of the meiotic spindle is remodeled during metaphase arrest in oocytes. J Cell Biol 2019; 218:2854-2864. [PMID: 31278080 PMCID: PMC6719438 DOI: 10.1083/jcb.201902110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/21/2019] [Accepted: 06/19/2019] [Indexed: 11/25/2022] Open
Abstract
Before fertilization, oocytes of most species undergo a long, natural arrest in metaphase. Before this, prometaphase I is also prolonged, due to late stable kinetochore-microtubule attachment. How oocytes stably maintain the dynamic spindle for hours during these periods is poorly understood. Here we report that the bipolar spindle changes its molecular architecture during the long prometaphase/metaphase I in Drosophila melanogaster oocytes. By generating transgenic flies expressing GFP-tagged spindle proteins, we found that 14 of 25 spindle proteins change their distribution in the bipolar spindle. Among them, microtubule cross-linking kinesins, MKlp1/Pavarotti and kinesin-5/Klp61F, accumulate to the spindle equator in late metaphase. We found that the late equator accumulation of MKlp1/Pavarotti is regulated by a mechanism distinct from that in mitosis. While MKlp1/Pavarotti contributes to the control of spindle length, kinesin-5/Klp61F is crucial for maintaining a bipolar spindle during metaphase I arrest. Our study provides novel insight into how oocytes maintain a bipolar spindle during metaphase arrest.
Collapse
Affiliation(s)
- Mariana F A Costa
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hiroyuki Ohkura
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Simunić J, Subramanian R. Meeting report - Mitotic spindle: from living and synthetic systems to theory. J Cell Sci 2019; 132:132/17/jcs237602. [PMID: 31477579 DOI: 10.1242/jcs.237602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leading scientists from the field of mitotic spindle research gathered from 24-27 March 2019 to participate in the first 'Mitotic spindle: From living and synthetic systems to theory' conference. This meeting was held in Split, Croatia, organized by Nenad Pavin (Faculty of Science, University of Zagreb) and Iva Tolić (Ruđer Bošković Institute, Zagreb). Around 75 participants presented the latest advances in mitotic spindle research, ranging from live-cell imaging, in vitro reconstitution experiments and theoretical models of spindle assembly. The meeting successfully created an environment for interesting scientific discussions, initiation of new collaborations and development of fresh ideas. In this report, we will highlight and summarize new data challenging the established models of spindle architecture, advances in spindle reconstitution assays, discovery of new regulators of spindle size and shape as well as theoretical approaches for investigating motor protein function.
Collapse
Affiliation(s)
- Juraj Simunić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA .,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
20
|
Ando T. High-speed atomic force microscopy. Curr Opin Chem Biol 2019; 51:105-112. [DOI: 10.1016/j.cbpa.2019.05.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 11/28/2022]
|
21
|
Ughy B, Schmidthoffer I, Szilak L. Heparan sulfate proteoglycan (HSPG) can take part in cell division: inside and outside. Cell Mol Life Sci 2019; 76:865-871. [PMID: 30465083 PMCID: PMC11105504 DOI: 10.1007/s00018-018-2964-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 11/26/2022]
Abstract
Prior to the cytokinesis, the cell-matrix interactions should be disrupted, and the mitotic cells round up. Prerequisite of mitosis, the centrosomes duplicate, spindle fibers are generated and move away from each other to opposite sides of the cells marking the cell poles. Later, an invagination in the plasma membrane is formed a few minutes after anaphase. This furrow ingression is driven by a contractile actomyosin ring, whose assembly is regulated by RhoA GTPase. At the completion of cytokinesis, the two daughter cells are still connected by a thin intercellular bridge, which is subjected to abscission, as the terminal step of cytokinesis. Here, it is overviewed, how syndecan-4, a transmembrane, heparan sulfate proteoglycan, can contribute to these processes in a phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Bettina Ughy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Ildiko Schmidthoffer
- Antal Wittmann Crop, Animal and Food Sciences Multidisciplinary Doctoral School, Mosonmagyaróvár, 9200, Hungary
| | - Laszlo Szilak
- Szilak Laboratories Bioinformatics and Molecule-Design Ltd., Szeged, 6723, Hungary.
- Cereal Research Non-profit Ltd., Szeged, 6726, Hungary.
| |
Collapse
|
22
|
Abstract
During cytokinesis, the cell employs various molecular machineries to separate into two daughters. Many signaling pathways are required to ensure temporal and spatial coordination of the molecular and mechanical events. Cells can also coordinate division with neighboring cells to maintain tissue integrity and flexibility. In this review, we focus on recent advances in the understanding of the molecular underpinnings of cytokinesis.
Collapse
Affiliation(s)
- Yinan Liu
- Departments of Cell Biology and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Douglas Robinson
- Departments of Cell Biology and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
23
|
Dekraker C, Boucher E, Mandato CA. Regulation and Assembly of Actomyosin Contractile Rings in Cytokinesis and Cell Repair. Anat Rec (Hoboken) 2018; 301:2051-2066. [PMID: 30312008 DOI: 10.1002/ar.23962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 01/17/2023]
Abstract
Cytokinesis and single-cell wound repair both involve contractile assemblies of filamentous actin (F-actin) and myosin II organized into characteristic ring-like arrays. The assembly of these actomyosin contractile rings (CRs) is specified spatially and temporally by small Rho GTPases, which trigger local actin polymerization and myosin II contractility via a variety of downstream effectors. We now have a much clearer view of the Rho GTPase signaling cascade that leads to the formation of CRs, but some factors involved in CR positioning, assembly, and function remain poorly understood. Recent studies show that this regulation is multifactorial and goes beyond the long-established Ca2+ -dependent processes. There is substantial evidence that the Ca2+ -independent changes in cell shape, tension, and plasma membrane composition that characterize cytokinesis and single-cell wound repair also regulate CR formation. Elucidating the regulation and mechanistic properties of CRs is important to our understanding of basic cell biology and holds potential for therapeutic applications in human disease. In this review, we present a primer on the factors influencing and regulating CR positioning, assembly, and contraction as they occur in a variety of cytokinetic and single-cell wound repair models. Anat Rec, 301:2051-2066, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Corina Dekraker
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Ye AA, Verma V, Maresca TJ. NOD is a plus end-directed motor that binds EB1 via a new microtubule tip localization sequence. J Cell Biol 2018; 217:3007-3017. [PMID: 29899040 PMCID: PMC6122986 DOI: 10.1083/jcb.201708109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/14/2018] [Accepted: 05/25/2018] [Indexed: 02/08/2023] Open
Abstract
The mechanism by which the Drosophila chromokinesin NOD promotes chromosome congression is unknown. Ye et al. demonstrate that NOD generates force by two mechanisms: plus end–directed motility and microtubule plus-tip tracking via interaction with EB1 through a newly identified motif. Chromosome congression, the process of positioning chromosomes in the midspindle, promotes the stable transmission of the genome to daughter cells during cell division. Congression is typically facilitated by DNA-associated, microtubule (MT) plus end–directed motors called chromokinesins. The Drosophila melanogaster chromokinesin NOD contributes to congression, but the means by which it does so are unknown in large part because NOD has been classified as a nonmotile, orphan kinesin. It has been postulated that NOD promotes congression, not by conventional plus end–directed motility, but by harnessing polymerization forces by end-tracking on growing MT plus ends via a mechanism that is also uncertain. Here, for the first time, it is demonstrated that NOD possesses MT plus end–directed motility. Furthermore, NOD directly binds EB1 through unconventional EB1-interaction motifs that are similar to a newly characterized MT tip localization sequence. We propose NOD produces congression forces by MT plus end–directed motility and tip-tracking on polymerizing MT plus ends via association with EB1.
Collapse
Affiliation(s)
- Anna A Ye
- Biology Department, University of Massachusetts, Amherst, Amherst, MA.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Amherst, MA
| | - Vikash Verma
- Biology Department, University of Massachusetts, Amherst, Amherst, MA
| | - Thomas J Maresca
- Biology Department, University of Massachusetts, Amherst, Amherst, MA .,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Amherst, MA
| |
Collapse
|
25
|
Ströhl F, Wong HHW, Holt CE, Kaminski CF. Total internal reflection fluorescence anisotropy imaging microscopy: setup, calibration, and data processing for protein polymerization measurements in living cells. Methods Appl Fluoresc 2017; 6:014004. [PMID: 28824013 PMCID: PMC5735343 DOI: 10.1088/2050-6120/aa872e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fluorescence anisotropy imaging microscopy (FAIM) measures the depolarization properties of fluorophores to deduce molecular changes in their environment. For successful FAIM, several design principles have to be considered and a thorough system-specific calibration protocol is paramount. One important calibration parameter is the G factor, which describes the system-induced errors for different polarization states of light. The determination and calibration of the G factor is discussed in detail in this article. We present a novel measurement strategy, which is particularly suitable for FAIM with high numerical aperture objectives operating in TIRF illumination mode. The method makes use of evanescent fields that excite the sample with a polarization direction perpendicular to the image plane. Furthermore, we have developed an ImageJ/Fiji plugin, AniCalc, for FAIM data processing. We demonstrate the capabilities of our TIRF-FAIM system by measuring [Formula: see text]-actin polymerization in human embryonic kidney cells and in retinal neurons.
Collapse
Affiliation(s)
- Florian Ströhl
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, United Kingdom
| | | | | | | |
Collapse
|
26
|
Atherton J, Yu IM, Cook A, Muretta JM, Joseph A, Major J, Sourigues Y, Clause J, Topf M, Rosenfeld SS, Houdusse A, Moores CA. The divergent mitotic kinesin MKLP2 exhibits atypical structure and mechanochemistry. eLife 2017; 6:27793. [PMID: 28826477 PMCID: PMC5602324 DOI: 10.7554/elife.27793] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/07/2017] [Indexed: 01/17/2023] Open
Abstract
MKLP2, a kinesin-6, has critical roles during the metaphase-anaphase transition and cytokinesis. Its motor domain contains conserved nucleotide binding motifs, but is divergent in sequence (~35% identity) and size (~40% larger) compared to other kinesins. Using cryo-electron microscopy and biophysical assays, we have undertaken a mechanochemical dissection of the microtubule-bound MKLP2 motor domain during its ATPase cycle, and show that many facets of its mechanism are distinct from other kinesins. While the MKLP2 neck-linker is directed towards the microtubule plus-end in an ATP-like state, it does not fully dock along the motor domain. Furthermore, the footprint of the MKLP2 motor domain on the MT surface is altered compared to motile kinesins, and enhanced by kinesin-6-specific sequences. The conformation of the highly extended loop6 insertion characteristic of kinesin-6s is nucleotide-independent and does not contact the MT surface. Our results emphasize the role of family-specific insertions in modulating kinesin motor function. Cells constantly replicate to provide new cells for growing tissues, and to replace ageing or defective cells around the body. Each new cell needs a copy of the genetic material, and a cellular structure called the mitotic spindle makes sure that this material is shared correctly when a cell divides in two. The spindle is built from protein filaments called microtubules, and the protein filaments grow and shrink as the mitotic spindle carries out its role. Many of these changes in the spindle are driven by proteins called molecular motors, which break down energy-rich molecules of ATP to power them as they walk along the filaments. Kinesins, for example, are molecular motors that can move along microtubules and there are over 40 different kinesins encoded in the human genome. More than half of the human kinesins are involved in cell division including one called MKLP2. Little is known about MKLP2 but some earlier findings had suggested that it would behave very differently compared to other kinesins. Understanding how a kinesin motor works requires studying it in complex with its microtubule tracks. Atherton, Yu et al. have now used a technique called cryo-electron microscopy – which is uniquely suited to looking at large and complicated samples in three dimensions – to observe how the motor in MKLP2 changes shape as it works. This revealed that, while MKLP2 works in a fundamentally similar way to other kinesins, many aspects of its molecular mechanism are highly unusual. These include how it binds to the microtubule, how it interacts with ATP and how it generates force. These findings show that there is much greater diversity in the molecular mechanisms of the kinesins involved in cell division than was previously thought. Several anticancer drugs target kinesins to stop cells dividing and so this diversity may make it easier to target only certain kinesins with drugs, which in turn would have fewer side effects. First, though, it will be important to find out how the unusual mechanism of MKLP2 coordinates and influences other components of the spindle to reveal a fuller picture of what happens when cells replicate.
Collapse
Affiliation(s)
- Joseph Atherton
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - I-Mei Yu
- Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Paris, France
| | - Alexander Cook
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Joseph M Muretta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United Sates
| | - Agnel Joseph
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Jennifer Major
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
| | - Yannick Sourigues
- Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Paris, France
| | - Jeffrey Clause
- Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Paris, France
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Steven S Rosenfeld
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
| | - Anne Houdusse
- Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Paris, France
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| |
Collapse
|
27
|
Gigant E, Stefanutti M, Laband K, Gluszek-Kustusz A, Edwards F, Lacroix B, Maton G, Canman JC, Welburn JPI, Dumont J. Inhibition of ectopic microtubule assembly by the kinesin-13 KLP-7 prevents chromosome segregation and cytokinesis defects in oocytes. Development 2017; 144:1674-1686. [PMID: 28289130 DOI: 10.1242/dev.147504] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/07/2017] [Indexed: 01/02/2023]
Abstract
In most species, oocytes lack centrosomes. Accurate meiotic spindle assembly and chromosome segregation - essential to prevent miscarriage or developmental defects - thus occur through atypical mechanisms that are not well characterized. Using quantitative in vitro and in vivo functional assays in the C. elegans oocyte, we provide novel evidence that the kinesin-13 KLP-7 promotes destabilization of the whole cellular microtubule network. By counteracting ectopic microtubule assembly and disorganization of the microtubule network, this function is strictly required for spindle organization, chromosome segregation and cytokinesis in meiotic cells. Strikingly, when centrosome activity was experimentally reduced, the absence of KLP-7 or the mammalian kinesin-13 protein MCAK (KIF2C) also resulted in ectopic microtubule asters during mitosis in C. elegans zygotes or HeLa cells, respectively. Our results highlight the general function of kinesin-13 microtubule depolymerases in preventing ectopic, spontaneous microtubule assembly when centrosome activity is defective or absent, which would otherwise lead to spindle microtubule disorganization and aneuploidy.
Collapse
Affiliation(s)
- Emmanuelle Gigant
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Marine Stefanutti
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Kimberley Laband
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Agata Gluszek-Kustusz
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Frances Edwards
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Benjamin Lacroix
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Gilliane Maton
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Julie C Canman
- Columbia University, Department of Pathology and Cell Biology, New York, NY 10032, USA
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| |
Collapse
|
28
|
Mishima M. Preparation of centralspindlin as an active heterotetramer of kinesin and GTPase activating protein subunits for in vitro structural and functional assays. Methods Cell Biol 2017; 137:371-385. [DOI: 10.1016/bs.mcb.2016.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
29
|
Gnazzo MM, Uhlemann EME, Villarreal AR, Shirayama M, Dominguez EG, Skop AR. The RNA-binding protein ATX-2 regulates cytokinesis through PAR-5 and ZEN-4. Mol Biol Cell 2016; 27:3052-3064. [PMID: 27559134 PMCID: PMC5063614 DOI: 10.1091/mbc.e16-04-0219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022] Open
Abstract
The mechanisms that mediate the temporal and spatial recruitment of cell division factors to the spindle midzone and midbody remain unclear. Cell division is regulated by the conserved RNA-binding protein, ATX-2/Ataxin-2, which facilitates the targeting of ZEN-4 to the spindle midzone by mediating PAR-5. The spindle midzone harbors both microtubules and proteins necessary for furrow formation and the completion of cytokinesis. However, the mechanisms that mediate the temporal and spatial recruitment of cell division factors to the spindle midzone and midbody remain unclear. Here we describe a mechanism governed by the conserved RNA-binding protein ATX-2/Ataxin-2, which targets and maintains ZEN-4 at the spindle midzone. ATX-2 does this by regulating the amount of PAR-5 at mitotic structures, particularly the spindle, centrosomes, and midbody. Preventing ATX-2 function leads to elevated levels of PAR-5, enhanced chromatin and centrosome localization of PAR-5–GFP, and ultimately a reduction of ZEN-4–GFP at the spindle midzone. Codepletion of ATX-2 and PAR-5 rescued the localization of ZEN-4 at the spindle midzone, indicating that ATX-2 mediates the localization of ZEN-4 upstream of PAR-5. We provide the first direct evidence that ATX-2 is necessary for cytokinesis and suggest a model in which ATX-2 facilitates the targeting of ZEN-4 to the spindle midzone by mediating the posttranscriptional regulation of PAR-5.
Collapse
Affiliation(s)
- Megan M Gnazzo
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Eva-Maria E Uhlemann
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Alex R Villarreal
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Masaki Shirayama
- Program in Molecular Medicine, RNA Therapeutics Institute, and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Eddie G Dominguez
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Ahna R Skop
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
30
|
Young LJ, Ströhl F, Kaminski CF. A Guide to Structured Illumination TIRF Microscopy at High Speed with Multiple Colors. J Vis Exp 2016. [PMID: 27285848 PMCID: PMC4927749 DOI: 10.3791/53988] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Optical super-resolution imaging with structured illumination microscopy (SIM) is a key technology for the visualization of processes at the molecular level in the chemical and biomedical sciences. Although commercial SIM systems are available, systems that are custom designed in the laboratory can outperform commercial systems, the latter typically designed for ease of use and general purpose applications, both in terms of imaging fidelity and speed. This article presents an in-depth guide to building a SIM system that uses total internal reflection (TIR) illumination and is capable of imaging at up to 10 Hz in three colors at a resolution reaching 100 nm. Due to the combination of SIM and TIRF, the system provides better image contrast than rival technologies. To achieve these specifications, several optical elements are used to enable automated control over the polarization state and spatial structure of the illumination light for all available excitation wavelengths. Full details on hardware implementation and control are given to achieve synchronization between excitation light pattern generation, wavelength, polarization state, and camera control with an emphasis on achieving maximum acquisition frame rate. A step-by-step protocol for system alignment and calibration is presented and the achievable resolution improvement is validated on ideal test samples. The capability for video-rate super-resolution imaging is demonstrated with living cells.
Collapse
Affiliation(s)
- Laurence J Young
- Department of Chemical Engineering and Biotechnology, University of Cambridge;
| | - Florian Ströhl
- Department of Chemical Engineering and Biotechnology, University of Cambridge
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge
| |
Collapse
|
31
|
Mishima M. Centralspindlin in Rappaport’s cleavage signaling. Semin Cell Dev Biol 2016; 53:45-56. [DOI: 10.1016/j.semcdb.2016.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/02/2016] [Indexed: 02/07/2023]
|
32
|
Affiliation(s)
- Masanori Mishima
- a Division of Biomedical Cell Biology; Warwick Medical School ; University of Warwick ; Coventry , UK
| | - Kian-Yong Lee
- b Ludwig Institute for Cancer Research ; University of California San Diego ; La Jolla , CA USA
| |
Collapse
|
33
|
Tao L, Fasulo B, Warecki B, Sullivan W. Tum/RacGAP functions as a switch activating the Pav/kinesin-6 motor. Nat Commun 2016; 7:11182. [PMID: 27091402 PMCID: PMC4838857 DOI: 10.1038/ncomms11182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/26/2016] [Indexed: 11/24/2022] Open
Abstract
Centralspindlin is essential for central spindle and cleavage furrow formation. Drosophila centralspindlin consists of a kinesin-6 motor (Pav/kinesin-6) and a GTPase-activating protein (Tum/RacGAP). Centralspindlin localization to the central spindle is mediated by Pav/kinesin-6. While Tum/RacGAP has well-documented scaffolding functions, whether it influences Pav/kinesin-6 function is less well-explored. Here we demonstrate that both Pav/kinesin-6 and the centralspindlin complex (co-expressed Pav/Tum) have strong microtubule bundling activity. Centralspindlin also has robust plus-end-directed motility. In contrast, Pav/kinesin-6 alone cannot move microtubules. However, the addition of Tum/RacGAP or a 65 amino acid Tum/RacGAP fragment to Pav/kinesin-6 restores microtubule motility. Further, ATPase assays reveal that microtubule-stimulated ATPase activity of centralspindlin is seven times higher than that of Pav/kinesin-6. These findings are supported by in vivo studies demonstrating that in Tum/RacGAP-depleted S2 Drosophila cells, Pav/kinesin-6 exhibits severely reduced localization to the central spindle and an abnormal concentration at the centrosomes. Centralspindlin consists of dimeric kinesin-6 and dimeric RacGAP, and is involved in the organization of anaphase midzone microtubules. Here, the authors show that the RacGAP is needed for motor activity at the plus-end of microtubules, but not for the bundling activity associated with kinesin-6.
Collapse
Affiliation(s)
- Li Tao
- Department of Biology, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Barbara Fasulo
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Brandt Warecki
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - William Sullivan
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|