1
|
Jin Y, Chen W, Hu J, Wang J, Ren H. Constructions of quorum sensing signaling network for activated sludge microbial community. ISME COMMUNICATIONS 2024; 4:ycae018. [PMID: 38500706 PMCID: PMC10945367 DOI: 10.1093/ismeco/ycae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 03/20/2024]
Abstract
In wastewater treatment systems, the interactions among various microbes based on chemical signals, namely quorum sensing (QS), play critical roles in influencing microbial structure and function. However, it is challenging to understand the QS-controlled behaviors and the underlying mechanisms in complex microbial communities. In this study, we constructed a QS signaling network, providing insights into the intra- and interspecies interactions of activated sludge microbial communities based on diverse QS signal molecules. Our research underscores the role of diffusible signal factors in both intra- and interspecies communication among activated sludge microorganisms, and signal molecules commonly considered to mediate intraspecies communication may also participate in interspecies communication. QS signaling molecules play an important role as communal resources among the entire microbial group. The communication network within the microbial community is highly redundant, significantly contributing to the stability of natural microbial systems. This work contributes to the establishment of QS signaling network for activated sludge microbial communities, which may complement metabolic exchanges in explaining activated sludge microbial community structure and may help with a variety of future applications, such as making the dynamics and resilience of highly complex ecosystems more predictable.
Collapse
Affiliation(s)
- Ying Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenkang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jie Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Sanders JG, Akl H, Hagen SJ, Xue B. Crosstalk enables mutual activation of coupled quorum sensing pathways through "jump-start" and "push-start" mechanisms. Sci Rep 2023; 13:19230. [PMID: 37932382 PMCID: PMC10628186 DOI: 10.1038/s41598-023-46399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Many quorum sensing microbes produce more than one chemical signal and detect them using interconnected pathways that crosstalk with each other. While there are many hypotheses for the advantages of sensing multiple signals, the prevalence and functional significance of crosstalk between pathways are much less understood. We explore the effect of intracellular signal crosstalk using a simple model that captures key features of typical quorum sensing pathways: multiple pathways in a hierarchical configuration, operating with positive feedback, with crosstalk at the receptor and promoter levels. We find that crosstalk enables activation or inhibition of one output by the non-cognate signal, broadens the dynamic range of the outputs, and allows one pathway to modulate the feedback circuit of the other. Our findings show how crosstalk between quorum sensing pathways can be viewed not as a detriment to the processing of information, but as a mechanism that enhances the functional range of the full regulatory system. When positive feedback systems are coupled through crosstalk, several new modes of activation or deactivation become possible.
Collapse
Affiliation(s)
| | - Hoda Akl
- Department of Physics, University of Florida, Gainesville, FL, 32611, USA
| | - Stephen J Hagen
- Department of Physics, University of Florida, Gainesville, FL, 32611, USA
| | - BingKan Xue
- Department of Physics, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
3
|
Sun H, Si F, Zhao X, Li F, Qi G. The cellular redox state in Bacillus amyloliquefaciens WH1 affects biofilm formation indirectly in a surfactant direct manner. J Basic Microbiol 2023. [PMID: 37189223 DOI: 10.1002/jobm.202300064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Surfactin is a signal to trigger biofilm formation against harsh environments. Generally, harsh environments can result in change of the cellular redox state to induce biofilm formation, but we know little about whether the cellular redox state influences biofilm formation via surfactin. Here, the reductant glucose could reduce surfactin and enhance biofilm formation by a surfactin-indirect way. The oxidant H2 O2 led to a decrease of surfactin accompanying with weakened biofilm formation. Spx and PerR were both necessary for surfactin production and biofilm formation. H2 O2 improved surfactin production but inhibited biofilm formation by a surfactin-indirect manner in Δspx, while it reduced surfactin production without obvious influence on biofilm formation in ΔperR. The ability against H2 O2 stress was enhanced in Δspx, but weakened in ΔperR. Thereby, PerR was favorable for resisting oxidative stress, while Spx played a negative role in this action. Knockout and compensation of rex also supported that the cells could form biofilm by a surfactin-indirect way. Collectively, surfactin is not a unique signal to trigger biofilm formation, and the cellular redox state can influence biofilm formation by a surfactin-direct or -indirect way in Bacillus amyloliquefaciens WH1.
Collapse
Affiliation(s)
- Huiwan Sun
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fengmei Si
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feng Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Jautzus T, van Gestel J, Kovács ÁT. Complex extracellular biology drives surface competition during colony expansion in Bacillus subtilis. THE ISME JOURNAL 2022; 16:2320-2328. [PMID: 35790818 PMCID: PMC9477810 DOI: 10.1038/s41396-022-01279-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 04/29/2023]
Abstract
Many bacteria grow on surfaces in nature, where they form cell collectives that compete for space. Within these collectives, cells often secrete molecules that benefit surface spreading by, for example, reducing surface tension or promoting filamentous growth. Although we have a detailed understanding of how these molecules are produced, much remains unknown about their role in surface competition. Here we examine sliding motility in Bacillus subtilis and compare how secreted molecules, essential for sliding, affect intraspecific cooperation and competition on a surface. We specifically examine (i) the lipopeptide surfactin, (ii) the hydrophobin protein BslA, and (iii) exopolysaccharides (EPS). We find that these molecules have a distinct effect on surface competition. Whereas surfactin acts like a common good, which is costly to produce and benefits cells throughout the surface, BslA and EPS are cost-free and act locally. Accordingly, surfactin deficient mutants can exploit the wild-type strain in competition for space, while BslA and EPS mutants cannot. Supported by a mathematical model, we show that three factors are important in predicting the outcome of surface competition: the costs of molecule synthesis, the private benefits of molecule production, and the diffusion rate. Our results underscore the intricate extracellular biology that can drive bacterial surface competition.
Collapse
Affiliation(s)
- Theresa Jautzus
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Jordi van Gestel
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Ákos T Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, 07743, Jena, Germany.
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Rattray JB, Thomas SA, Wang Y, Molotkova E, Gurney J, Varga JJ, Brown SP. Bacterial Quorum Sensing Allows Graded and Bimodal Cellular Responses to Variations in Population Density. mBio 2022; 13:e0074522. [PMID: 35583321 PMCID: PMC9239169 DOI: 10.1128/mbio.00745-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Quorum sensing (QS) is a mechanism of cell-cell communication that connects gene expression to environmental conditions (e.g., cell density) in many bacterial species, mediated by diffusible signal molecules. Current functional studies focus on qualitatively distinct QS ON/OFF states. In the context of density sensing, this view led to the adoption of a "quorum" analogy in which populations sense when they are above a sufficient density (i.e., "quorate") to efficiently turn on cooperative behaviors. This framework overlooks the potential for intermediate, graded responses to shifts in the environment. In this study, we tracked QS-regulated protease (lasB) expression and showed that Pseudomonas aeruginosa can deliver a graded behavioral response to fine-scale variation in population density, on both the population and single-cell scales. On the population scale, we saw a graded response to variation in population density (controlled by culture carrying capacity). On the single-cell scale, we saw significant bimodality at higher densities, with separate OFF and ON subpopulations that responded differentially to changes in density: a static OFF population of cells and increasing intensity of expression among the ON population of cells. Together, these results indicate that QS can tune gene expression to graded environmental change, with no critical cell mass or "quorum" at which behavioral responses are activated on either the individual-cell or population scale. In an infection context, our results indicate there is not a hard threshold separating a quorate "attack" mode from a subquorate "stealth" mode. IMPORTANCE Bacteria can be highly social, controlling collective behaviors via cell-cell communication mechanisms known as quorum sensing (QS). QS is now a large research field, yet a basic question remains unanswered: what is the environmental resolution of QS? The notion of a threshold, or "quorum," separating coordinated ON and OFF states is a central dogma in QS, but recent studies have shown heterogeneous responses at a single cell scale. Using Pseudomonas aeruginosa, we showed that populations generate graded responses to environmental variation through shifts in the proportion of cells responding and the intensity of responses. In an infection context, our results indicate that there is not a hard threshold separating a quorate "attack" mode and a subquorate "stealth" mode.
Collapse
Affiliation(s)
- Jennifer B. Rattray
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen A. Thomas
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Graduate Program in Quantitative Biosciences (QBioS), Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yifei Wang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- The Institute for Data Engineering and Science (IDEaS), Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Evgeniya Molotkova
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - James Gurney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - John J. Varga
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sam P. Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Mechanisms of interactions between bacteria and bacteriophage mediate by quorum sensing systems. Appl Microbiol Biotechnol 2022; 106:2299-2310. [PMID: 35312824 DOI: 10.1007/s00253-022-11866-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/02/2022]
Abstract
Bacteriophage (phage) and their host bacteria coevolve with each other over time. Quorum sensing (QS) systems play an important role in the interaction between bacteria and phage. In this review paper, we summarized the function of QS systems in bacterial biofilm formation, phage adsorption, lysis-lysogeny conversion of phage, coevolution of bacteria and phage, and information exchanges in phage, which may provide reference to future research on alternative control strategies for antibiotic-resistant and biofilm-forming pathogens by phage. KEY POINTS: • Quorum sensing (QS) systems influence bacteria-phage interaction. • QS systems cause phage adsorption and evolution and lysis-lysogeny conversion. • QS systems participate in biofilm formation and co-evolution with phage of bacteria.
Collapse
|
7
|
Public communication can facilitate low-risk coordination under surveillance. Sci Rep 2022; 12:3433. [PMID: 35236874 PMCID: PMC8891294 DOI: 10.1038/s41598-022-07165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Consider a sub-population of rebels aiming at initiating a revolution. To avoid initializing a failed revolution, rebels would first strive to estimate their “power”, which is often correlated with their number. However, especially in non-democratic countries, rebels avoid disclosing themselves. This poses a significant challenge for rebels: estimating their number while minimizing the risk of being identified as rebels. This paper introduces a distributed computing framework to study this question. Our main insight is that the communication pattern plays a crucial role in achieving such a task. Specifically, we distinguish between public communication, in which each message announced by an individual can be viewed by all its neighbors, and private communication, in which each message is received by one neighbor. We describe a simple protocol in the public communication model that allows rebels to estimate their number while keeping a negligible risk of being identified as rebels. The proposed protocol, inspired by historical events, can be executed covertly even under extreme conditions of surveillance. Conversely, we show that under private communication, protocols of similar simplicity are either inefficient or non-covert. These results suggest that public communication can facilitate the emergence of revolutions in non-democratic countries.
Collapse
|
8
|
Zhang Q, Wang Y, Zhou J. Complete Genome Sequence of Stenotrophomonas rhizophila KC1, a Quorum Sensing-Producing Algicidal Bacterium Isolated from Mangrove Kandelia candel. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:857-861. [PMID: 33673750 DOI: 10.1094/mpmi-12-20-0346-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper describes the isolation of an algicidal strain, Stenotrophomonas rhizophila KC1, from mangrove (Kandelia candel) and its genome, which was sequenced using next-generation sequencing technology. The genome is 5.93 Mb with a G+C content of 63.17%. A total of 3,352 functional proteins were assigned according to Kyoto Encyclopedia of Genes and Genomes categories. A total of 11,586 protein-coding genes, 73 transfer RNA genes, and 17 ribosomal RNA genes were obtained. In silico genome annotation protocols identified 83 putative quorum sensing (QS) genes, and the algicidal potential of KC1 was related with the QS genes (for example LuxI-LuxR genes). Collectively, these data suggest that KC1 may be an antialgal bacterium whose behavior can be modulated by QS signaling. The annotated genome sequence of this strain may represent a valuable tool for studying algae-bacteria interactions and developing microbe-based methods for controlling harmful algae.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Qin Zhang
- University of Queensland, Brisbane, Australia
| | - Yan Wang
- Shenzhen Polytechnic, Shenzhen 518055, P. R. China
| | - Jin Zhou
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
9
|
Gallegos-Monterrosa R, Christensen MN, Barchewitz T, Koppenhöfer S, Priyadarshini B, Bálint B, Maróti G, Kempen PJ, Dragoš A, Kovács ÁT. Impact of Rap-Phr system abundance on adaptation of Bacillus subtilis. Commun Biol 2021; 4:468. [PMID: 33850233 PMCID: PMC8044106 DOI: 10.1038/s42003-021-01983-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Microbes commonly display great genetic plasticity, which has allowed them to colonize all ecological niches on Earth. Bacillus subtilis is a soil-dwelling organism that can be isolated from a wide variety of environments. An interesting characteristic of this bacterium is its ability to form biofilms that display complex heterogeneity: individual, clonal cells develop diverse phenotypes in response to different environmental conditions within the biofilm. Here, we scrutinized the impact that the number and variety of the Rap-Phr family of regulators and cell-cell communication modules of B. subtilis has on genetic adaptation and evolution. We examine how the Rap family of phosphatase regulators impacts sporulation in diverse niches using a library of single and double rap-phr mutants in competition under 4 distinct growth conditions. Using specific DNA barcodes and whole-genome sequencing, population dynamics were followed, revealing the impact of individual Rap phosphatases and arising mutations on the adaptability of B. subtilis.
Collapse
Affiliation(s)
- Ramses Gallegos-Monterrosa
- grid.9613.d0000 0001 1939 2794Terrestrial Biofilms Group, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mathilde Nordgaard Christensen
- grid.5170.30000 0001 2181 8870Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tino Barchewitz
- grid.9613.d0000 0001 1939 2794Terrestrial Biofilms Group, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sonja Koppenhöfer
- grid.9613.d0000 0001 1939 2794Terrestrial Biofilms Group, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany ,grid.25055.370000 0000 9130 6822Present Address: Department of Biology, Memorial University of Newfoundland, St. John’s, NL Canada
| | - B. Priyadarshini
- grid.5170.30000 0001 2181 8870Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Balázs Bálint
- grid.475919.7Seqomics Biotechnology Ltd., Mórahalom, Hungary
| | - Gergely Maróti
- grid.5018.c0000 0001 2149 4407Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Paul J. Kempen
- grid.5170.30000 0001 2181 8870Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Dragoš
- grid.5170.30000 0001 2181 8870Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ákos T. Kovács
- grid.9613.d0000 0001 1939 2794Terrestrial Biofilms Group, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany ,grid.5170.30000 0001 2181 8870Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
10
|
West SA, Cooper GA, Ghoul MB, Griffin AS. Ten recent insights for our understanding of cooperation. Nat Ecol Evol 2021; 5:419-430. [PMID: 33510431 PMCID: PMC7612052 DOI: 10.1038/s41559-020-01384-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Since Hamilton published his seminal papers in 1964, our understanding of the importance of cooperation for life on Earth has evolved beyond recognition. Early research was focused on altruism in the social insects, where the problem of cooperation was easy to see. In more recent years, research into cooperation has expanded across the entire tree of life, and has been revolutionized by advances in genetic, microbiological and analytical techniques. We highlight ten insights that have arisen from these advances, which have illuminated generalizations across different taxa, making the world simpler to explain. Furthermore, progress in these areas has opened up numerous new problems to solve, suggesting exciting directions for future research.
Collapse
Affiliation(s)
- Stuart A West
- Department of Zoology, University of Oxford, Oxford, UK.
| | - Guy A Cooper
- Department of Zoology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
11
|
Jones JM, Grinberg I, Eldar A, Grossman AD. A mobile genetic element increases bacterial host fitness by manipulating development. eLife 2021; 10:65924. [PMID: 33655883 PMCID: PMC8032392 DOI: 10.7554/elife.65924] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 01/30/2023] Open
Abstract
Horizontal gene transfer is a major force in bacterial evolution. Mobile genetic elements are responsible for much of horizontal gene transfer and also carry beneficial cargo genes. Uncovering strategies used by mobile genetic elements to benefit host cells is crucial for understanding their stability and spread in populations. We describe a benefit that ICEBs1, an integrative and conjugative element of Bacillus subtilis, provides to its host cells. Activation of ICEBs1 conferred a frequency-dependent selective advantage to host cells during two different developmental processes: biofilm formation and sporulation. These benefits were due to inhibition of biofilm-associated gene expression and delayed sporulation by ICEBs1-containing cells, enabling them to exploit their neighbors and grow more prior to development. A single ICEBs1 gene, devI (formerly ydcO), was both necessary and sufficient for inhibition of development. Manipulation of host developmental programs allows ICEBs1 to increase host fitness, thereby increasing propagation of the element. Many bacteria can ‘have sex’ – that is, they can share their genetic information and trade off segments of DNA. While these mobile genetic elements can be parasites that use the resources of their host to make more of themselves, some carry useful genes which, for example, help bacteria to fight off antibiotics. Integrative and conjugative elements (or ICEs) are a type of mobile segments that normally stay inside the genetic information of their bacterial host but can sometimes replicate and be pumped out to another cell. ICEBs1 for instance, is an element found in the common soil bacterium Bacillus subtilis. Scientists know that ICEBs1 can rapidly spread in biofilms – the slimly, crowded communities where bacteria live tightly connected – but it is still unclear whether it helps or hinders its hosts. Using genetic manipulations and tracking the survival of different groups of cells, Jones et al. show that carrying ICEBs1 confers an advantage under many conditions. When B. subtilis forms biofilms, the presence of the devI gene in ICEBs1 helps the cells to delay the production of the costly mucus that keeps bacteria together, allowing the organisms to ‘cheat’ for a little while and benefit from the tight-knit community without contributing to it. As nutrients become scarce in biofilms, the gene also allows the bacteria to grow for longer before they start to form spores – the dormant bacterial form that can weather difficult conditions. Mobile elements can carry genes that make bacteria resistant to antibiotics, harmful to humans, or able to use new food sources; they could even be used to artificially introduce genes of interest in these cells. The work by Jones et al. helps to understand the way these elements influence the fate of their host, providing insight into how they could be harnessed for the benefit of human health.
Collapse
Affiliation(s)
- Joshua M Jones
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Ilana Grinberg
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avigdor Eldar
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
12
|
Rap-Phr Systems from Plasmids pAW63 and pHT8-1 Act Together To Regulate Sporulation in the Bacillus thuringiensis Serovar kurstaki HD73 Strain. Appl Environ Microbiol 2020; 86:AEM.01238-20. [PMID: 32680861 DOI: 10.1128/aem.01238-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Bacillus thuringiensis is a Gram-positive spore-forming bacterium pathogenic to various insect species. This property is due to the Cry toxins encoded by plasmid genes and mostly produced during sporulation. B. thuringiensis contains a remarkable number of extrachromosomal DNA molecules and a great number of plasmid rap-phr genes. Rap-Phr quorum-sensing systems regulate different bacterial processes, notably the commitment to sporulation in Bacillus species. Rap proteins are quorum sensors acting as phosphatases on Spo0F, an intermediate of the sporulation phosphorelay, and are inhibited by Phr peptides that function as signaling molecules. In this study, we characterize the Rap63-Phr63 system encoded by the pAW63 plasmid from the B. thuringiensis serovar kurstaki HD73 strain. Rap63 has moderate activity on sporulation and is inhibited by the Phr63 peptide. The rap63-phr63 genes are cotranscribed, and the phr63 gene is also transcribed from a σH-specific promoter. We show that Rap63-Phr63 regulates sporulation together with the Rap8-Phr8 system harbored by plasmid pHT8_1 of the HD73 strain. Interestingly, the deletion of both phr63 and phr8 genes in the same strain has a greater negative effect on sporulation than the sum of the loss of each phr gene. Despite the similarities in the Phr8 and Phr63 sequences, there is no cross talk between the two systems. Our results suggest a synergism of these two Rap-Phr systems in the regulation of the sporulation of B. thuringiensis at the end of the infectious cycle in insects, thus pointing out the roles of the plasmids in the fitness of the bacterium.IMPORTANCE The life cycle of Bacillus thuringiensis in insect larvae is regulated by quorum-sensing systems of the RNPP family. After the toxemia caused by Cry insecticidal toxins, the sequential activation of these systems allows the bacterium to trigger first a state of virulence (regulated by PlcR-PapR) and then a necrotrophic lifestyle (regulated by NprR-NprX); ultimately, sporulation is controlled by the Rap-Phr systems. Our study describes a new rap-phr operon carried by a B. thuringiensis plasmid and shows that the Rap protein has a moderate effect on sporulation. However, this system, in combination with another plasmidic rap-phr operon, provides effective control of sporulation when the bacteria develop in the cadavers of infected insect larvae. Overall, this study highlights the important adaptive role of the plasmid Rap-Phr systems in the developmental fate of B. thuringiensis and its survival within its ecological niche.
Collapse
|
13
|
Xiao Y, Lu Q, Yi X, Zhong G, Liu J. Synergistic Degradation of Pyrethroids by the Quorum Sensing-Regulated Carboxylesterase of Bacillus subtilis BSF01. Front Bioeng Biotechnol 2020; 8:889. [PMID: 32850741 PMCID: PMC7403188 DOI: 10.3389/fbioe.2020.00889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/10/2020] [Indexed: 12/31/2022] Open
Abstract
The well-studied quorum sensing (QS) mechanism has established a complex knowledge system of how microorganisms behave collectively in natural ecosystems, which contributes to bridging the gap between the ecological functions of microbial communities and the molecular mechanisms of cell-to-cell communication. In particular, the ability of agrochemical degradation has been one most attractive potential of functional bacteria, but the interaction and mutual effects of intracellular degradation and intraspecific behavior remained unclear. In this study, we establish a connection between QS regulation and biodegradation by harnessing the previously isolated Bacillus subtilis BSF01 as a template which degrades various pyrethroids. First, we characterize the genetic and transcriptional basis of comA-involved QS system in B. subtilis BSF01 since the ComQXPA circuit coordinates group behaviors in B. subtilis isolates. Second, the genetic and transcriptional details of pyrethroid-degrading carboxylesterase CesB are defined, and its catalytic capacity is evaluated under different conditions. More importantly, we adopt DNA pull-down and yeast one-hybrid techniques to reveal that the enzymatic degradation of pyrethroids is initiated through QS signal regulator ComA binding to carboxylesterase gene cesB, highlighting the synergistic effect of QS regulation and pyrethroid degradation in B. subtilis BSF01. Taken together, the elucidated mechanism provides novel details on the intercellular response of functional bacteria against xenobiotic exposure, which opens up possibilities to facilitate the in-situ contaminant bioremediation via combining the QS-mediated strategies.
Collapse
Affiliation(s)
- Ying Xiao
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.,Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangzhou, China
| | - Qiqi Lu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Jie Liu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Aframian N, Eldar A. A Bacterial Tower of Babel: Quorum-Sensing Signaling Diversity and Its Evolution. Annu Rev Microbiol 2020; 74:587-606. [PMID: 32680450 DOI: 10.1146/annurev-micro-012220-063740] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quorum sensing is a process in which bacteria secrete and sense a diffusible molecule, thereby enabling bacterial groups to coordinate their behavior in a density-dependent manner. Quorum sensing has evolved multiple times independently, utilizing different molecular pathways and signaling molecules. A common theme among many quorum-sensing families is their wide range of signaling diversity-different variants within a family code for different signal molecules with a cognate receptor specific to each variant. This pattern of vast allelic polymorphism raises several questions-How do different signaling variants interact with one another? How is this diversity maintained? And how did it come to exist in the first place? Here we argue that social interactions between signaling variants can explain the emergence and persistence of signaling diversity throughout evolution. Finally, we extend the discussion to include cases where multiple diverse systems work in concert in a single bacterium.
Collapse
Affiliation(s)
- Nitzan Aframian
- Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 6997801 Tel-Aviv, Israel; ,
| | - Avigdor Eldar
- Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 6997801 Tel-Aviv, Israel; ,
| |
Collapse
|
15
|
Zhao K, Li J, Yuan Y, Lin J, Wang X, Guo Y, Chu Y. Nutrient factor-dependent performance of bacterial quorum sensing system during population evolution. Arch Microbiol 2020; 202:2181-2188. [PMID: 32519021 DOI: 10.1007/s00203-020-01937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/26/2020] [Accepted: 06/04/2020] [Indexed: 11/26/2022]
Abstract
Bacterial quorum sensing (QS) system regulates the production of most costly but sharable extracellular products (public goods) in a growth-phase-dependent manner, and the development of this energy-intensive process is susceptible to environmental changes. However, the role of nutrient factors in dominating the QS-mediated cooperative interaction and intracellular metabolism still remains less understood. Here we studied the performance of QS system by growing Pseudomonas aeruginosa under different nutrient and culture conditions. The results of comparative-transcriptomic analyses revealed that carbon source-limitation was the main factor suppressing the activation of QS system, and a substantial number of public-good-encoding genes were induced when phosphorus is limiting in short-term culture. By contrast, although the QS regulation of P. aeruginosa in all the cultures was generally decreased along with the enrichment of QS-deficient individuals during evolution, limitation of different nutrient factors had discrepant effects in directing the formation of population structure by coordinating the production of public goods and primary metabolism, especially the starch and sucrose metabolism. These findings demonstrate the pleiotropy of QS regulation in balancing the development of cooperative behavior and metabolism, and provide a reference for further understanding the role of QS system in causing persistent infections.
Collapse
Affiliation(s)
- Kelei Zhao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052, Sichuan, China.
| | - Jing Li
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052, Sichuan, China
| | - Yang Yuan
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052, Sichuan, China
| | - Jiafu Lin
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052, Sichuan, China
| | - Xinrong Wang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052, Sichuan, China
| | - Yidong Guo
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052, Sichuan, China
| | - Yiwen Chu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052, Sichuan, China.
| |
Collapse
|
16
|
Optimal Response to Quorum-Sensing Signals Varies in Different Host Environments with Different Pathogen Group Size. mBio 2020; 11:mBio.00535-20. [PMID: 32487754 PMCID: PMC7267880 DOI: 10.1128/mbio.00535-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Quorum sensing describes the ability of microbes to alter gene regulation according to their local population size. Some successful theory suggests that this is a form of cooperation, namely, investment in shared products is only worthwhile if there are sufficient bacteria making the same product. This theory can explain the genetic diversity in these signaling systems in Gram-positive bacteria, such as Bacillus and Staphylococcus sp. The possible advantages gained by rare genotypes (which can exploit the products of their more common neighbors) could explain why different genotypes can coexist. We show that while these social interactions can occur in simple laboratory experiments, they do not occur in naturalistic infections using an invertebrate pathogen, Bacillus thuringiensis. Instead, our results suggest that different genotypes are adapted to differently sized hosts. Overall, social models are not easily applied to this system, implying that a different explanation for this form of quorum sensing is required. The persistence of genetic variation in master regulators of gene expression, such as quorum-sensing systems, is hard to explain. Here, we investigated two alternative hypotheses for the prevalence of polymorphic quorum sensing in Gram-positive bacteria, i.e., the use of different signal/receptor pairs (‘pherotypes’) to regulate the same functions. First, social interactions between pherotypes or ‘facultative cheating’ may favor rare variants that exploit the signals of others. Second, different pherotypes may increase fitness in different environments. We evaluated these hypotheses in the invertebrate pathogen Bacillus thuringiensis, using three pherotypes expressed in a common genetic background. Facultative cheating could occur in well-mixed host homogenates provided there was minimal cross talk between competing pherotypes. However, facultative cheating did not occur when spatial structure was increased in static cultures or in naturalistic oral infections, where common pherotypes had higher fitness. There was clear support for environment-dependent fitness; pherotypes varied in responsiveness to signals and in mean competitive fitness. Notably, competitive fitness varied with group size. In contrast to typical social evolution models of quorum sensing which predict higher response to signal at larger group size, the pherotype with highest responsiveness to signals performed best in smaller hosts where infections have a lower pathogen group size. In this system, low signal abundance appears to limit fitness in hosts, while the optimal level of response to signals varies in different host environments.
Collapse
|
17
|
Kotte AK, Severn O, Bean Z, Schwarz K, Minton NP, Winzer K. RRNPP-type quorum sensing affects solvent formation and sporulation in Clostridium acetobutylicum. MICROBIOLOGY (READING, ENGLAND) 2020; 166:579-592. [PMID: 32375981 PMCID: PMC7376267 DOI: 10.1099/mic.0.000916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022]
Abstract
The strictly anaerobic bacterium Clostridium acetobutylicum is well known for its ability to convert sugars into organic acids and solvents, most notably the potential biofuel butanol. However, the regulation of its fermentation metabolism, in particular the shift from acid to solvent production, remains poorly understood. The aim of this study was to investigate whether cell-cell communication plays a role in controlling the timing of this shift or the extent of solvent formation. Analysis of the available C. acetobutylicum genome sequences revealed the presence of eight putative RRNPP-type quorum-sensing systems, here designated qssA to qssH, each consisting of an RRNPP-type regulator gene followed by a small open reading frame encoding a putative signalling peptide precursor. The identified regulator and signal peptide precursor genes were designated qsrA to qsrH and qspA to qspH, respectively. Triplicate regulator mutants were generated in strain ATCC 824 for each of the eight systems and screened for phenotypic changes. The qsrB mutants showed increased solvent formation during early solventogenesis and hence the QssB system was selected for further characterization. Overexpression of qsrB severely reduced solvent and endospore formation and this effect could be overcome by adding short synthetic peptides to the culture medium representing a specific region of the QspB signalling peptide precursor. In addition, overexpression of qspB increased the production of acetone and butanol and the initial (48 h) titre of heat-resistant endospores. Together, these findings establish a role for QssB quorum sensing in the regulation of early solventogenesis and sporulation in C. acetobutylicum.
Collapse
Affiliation(s)
- Ann-Kathrin Kotte
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
- Present address: Independent Commodity Intelligence Service, Bishopsgate, London, UK
| | - Oliver Severn
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
- Present address: Singer Instruments, Roadwater, Watchet, UK
| | - Zak Bean
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
- Present address: CHAIN Biotechnology Ltd, MediCity, Nottingham, UK
| | - Katrin Schwarz
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
- Present address: Azotic Technologies Ltd, BioCity, Nottingham, UK
| | - Nigel P. Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| | - Klaus Winzer
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| |
Collapse
|
18
|
Wang Y, Rattray JB, Thomas SA, Gurney J, Brown SP. In silico bacteria evolve robust cooperaion via complex quorum-sensing strategies. Sci Rep 2020; 10:8628. [PMID: 32451396 PMCID: PMC7248119 DOI: 10.1038/s41598-020-65076-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Many species of bacteria collectively sense and respond to their social and physical environment via 'quorum sensing' (QS), a communication system controlling extracellular cooperative traits. Despite detailed understanding of the mechanisms of signal production and response, there remains considerable debate over the functional role(s) of QS: in short, what is it for? Experimental studies have found support for diverse functional roles: density sensing, mass-transfer sensing, genotype sensing, etc. While consistent with theory, these results cannot separate whether these functions were drivers of QS adaption, or simply artifacts or 'spandrels' of systems shaped by distinct ecological pressures. The challenge of separating spandrels from drivers of adaptation is particularly hard to address using extant bacterial species with poorly understood current ecologies (let alone their ecological histories). To understand the relationship between defined ecological challenges and trajectories of QS evolution, we used an agent-based simulation modeling approach. Given genetic mixing, our simulations produce behaviors that recapitulate features of diverse microbial QS systems, including coercive (high signal/low response) and generalized reciprocity (signal auto-regulation) strategists - that separately and in combination contribute to QS-dependent resilience of QS-controlled cooperation in the face of diverse cheats. We contrast our in silico results given defined ecological challenges with bacterial QS architectures that have evolved under largely unknown ecological contexts, highlighting the critical role of genetic constraints in shaping the shorter term (experimental evolution) dynamics of QS. More broadly, we see experimental evolution of digital organisms as a complementary tool in the search to understand the emergence of complex QS architectures and functions.
Collapse
Affiliation(s)
- Yifei Wang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA.
- The Institute for Data Engineering and Science (IDEaS), Georgia Institute of Technology, Atlanta, 30332 GA, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA.
| | - Jennifer B Rattray
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| | - Stephen A Thomas
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
- Graduate Program in Quantitative Biosciences (QBioS), Georgia Institute of Technology, Atlanta, 30332 GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| | - James Gurney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| | - Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA.
| |
Collapse
|
19
|
Chen B, Wen J, Zhao X, Ding J, Qi G. Surfactin: A Quorum-Sensing Signal Molecule to Relieve CCR in Bacillus amyloliquefaciens. Front Microbiol 2020; 11:631. [PMID: 32425896 PMCID: PMC7203447 DOI: 10.3389/fmicb.2020.00631] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/20/2020] [Indexed: 11/13/2022] Open
Abstract
Bacillus utilize preferred sugars such as glucose over other carbon sources due to carbon catabolite repression (CCR). Surfactin is a small signal molecule to regulate the quorum-sensing (QS) response such as biofilm formation and sporulation in B. subtilis. Here, the srfA operon for synthesis of surfactin was mutated for disrupting the production of surfactin in B. amyloliquefaciens. The srfA-mutant strain showed a defective biofilm and sporulation but could be restored by addition with surfactin, indicating that surfactin is a QS signal molecule in B. amyloliquefaciens. Unexpectedly, mutation of srfA also led to the cells' death although nutrients were still enough to support the bacterial growth during this period. Analysis of transcriptomes found that the srfA-mutant strain could not relieve CCR to use non-preferred carbon sources after glucose exhaustion due to deficiency of surfactin. This was further verified by the fact that addition with glucose could dramatically restore the growth, and addition with surfactin could improve the enzymes' activity (e.g., glucanase and α-amylase) to use non-preferred carbon sources in the srfA-mutant strain. After glucose exhaustion, the cells produce surfactin to relieve CCR for utilizing non-preferred sugars. As a signal molecule to regulate QS, surfactin also directly or indirectly relieves the CcpA-mediated CCR to utilize non-preferred carbon sources countering nutrient limitation (e.g., glucose deprivation) in the environment. In conclusion, our findings provide the first evidence that the QS signal molecule of surfactin is also involved in relieving the CcpA-mediated CCR in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Bing Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiahong Wen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia Ding
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
Multiple and Overlapping Functions of Quorum Sensing Proteins for Cell Specialization in Bacillus Species. J Bacteriol 2020; 202:JB.00721-19. [PMID: 32071096 DOI: 10.1128/jb.00721-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In bacterial populations, quorum sensing (QS) systems participate in the regulation of specialization processes and regulate collective behaviors that mediate interactions and allow survival of the species. In Gram-positive bacteria, QS systems of the RRNPP family (Rgg, Rap, NprR, PlcR, and PrgX) consist of intracellular receptors and their cognate signaling peptides. Two of these receptors, Rap and NprR, have regained attention in Bacillus subtilis and the Bacillus cereus group. Some Rap proteins, such as RapH and Rap60, are multifunctional and/or redundant in function, linking the specialization processes of sporulation and competence, as well as global expression changes in the transition phase in B. subtilis NprR, an evolutionary intermediate between Rap and RRNPP transcriptional activators, is a bifunctional regulator that modulates sporulation initiation and activates nutrient scavenging genes. In this review, we discuss how these receptors switch between functions and connect distinct signaling pathways. Based on structural evidence, we propose that RapH and Rap60 should be considered moonlighting proteins. Additionally, we analyze an evolutionary and ecological perspective to understand the multifunctionality and functional redundancy of these regulators in both Bacillus spp. and non-Bacillus Firmicutes Understanding the mechanistic, structural, ecological, and evolutionary basis for the multifunctionality and redundancy of these QS systems is a key step for achieving the development of innovative technologies for health and agriculture.
Collapse
|
21
|
Yang DD, Alexander A, Kinnersley M, Cook E, Caudy A, Rosebrock A, Rosenzweig F. Fitness and Productivity Increase with Ecotypic Diversity among Escherichia coli Strains That Coevolved in a Simple, Constant Environment. Appl Environ Microbiol 2020; 86:e00051-20. [PMID: 32060029 PMCID: PMC7117940 DOI: 10.1128/aem.00051-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
The productivity of a biological community often correlates with its diversity. In the microbial world this phenomenon can sometimes be explained by positive, density-dependent interactions such as cross-feeding and syntrophy. These metabolic interactions help account for the astonishing variety of microbial life and drive many of the biogeochemical cycles without which life as we know it could not exist. While it is difficult to recapitulate experimentally how these interactions evolved among multiple taxa, we can explore in the laboratory how they arise within one. These experiments provide insight into how different bacterial ecotypes evolve and from these, possibly new "species." We have previously shown that in a simple, constant environment a single clone of Escherichia coli can give rise to a consortium of genetically and phenotypically differentiated strains, in effect, a set of ecotypes, that coexist by cross-feeding. We marked these different ecotypes and their shared ancestor by integrating fluorescent protein into their genomes and then used flow cytometry to show that each evolved strain is more fit than the shared ancestor, that pairs of evolved strains are fitter still, and that the entire consortium is the fittest of all. We further demonstrate that the rank order of fitness values agrees with estimates of yield, indicating that an experimentally evolved consortium more efficiently converts primary and secondary resources to offspring than its ancestor or any member acting in isolation.IMPORTANCE Polymicrobial consortia occur in both environmental and clinical settings. In many cases, diversity and productivity correlate in these consortia, especially when sustained by positive, density-dependent interactions. However, the evolutionary history of such entities is typically obscure, making it difficult to establish the relative fitness of consortium partners and to use those data to illuminate the diversity-productivity relationship. Here, we dissect an Escherichia coli consortium that evolved under continuous glucose limitation in the laboratory from a single common ancestor. We show that a partnership consisting of cross-feeding ecotypes is better able to secure primary and secondary resources and to convert those resources to offspring than the ancestral clone. Such interactions may be a prelude to a special form of syntrophy and are likely determinants of microbial community structure in nature, including those having clinical significance such as chronic infections.
Collapse
Affiliation(s)
- Dong-Dong Yang
- Division Biological Sciences, University of Montana, Missoula, Montana, USA
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ashley Alexander
- Division Biological Sciences, University of Montana, Missoula, Montana, USA
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Margie Kinnersley
- Division Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Emily Cook
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Amy Caudy
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Adam Rosebrock
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Frank Rosenzweig
- Division Biological Sciences, University of Montana, Missoula, Montana, USA
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
22
|
Jin L, Zhang X, Shi H, Wang W, Qiao Z, Yang W, Du W. Identification of a Novel N-Acyl Homoserine Lactone Synthase, AhyI, in Aeromonas hydrophila and Structural Basis for Its Substrate Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2516-2527. [PMID: 32050067 DOI: 10.1021/acs.jafc.9b07833] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the Gram-negative bacterium Aeromonas hydrophila, N-acyl homoserine lactone (AHL)-mediated quorum sensing (QS) influences pathogenicity, protein secretion, and motility. However, the catalytic mechanism of AHL biosynthesis and the structural basis and substrate specificity for AhyI members remain unclear. In this study, we cloned the ahyI gene from the isolate A. hydrophila HX-3, and the overexpressed AhyI protein was confirmed to produce six types of AHLs by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, contrasting with previous reports that AhyI only produces N-butanoyl-l-homoserine lactone (C4-HSL) and N-hexanoyl-l-homoserine lactone (C6-HSL). The results of an in vitro biosynthetic assay showed that purified AhyI can catalyze the formation of C4-HSL using S-adenosyl-l-methionine (SAM) and butyryl-acyl carrier protein (ACP) as substrates and indicated that the fatty acyl substrate used in AhyI-mediated AHL synthesis is derived from acyl-ACP rather than acyl-CoA. The kinetic data of AhyI using butyryl-ACP as an acyl substrate indicated that the catalytic efficiency of the A. hydrophila HX-3 AhyI enzyme is within an order of magnitude compared to other LuxI homologues. In this study, for the first time, the tertiary structural modeling results of AhyI and those of molecular docking and structural and functional analyses showed the importance of several crucial residues, as well as the secondary structure with respect to acylation. A Phe125-Phe152 clamp grasps the terminal methyl group to assist in stabilizing the long acyl chains in a putative binding pocket. The stacking interactions within a strong hydrophobic environment, a hydrogen-bonding network, and a β bulge presumably stabilize the ACP acyl chain for the attack of the SAM α-amine toward the thioester carbon, offering a relatively reasonable explanation for how AhyI can synthesize AHLs with diverse acyl-chain lengths. Moreover, Trp34 participates in forming the binding pocket for C4-ACP and becomes ordered upon SAM binding, providing a good basis for catalysis. The novel finding that AhyI can produce both short- and long-chain AHLs enhances current knowledge regarding the variety of AHLs produced by this enzyme. These structural data are expected to serve as a molecular rationale for AHL synthesis by AhyI.
Collapse
Affiliation(s)
- Lei Jin
- College of Food and Pharmaceutical Sciences , Ningbo University , Ningbo 315211 , P. R. China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province , Ningbo University , Ningbo 315211 , P. R. China
- Marine Fishery Research Institute of Zhejiang Province , Zhoushan 316021 , P. R. China
| | - Xiaojun Zhang
- Marine Fishery Research Institute of Zhejiang Province , Zhoushan 316021 , P. R. China
- Zhoushan Fishery Environments & Aquatic Products Quality Monitoring Center of Ministry of Agriculture China , Zhoushan 316021 , P. R. China
| | - Hui Shi
- Marine Fishery Research Institute of Zhejiang Province , Zhoushan 316021 , P. R. China
| | - Wei Wang
- Marine Fishery Research Institute of Zhejiang Province , Zhoushan 316021 , P. R. China
| | - Zhaohui Qiao
- College of Food and Pharmaceutical Sciences , Ningbo University , Ningbo 315211 , P. R. China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province , Ningbo University , Ningbo 315211 , P. R. China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences , Ningbo University , Ningbo 315211 , P. R. China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province , Ningbo University , Ningbo 315211 , P. R. China
| | - Wenyi Du
- Sichuan MoDe Technology Co., Ltd. , Chengdu 610000 , P. R. China
| |
Collapse
|
23
|
Rap Protein Paralogs of Bacillus thuringiensis: a Multifunctional and Redundant Regulatory Repertoire for the Control of Collective Functions. J Bacteriol 2020; 202:JB.00747-19. [PMID: 31871034 DOI: 10.1128/jb.00747-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing (QS) is a mechanism of synthesis and detection of signaling molecules to regulate gene expression and coordinate behaviors in bacterial populations. In Bacillus subtilis, multiple paralog Rap-Phr QS systems (receptor-signaling peptides) are highly redundant and multifunctional, interconnecting the regulation of differentiation processes such as sporulation and competence. However, their functions in the Bacillus cereus group are largely unknown. We evaluated the functions of Rap proteins in Bacillus thuringiensis Bt8741, which codes for eight Rap-Phr systems; these were individually overexpressed to study their participation in sporulation, biofilm formation, spreading, and extracellular proteolytic activity. Our results show that four Rap-Phr systems (RapC, RapK, RapF, and RapLike) inhibit sporulation, two of which (RapK and RapF) probably dephosphorylate Spo0F from the Spo0A phosphorelay; these two Rap proteins also inhibit biofilm formation. Four systems (RapC, RacF1, RacF2, and RapLike) participate in spreading inhibition; finally, six systems (RapC, -F, -F2, -I, and -I1 and RapLike) decrease extracellular proteolytic activity. We foresee that functions performed by Rap proteins of Bt8741 could also be carried out by Rap homologs in other strains within the B. cereus group. These results indicate that Rap-Phr systems constitute a highly multifunctional and redundant regulatory repertoire that enables B. thuringiensis and other species from the B. cereus group to efficiently regulate collective functions during their life cycle in the face of changing environments.IMPORTANCE The Bacillus cereus group of bacteria includes species of high economic, clinical, biological warfare, and biotechnological interest, e.g., B. anthracis in bioterrorism, B. cereus in food intoxications, and B. thuringiensis in biocontrol. Knowledge about the ecology of these bacteria is hindered by our limited understanding of the regulatory circuits that control differentiation and specialization processes. Here, we uncover the participation of eight Rap quorum-sensing receptors in collective functions of B. thuringiensis These proteins are highly multifunctional and redundant in their functions, linking ecologically relevant processes such as sporulation, biofilm formation, spreading, extracellular proteolytic activity, and probably other functions in species from the B. cereus group.
Collapse
|
24
|
Zhang SJ, Du XP, Zhu JM, Meng CX, Zhou J, Zuo P. The complete genome sequence of the algicidal bacterium Bacillus subtilis strain JA and the use of quorum sensing to evaluate its antialgal ability. ACTA ACUST UNITED AC 2020; 25:e00421. [PMID: 31956522 PMCID: PMC6961068 DOI: 10.1016/j.btre.2020.e00421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/17/2019] [Accepted: 01/09/2020] [Indexed: 11/25/2022]
Abstract
B. subtilis strain JA exhibit strong algicidal effects on algae with the inhibition rate exceeding 80 % within 48 h. The algicidal activity is regulated by AI-2 type quorum sensing. The complete genome information is provided for developing novel chemical-ecological methods to control harmful algae.
We describe the isolation of Bacillus subtilis strain JA and demonstrate that this bacterium exhibited strong algicidal effects on the algae Alexandrium minutum with an inhibition rate exceeding 80 % within 48 h. B. subtilis JA significantly reduced the photosynthetic efficiency of A. minutum and caused extensive morphological damage to the algae. Genomic analysis of B. subtilis JA demonstrated that a putative AI-2 type quorum sensing (QS) gene (LuxS) is present in its genome cluster, which is regulate pheromone biosynthesis. Interestingly, the exogenous addition of a QS-oligopeptide (ComX-pheromone) improved the algicidal efficiency of B. subtilis JA, thus indicating that the algicidal activity of this bacterium is potentially regulated by QS. Collectively, our data describe a potential antialgal bacterium and speculated that its behavior can be modulated by QS signal. B. subtilis JA may therefore represent a valuable tool for the development of novel chemical-ecological methods with which to control harmful algae.
Collapse
Affiliation(s)
- Sheng-Jie Zhang
- The Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Xiao-Peng Du
- The Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Jian-Ming Zhu
- The Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China.,School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang Province, PR China
| | - Chen-Xu Meng
- Second Institute of Oceanography, Ministry of Natural Resources, Hanzhou, 310000, Zhejiang Province, PR China
| | - Jin Zhou
- The Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Ping Zuo
- The School of Geography and Ocean Science, Nanjing University, Nanjing, 210093, Jiangsu Province, PR China
| |
Collapse
|
25
|
Jung K, Brameyer S, Fabiani F, Gasperotti A, Hoyer E. Phenotypic Heterogeneity Generated by Histidine Kinase-Based Signaling Networks. J Mol Biol 2019; 431:4547-4558. [DOI: 10.1016/j.jmb.2019.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 01/16/2023]
|
26
|
Silva KPT, Boedicker JQ. A neural network model predicts community-level signaling states in a diverse microbial community. PLoS Comput Biol 2019; 15:e1007166. [PMID: 31233492 PMCID: PMC6611639 DOI: 10.1371/journal.pcbi.1007166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/05/2019] [Accepted: 06/06/2019] [Indexed: 11/19/2022] Open
Abstract
Signal crosstalk within biological communication networks is common, and such crosstalk can have unexpected consequences for decision making in heterogeneous communities of cells. Here we examined crosstalk within a bacterial community composed of five strains of Bacillus subtilis, with each strain producing a variant of the quorum sensing peptide ComX. In isolation, each strain produced one variant of the ComX signal to induce expression of genes associated with bacterial competence. When strains were combined, a mixture of ComX variants was produced resulting in variable levels of gene expression. To examine gene regulation in mixed communities, we implemented a neural network model. Experimental quantification of asymmetric crosstalk between pairs of strains parametrized the model, enabling the accurate prediction of activity within the full five-strain network. Unlike the single strain system in which quorum sensing activated upon exceeding a threshold concentration of the signal, crosstalk within the five-strain community resulted in multiple community-level quorum sensing states, each with a unique combination of quorum sensing activation among the five strains. Quorum sensing activity of the strains within the community was influenced by the combination and ratio of strains as well as community dynamics. The community-level signaling state was altered through an external signal perturbation, and the output state depended on the timing of the perturbation. Given the ubiquity of signal crosstalk in diverse microbial communities, the application of such neural network models will increase accuracy of predicting activity within microbial consortia and enable new strategies for control and design of bacterial signaling networks.
Collapse
Affiliation(s)
- Kalinga Pavan T. Silva
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
| | - James Q. Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
27
|
Zhao K, Liu L, Chen X, Huang T, Du L, Lin J, Yuan Y, Zhou Y, Yue B, Wei K, Chu Y. Behavioral heterogeneity in quorum sensing can stabilize social cooperation in microbial populations. BMC Biol 2019; 17:20. [PMID: 30841874 PMCID: PMC6889464 DOI: 10.1186/s12915-019-0639-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/19/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Microbial communities are susceptible to the public goods dilemma, whereby individuals can gain an advantage within a group by utilizing, but not sharing the cost of producing, public goods. In bacteria, the development of quorum sensing (QS) can establish a cooperation system in a population by coordinating the production of costly and sharable extracellular products (public goods). Cooperators with intact QS system and robust ability in producing public goods are vulnerable to being undermined by QS-deficient defectors that escape from QS but benefit from the cooperation of others. Although microorganisms have evolved several mechanisms to resist cheating invasion in the public goods game, it is not clear why cooperators frequently coexist with defectors and how they form a relatively stable equilibrium during evolution. RESULTS We show that in Pseudomonas aeruginosa, QS-directed social cooperation can select a conditional defection strategy prior to the emergence of QS-mutant defectors, depending on resource availability. Conditional defectors represent a QS-inactive state of wild type (cooperator) individual and can invade QS-activated cooperators by adopting a cheating strategy, and then revert to cooperating when there are abundant nutrient supplies irrespective of the exploitation of QS-mutant defector. Our mathematical modeling further demonstrates that the incorporation of conditional defection strategy into the framework of iterated public goods game with sound punishment mechanism can lead to the coexistence of cooperator, conditional defector, and defector in a rock-paper-scissors dynamics. CONCLUSIONS These findings highlight the importance of behavioral heterogeneity in stabilizing the population structure and provide a potential reasonable explanation for the maintenance and evolution of cooperation in microbial communities.
Collapse
Affiliation(s)
- Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052 Sichuan China
| | - Linjie Liu
- School of Mathematical Sciences, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, Chengdu, 611731 Sichuan China
| | - Xiaojie Chen
- School of Mathematical Sciences, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, Chengdu, 611731 Sichuan China
| | - Ting Huang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Lianming Du
- Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Jiafu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052 Sichuan China
| | - Yang Yuan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052 Sichuan China
| | - Yingshun Zhou
- Department of Pathogenic Biology, College of Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Kun Wei
- School of Mathematical Sciences, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, Chengdu, 611731 Sichuan China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052 Sichuan China
| |
Collapse
|
28
|
Chatterjee R, Shreenivas MM, Sunil R, Chakravortty D. Enteropathogens: Tuning Their Gene Expression for Hassle-Free Survival. Front Microbiol 2019; 9:3303. [PMID: 30687282 PMCID: PMC6338047 DOI: 10.3389/fmicb.2018.03303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022] Open
Abstract
Enteropathogenic bacteria have been the cause of the majority of foodborne illnesses. Much of the research has been focused on elucidating the mechanisms by which these pathogens evade the host immune system. One of the ways in which they achieve the successful establishment of a niche in the gut microenvironment and survive is by a chain of elegantly regulated gene expression patterns. Studies have shown that this process is very elaborate and is also regulated by several factors. Pathogens like, enteropathogenic Escherichia coli (EPEC), Salmonella Typhimurium, Shigella flexneri, Yersinia sp. have been seen to employ various regulated gene expression strategies. These include toxin-antitoxin systems, quorum sensing systems, expression controlled by nucleoid-associated proteins (NAPs), several regulons and operons specific to these pathogens. In the following review, we have tried to discuss the common gene regulatory systems of enteropathogenic bacteria as well as pathogen-specific regulatory mechanisms.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Meghanashree M. Shreenivas
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Rohith Sunil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
29
|
Clonality and non-linearity drive facultative-cooperation allele diversity. ISME JOURNAL 2018; 13:824-835. [PMID: 30464316 PMCID: PMC6461992 DOI: 10.1038/s41396-018-0310-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/05/2018] [Accepted: 10/04/2018] [Indexed: 11/25/2022]
Abstract
Kin discrimination describes the differential interaction of organisms with kin versus non-kin. In microorganisms, many genetic loci act as effective kin-discrimination systems, such as kin-directed help and non-kin-directed harm. Another important example is facultative cooperation, where cooperators increase their investment in group-directed cooperation with the abundance of their kin in the group. Many of these kin-discrimination loci are highly diversified, yet it remains unclear what evolutionary mechanisms maintain this diversity, and how it is affected by population structure. Here, we demonstrate the unique dependence of kin-discriminative interactions on population structure, and how this could explain facultative-cooperation allele-diversity. We show mathematically that low relatedness between microbes in non-clonal social groups is needed to maintain the diversity of facultative-cooperation alleles, while high clonality is needed to stabilize this diversity against cheating. Interestingly, we demonstrate with simulations that such population structure occurs naturally in expanding microbial colonies. Finally, analysis of experimental data of quorum-sensing mediated facultative cooperation, in Bacillus subtilis, demonstrates the relevance of our results to realistic microbial interactions, due to their intrinsic non-linear frequency dependence. Our analysis therefore stresses the impact of clonality on the interplay between exploitation and kin discrimination and portrays a way for the evolution of facultative cooperation.
Collapse
|
30
|
Kalamara M, Spacapan M, Mandic‐Mulec I, Stanley‐Wall NR. Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol Microbiol 2018; 110:863-878. [PMID: 30218468 PMCID: PMC6334282 DOI: 10.1111/mmi.14127] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022]
Abstract
Here, we review the multiple mechanisms that the Gram‐positive bacterium Bacillus subtilis uses to allow it to communicate between cells and establish community structures. The modes of action that are used are highly varied and include routes that sense pheromone levels during quorum sensing and control gene regulation, the intimate coupling of cells via nanotubes to share cytoplasmic contents, and long‐range electrical signalling to couple metabolic processes both within and between biofilms. We explore the ability of B. subtilis to detect ‘kin’ (and ‘cheater cells’) by looking at the mechanisms used to potentially ensure beneficial sharing (or limit exploitation) of extracellular ‘public goods’. Finally, reflecting on the array of methods that a single bacterium has at its disposal to ensure maximal benefit for its progeny, we highlight that a large future challenge will be integrating how these systems interact in mixed‐species communities.
Collapse
Affiliation(s)
- Margarita Kalamara
- Division of Molecular Microbiology, School of Life SciencesUniversity of DundeeDundeeDD15EHUK
| | - Mihael Spacapan
- Department of Food Science and Technology, Biotechnical FacultyUniversity of LjubljanaLjubljana1000Slovenia
| | - Ines Mandic‐Mulec
- Department of Food Science and Technology, Biotechnical FacultyUniversity of LjubljanaLjubljana1000Slovenia
| | - Nicola R. Stanley‐Wall
- Division of Molecular Microbiology, School of Life SciencesUniversity of DundeeDundeeDD15EHUK
| |
Collapse
|
31
|
|
32
|
A single mutation in rapP induces cheating to prevent cheating in Bacillus subtilis by minimizing public good production. Commun Biol 2018; 1:133. [PMID: 30272012 PMCID: PMC6123732 DOI: 10.1038/s42003-018-0136-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022] Open
Abstract
Cooperation is beneficial to group behaviors like multicellularity, but is vulnerable to exploitation by cheaters. Here we analyze mechanisms that protect against exploitation of extracellular surfactin in swarms of Bacillus subtilis. Unexpectedly, the reference strain NCIB 3610 displays inherent resistance to surfactin-non-producing cheaters, while a different wild isolate is susceptible. We trace this interstrain difference down to a single amino acid change in the plasmid-borne regulator RapP, which is necessary and sufficient for cheater mitigation. This allele, prevalent in many Bacillus species, optimizes transcription of the surfactin operon to the minimum needed for full cooperation. When combined with a strain lacking rapP, NCIB 3610 acts as a cheater itself—except it does not harm the population at high proportions since it still produces enough surfactin. This strategy of minimal production is thus a doubly advantageous mechanism to limit exploitation of public goods, and is readily evolved from existing regulatory networks. Lyons and Kolter describe a single-point mutation in the plasmid-borne gene rapP of Bacillus subtilis that optimizes surfactin transcription to express the minimum required for cooperation. The decrease in the production of this public good significantly prevented the exploitation of cooperative traits by cheaters.
Collapse
|
33
|
Abstract
Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing involves production of and response to diffusible or secreted signals, which can vary substantially across different types of bacteria. In many species, quorum sensing modulates virulence functions and is important for pathogenesis. Over the past half-century, there has been a significant accumulation of knowledge of the molecular mechanisms, signal structures, gene regulons, and behavioral responses associated with quorum-sensing systems in diverse bacteria. More recent studies have focused on understanding quorum sensing in the context of bacterial sociality. Studies of the role of quorum sensing in cooperative and competitive microbial interactions have revealed how quorum sensing coordinates interactions both within a species and between species. Such studies of quorum sensing as a social behavior have relied on the development of "synthetic ecological" models that use nonclonal bacterial populations. In this review, we discuss some of these models and recent advances in understanding how microbes might interact with one another using quorum sensing. The knowledge gained from these lines of investigation has the potential to guide studies of microbial sociality in natural settings and the design of new medicines and therapies to treat bacterial infections.
Collapse
|
34
|
Quorum-Sensing Systems as Targets for Antivirulence Therapy. Trends Microbiol 2017; 26:313-328. [PMID: 29132819 DOI: 10.1016/j.tim.2017.10.005] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/26/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
The development of novel therapies to control diseases caused by antibiotic-resistant pathogens is one of the major challenges we are currently facing. Many important plant, animal, and human pathogens regulate virulence by quorum sensing, bacterial cell-to-cell communication with small signal molecules. Consequently, a significant research effort is being undertaken to identify and use quorum-sensing-interfering agents in order to control diseases caused by these pathogens. In this review, an overview of our current knowledge of quorum-sensing systems of Gram-negative model pathogens is presented as well as the link with virulence of these pathogens, and recent advances and challenges in the development of quorum-sensing-interfering therapies are discussed.
Collapse
|
35
|
Antiquorum sensing, antibiofilm formation and cytotoxicity activity of commonly used medicinal plants by inhabitants of Borabu sub-county, Nyamira County, Kenya. PLoS One 2017; 12:e0185722. [PMID: 29091715 PMCID: PMC5665492 DOI: 10.1371/journal.pone.0185722] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Productions of various bacterial traits like production of virulence factors (e.g. toxins, enzymes), biofilm formation, luminescence among others, have been known to be controlled by quorum sensing (QS), a process that is dependent on chemical signals or autoinducers (AIs). Bacteria known to rely on such AIs are known to be virulent and tend to be resistant against various antimicrobial agents. Therefore, strategies aimed at the inhibition of QS pathways, are regarded as potential novel therapies in managing bacterial virulence hence reducing their ability to induce infections in humans. In the present study, a portfolio of 25 medicinal plant extracts (ethanol 50% v/v) used in southwestern Kenya were assayed against a transformed E. coli Top 10 reporter QS strain. This biosensor responds to the exogenous addition of 3-oxo-N-hexanoyl homoserine lactone (3OC6HSL) expressing green fluorescent protein (GFP). The large majority of the screened medicinal plants seemed to exhibit toxic effects and almost none of them induced antiquorum sensing (AQS) activity. This could be the consequence of the presence of mixed compounds in the extracts. Elaeodendron buchananii Loes and Acacia gerrardii Benth extracts that seemed to show AQS activity were further proved found to possess mild AQS but with defined antimicrobial activities, and no antibiofilm formation inhibition. As a control, an E. coli pBCA9145_jtk2828::sfGFP strain that produces constitutively GFP was used and confirmed that none of the two extracts quenched the fluorescence of sfGFP. Cytotoxicity assays with mammalian MDCK cells also did indicate that the selected extracts with putative AQS activity, also reduced the cell viability. Therefore, further studies will be needed to separate and re-test the individual compounds especially from the selected two promising plants.
Collapse
|
36
|
Abstract
Bacterial cell-cell signaling, or quorum sensing, is characterized by the secretion and group-wide detection of small diffusible signal molecules called autoinducers. This mechanism allows cells to coordinate their behavior in a density-dependent manner. A quorum-sensing cell may directly respond to the autoinducers it produces in a cell-autonomous and quorum-independent manner, but the strength of such self-sensing effect and its impact on bacterial physiology are unclear. Here, we explored the existence and impact of self-sensing in the Bacillus subtilis ComQXP and Rap-Phr quorum-sensing systems. By comparing the quorum-sensing response of autoinducer-secreting and non-secreting cells in co-culture, we found that secreting cells consistently showed a stronger response than non-secreting cells. Combining genetic and quantitative analyses, we demonstrated this effect to be a direct result of self-sensing and ruled out an indirect regulatory effect of the autoinducer production genes on response sensitivity. In addition, self-sensing in the ComQXP system affected persistence to antibiotic treatment. Together, these findings indicate the existence of self-sensing in the two most common designs of quorum-sensing systems of Gram-positive bacteria.
Collapse
|
37
|
Zhang Y, Qi K, Jing Y, Zuo J, Hu J, Lv X, Chen Z, Mi R, Huang Y, Yu S, Han X. LsrB-based and temperature-dependent identification of bacterial AI-2 receptor. AMB Express 2017; 7:188. [PMID: 29019162 PMCID: PMC5634988 DOI: 10.1186/s13568-017-0486-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/28/2017] [Indexed: 01/05/2023] Open
Abstract
The luxS gene is required for autoinducer-2 (AI-2) synthesis in many bacterial species. AI-2 is taken up by a specific receptor to regulate multiple bacterial activities. However, the lack of methods to identify AI-2 receptors has impeded investigations into the roles of AI-2. Here, a luxS mutant of Escherichia coli strain BL21 (DE3) was constructed (named BL21∆luxS), and the recombinant LsrB protein of Salmonella enterica was expressed in BL21∆luxS and BL21 cells, which were named LsrB (BL21∆luxS) and LsrB (BL21), respectively. The results of the activity of recombinant LsrB binding showed that LsrB (BL21) bound to endogenous AI-2 (produced from BL21 strain), while LsrB (BL21∆luxS) did not (as BL21∆luxS cannot produce AI-2). However, the results of recombinant LsrB binding showed that LsrB (BL21∆luxS) can bind exogenous AI-2, which was released from LsrB (BL21∆luxS) at 55 °C for 10 min, while LsrB (BL21) could not bind exogenous AI-2 (due to binding of endogenous AI-2 before). Furthermore, analysis of the thermal stability of AI-2 showed that that AI-2 activity was relatively high at incubation temperatures below 65 °C. These findings will be beneficial for screening of new AI-2 receptors in different bacterial species.
Collapse
|
38
|
Yusufaly TI, Boedicker JQ. Mapping quorum sensing onto neural networks to understand collective decision making in heterogeneous microbial communities. Phys Biol 2017; 14:046002. [PMID: 28656904 DOI: 10.1088/1478-3975/aa7c1e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microbial communities frequently communicate via quorum sensing (QS), where cells produce, secrete, and respond to a threshold level of an autoinducer (AI) molecule, thereby modulating gene expression. However, the biology of QS remains incompletely understood in heterogeneous communities, where variant bacterial strains possess distinct QS systems that produce chemically unique AIs. AI molecules bind to 'cognate' receptors, but also to 'non-cognate' receptors found in other strains, resulting in inter-strain crosstalk. Understanding these interactions is a prerequisite for deciphering the consequences of crosstalk in real ecosystems, where multiple AIs are regularly present in the same environment. As a step towards this goal, we map crosstalk in a heterogeneous community of variant QS strains onto an artificial neural network model. This formulation allows us to systematically analyze how crosstalk regulates the community's capacity for flexible decision making, as quantified by the Boltzmann entropy of all QS gene expression states of the system. In a mean-field limit of complete cross-inhibition between variant strains, the model is exactly solvable, allowing for an analytical formula for the number of variants that maximize capacity as a function of signal kinetics and activation parameters. An analysis of previous experimental results on the Staphylococcus aureus two-component Agr system indicates that the observed combination of variant numbers, gene expression rates and threshold concentrations lies near this critical regime of parameter space where capacity peaks. The results are suggestive of a potential evolutionary driving force for diversification in certain QS systems.
Collapse
Affiliation(s)
- Tahir I Yusufaly
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States of America
| | | |
Collapse
|
39
|
Brexó RP, Sant'Ana ADS. Microbial interactions during sugar cane must fermentation for bioethanol production: does quorum sensing play a role? Crit Rev Biotechnol 2017; 38:231-244. [PMID: 28574287 DOI: 10.1080/07388551.2017.1332570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Microbial interactions represent important modulatory role in the dynamics of biological processes. During bioethanol production from sugar cane must, the presence of lactic acid bacteria (LAB) and wild yeasts is inevitable as they originate from the raw material and industrial environment. Increasing the concentration of ethanol, organic acids, and other extracellular metabolites in the fermentation must are revealed as wise strategies for survival by certain microorganisms. Despite this, the co-existence of LAB and yeasts in the fermentation vat and production of compounds such as organic acids and other extracellular metabolites result in reduction in the final yield of the bioethanol production process. In addition to the competition for nutrients, reduction of cellular viability of yeast strain responsible for fermentation, flocculation, biofilm formation, and changes in cell morphology are listed as important factors for reductions in productivity. Although these consequences are scientifically well established, there is still a gap about the physiological and molecular mechanisms governing these interactions. This review aims to discuss the potential occurrence of quorum sensing mechanisms between bacteria (mainly LAB) and yeasts and to highlight how the understanding of such mechanisms can result in very relevant and useful tools to benefit the biofuels industry and other sectors of biotechnology in which bacteria and yeast may co-exist in fermentation processes.
Collapse
Affiliation(s)
- Ramon Peres Brexó
- a Department of Food Science, Faculty of Food Engineering , University of Campinas , Campinas , SP , Brazil
| | - Anderson de Souza Sant'Ana
- a Department of Food Science, Faculty of Food Engineering , University of Campinas , Campinas , SP , Brazil
| |
Collapse
|
40
|
Signal Integration in Quorum Sensing Enables Cross-Species Induction of Virulence in Pectobacterium wasabiae. mBio 2017; 8:mBio.00398-17. [PMID: 28536283 PMCID: PMC5442451 DOI: 10.1128/mbio.00398-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial communities can sense their neighbors, regulating group behaviors in response to cell density and environmental changes. The diversity of signaling networks in a single species has been postulated to allow custom responses to different stimuli; however, little is known about how multiple signals are integrated and the implications of this integration in different ecological contexts. In the plant pathogen Pectobacterium wasabiae (formerly Erwinia carotovora), two signaling networks-the N-acyl homoserine lactone (AHL) quorum-sensing system and the Gac/Rsm signal transduction pathway-control the expression of secreted plant cell wall-degrading enzymes, its major virulence determinants. We show that the AHL system controls the Gac/Rsm system by affecting the expression of the regulatory RNA RsmB. This regulation is mediated by ExpR2, the quorum-sensing receptor that responds to the P. wasabiae cognate AHL but also to AHLs produced by other bacterial species. As a consequence, this level of regulation allows P. wasabiae to bypass the Gac-dependent regulation of RsmB in the presence of exogenous AHLs or AHL-producing bacteria. We provide in vivo evidence that this pivotal role of RsmB in signal transduction is important for the ability of P. wasabiae to induce virulence in response to other AHL-producing bacteria in multispecies plant lesions. Our results suggest that the signaling architecture in P. wasabiae was coopted to prime the bacteria to eavesdrop on other bacteria and quickly join the efforts of other species, which are already exploiting host resources.IMPORTANCE Quorum-sensing mechanisms enable bacteria to communicate through small signal molecules and coordinate group behaviors. Often, bacteria have various quorum-sensing receptors and integrate information with other signal transduction pathways, presumably allowing them to respond to different ecological contexts. The plant pathogen Pectobacterium wasabiae has two N-acyl homoserine lactone receptors with apparently the same regulatory functions. Our work revealed that the receptor with the broadest signal specificity is also responsible for establishing the link between the main signaling pathways regulating virulence in P. wasabiae This link is essential to provide P. wasabiae with the ability to induce virulence earlier in response to higher densities of other bacterial species. We further present in vivo evidence that this novel regulatory link enables P. wasabiae to join related bacteria in the effort to degrade host tissue in multispecies plant lesions. Our work provides support for the hypothesis that interspecies interactions are among the major factors influencing the network architectures observed in bacterial quorum-sensing pathways.
Collapse
|
41
|
Development of an extraction method and LC–MS analysis for N-acylated-l-homoserine lactones (AHLs) in wastewater treatment biofilms. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1041-1042:37-44. [DOI: 10.1016/j.jchromb.2016.11.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 11/17/2022]
|
42
|
Transient Duplication-Dependent Divergence and Horizontal Transfer Underlie the Evolutionary Dynamics of Bacterial Cell-Cell Signaling. PLoS Biol 2016; 14:e2000330. [PMID: 28033323 PMCID: PMC5199041 DOI: 10.1371/journal.pbio.2000330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023] Open
Abstract
Evolutionary expansion of signaling pathway families often underlies the evolution of regulatory complexity. Expansion requires the acquisition of a novel homologous pathway and the diversification of pathway specificity. Acquisition can occur either vertically, by duplication, or through horizontal transfer, while divergence of specificity is thought to occur through a promiscuous protein intermediate. The way by which these mechanisms shape the evolution of rapidly diverging signaling families is unclear. Here, we examine this question using the highly diversified Rap-Phr cell-cell signaling system, which has undergone massive expansion in the genus Bacillus. To this end, genomic sequence analysis of >300 Bacilli genomes was combined with experimental analysis of the interaction of Rap receptors with Phr autoinducers and downstream targets. Rap-Phr expansion is shown to have occurred independently in multiple Bacillus lineages, with >80 different putative rap-phr alleles evolving in the Bacillius subtilis group alone. The specificity of many rap-phr alleles and the rapid gain and loss of Rap targets are experimentally demonstrated. Strikingly, both horizontal and vertical processes were shown to participate in this expansion, each with a distinct role. Horizontal gene transfer governs the acquisition of already diverged rap-phr alleles, while intralocus duplication and divergence of the phr gene create the promiscuous intermediate required for the divergence of Rap-Phr specificity. Our results suggest a novel role for transient gene duplication and divergence during evolutionary shifts in specificity.
Collapse
|
43
|
Garcia DM, Dietrich D, Clardy J, Jarosz DF. A common bacterial metabolite elicits prion-based bypass of glucose repression. eLife 2016; 5. [PMID: 27906649 PMCID: PMC5132342 DOI: 10.7554/elife.17978] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/08/2016] [Indexed: 12/25/2022] Open
Abstract
Robust preference for fermentative glucose metabolism has motivated domestication of the budding yeast Saccharomyces cerevisiae. This program can be circumvented by a protein-based genetic element, the [GAR+] prion, permitting simultaneous metabolism of glucose and other carbon sources. Diverse bacteria can elicit yeast cells to acquire [GAR+], although the molecular details of this interaction remain unknown. Here we identify the common bacterial metabolite lactic acid as a strong [GAR+] inducer. Transient exposure to lactic acid caused yeast cells to heritably circumvent glucose repression. This trait had the defining genetic properties of [GAR+], and did not require utilization of lactic acid as a carbon source. Lactic acid also induced [GAR+]-like epigenetic states in fungi that diverged from S. cerevisiae ~200 million years ago, and in which glucose repression evolved independently. To our knowledge, this is the first study to uncover a bacterial metabolite with the capacity to potently induce a prion. DOI:http://dx.doi.org/10.7554/eLife.17978.001 We communicate with each other using speech, writing and physical gestures. But how do bacteria, yeast and other single-celled microbes communicate? In 2014, researchers reported a new example of communication between bacteria and yeast in which the bacteria send a chemical message that has a very long-lasting effect on how the yeast grow in certain environments. This in turn also affected the ability of the bacteria to survive in these environments. The identity of the chemical message produced by the bacteria, however, was not known. Garcia, Dietrich et al. – including one of the researchers from the previous study – used biochemical and genetic approaches to identify the chemical message. The experiments show that the message is a molecule called lactic acid, which is very common in nature and is produced by many bacteria. Garcia, Dietrich et al. found out how much lactic acid is needed to alter the growth of brewer’s yeast, and which genes in yeast are involved in responding to the message from the bacteria. Further experiments suggest that the ability of yeast and bacteria to communicate using lactic acid is likely to have existed for hundreds of millions of years. The next step following this work will be to identify other chemical messages used by microbes. The human body is packed with billions of bacterial cells, and in some cases yeast can also take up residence. A future challenge will be to find out if bacteria and yeast inside the human body are able to communicate with each other in ways that could affect our health. DOI:http://dx.doi.org/10.7554/eLife.17978.002
Collapse
Affiliation(s)
- David M Garcia
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - David Dietrich
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
44
|
Bacterial Quorum Sensing Stabilizes Cooperation by Optimizing Growth Strategies. Appl Environ Microbiol 2016; 82:6498-6506. [PMID: 27565619 DOI: 10.1128/aem.01945-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/18/2016] [Indexed: 01/04/2023] Open
Abstract
Communication has been suggested as a mechanism to stabilize cooperation. In bacteria, chemical communication, termed quorum sensing (QS), has been hypothesized to fill this role, and extracellular public goods are often induced by QS at high cell densities. Here we show, with the bacterium Vibrio harveyi, that QS provides strong resistance against invasion of a QS defector strain by maximizing the cellular growth rate at low cell densities while achieving maximum productivity through protease upregulation at high cell densities. In contrast, QS mutants that act as defectors or unconditional cooperators maximize either the growth rate or the growth yield, respectively, and thus are less fit than the wild-type QS strain. Our findings provide experimental evidence that regulation mediated by microbial communication can optimize growth strategies and stabilize cooperative phenotypes by preventing defector invasion, even under well-mixed conditions. This effect is due to a combination of responsiveness to environmental conditions provided by QS, lowering of competitive costs when QS is not induced, and pleiotropic constraints imposed on defectors that do not perform QS. IMPORTANCE Cooperation is a fundamental problem for evolutionary biology to explain. Conditional participation through phenotypic plasticity driven by communication is a potential solution to this dilemma. Thus, among bacteria, QS has been proposed to be a proximate stabilizing mechanism for cooperative behaviors. Here, we empirically demonstrate that QS in V. harveyi prevents cheating and subsequent invasion by nonproducing defectors by maximizing the growth rate at low cell densities and the growth yield at high cell densities, whereas an unconditional cooperator is rapidly driven to extinction by defectors. Our findings provide experimental evidence that QS regulation prevents the invasion of cooperative populations by QS defectors even under unstructured conditions, and they strongly support the role of communication in bacteria as a mechanism that stabilizes cooperative traits.
Collapse
|
45
|
Asfahl KL, Schuster M. Social interactions in bacterial cell-cell signaling. FEMS Microbiol Rev 2016; 41:92-107. [PMID: 27677972 DOI: 10.1093/femsre/fuw038] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/19/2016] [Accepted: 08/14/2016] [Indexed: 01/16/2023] Open
Abstract
Cooperation and conflict in microorganisms is being recognized as an important factor in the organization and function of microbial communities. Many of the cooperative behaviors described in bacteria are governed through a cell-cell signaling process generally termed quorum sensing. Communication and cooperation in diverse microorganisms exhibit predictable trends that behave according to social evolutionary theory, notably that public goods dilemmas produce selective pressures for divergence in social phenotypes including cheating. In this review, we relate the general features of quorum sensing and social adaptation in microorganisms to established evolutionary theory. We then describe physiological and molecular mechanisms that have been shown to stabilize cooperation in microbes, thereby preventing a tragedy of the commons. Continued study of the role of communication and cooperation in microbial ecology and evolution is important to clinical treatment of pathogens, as well as to our fundamental understanding of cooperative selection at all levels of life.
Collapse
Affiliation(s)
- Kyle L Asfahl
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331-3804, USA
| | - Martin Schuster
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331-3804, USA
| |
Collapse
|
46
|
Hawver LA, Jung SA, Ng WL. Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol Rev 2016; 40:738-52. [PMID: 27354348 PMCID: PMC5007282 DOI: 10.1093/femsre/fuw014] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing (QS) is a microbial cell-to-cell communication process that relies on the production and detection of chemical signals called autoinducers (AIs) to monitor cell density and species complexity in the population. QS allows bacteria to behave as a cohesive group and coordinate collective behaviors. While most QS receptors display high specificity to their AI ligands, others are quite promiscuous in signal detection. How do specific QS receptors respond to their cognate signals with high fidelity? Why do some receptors maintain low signal recognition specificity? In addition, many QS systems are composed of multiple intersecting signaling pathways: what are the benefits of preserving such a complex signaling network when a simple linear ‘one-to-one’ regulatory pathway seems sufficient to monitor cell density? Here, we will discuss different molecular mechanisms employed by various QS systems that ensure productive and specific QS responses. Moreover, the network architectures of some well-characterized QS circuits will be reviewed to understand how the wiring of different regulatory components achieves different biological goals. This review focuses on the specificity and complexity of quorum-sensing circuits in both Gram-negative and Gram-positive bacterial species.
Collapse
Affiliation(s)
- Lisa A Hawver
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Sarah A Jung
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Wai-Leung Ng
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
47
|
Krezalek MA, Skowron KB, Guyton KL, Shakhsheer B, Hyoju S, Alverdy JC. The intestinal microbiome and surgical disease. Curr Probl Surg 2016; 53:257-93. [PMID: 27497246 DOI: 10.1067/j.cpsurg.2016.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Monika A Krezalek
- Department of Surgery, Center for Surgical Infection Research and Therapeutics, Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Kinga B Skowron
- Department of Surgery, Center for Surgical Infection Research and Therapeutics, Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Kristina L Guyton
- Department of Surgery, Center for Surgical Infection Research and Therapeutics, Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Baddr Shakhsheer
- Department of Surgery, Center for Surgical Infection Research and Therapeutics, Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Sanjiv Hyoju
- Department of Surgery, Center for Surgical Infection Research and Therapeutics, Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - John C Alverdy
- Department of Surgery, Center for Surgical Infection Research and Therapeutics, Pritzker School of Medicine, University of Chicago, Chicago, IL.
| |
Collapse
|
48
|
Brameyer S, Heermann R. Quorum Sensing and LuxR Solos in Photorhabdus. Curr Top Microbiol Immunol 2016; 402:103-119. [PMID: 27848037 DOI: 10.1007/82_2016_28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial communication via small diffusible molecules to mediate group-coordinated behaviour is commonly referred to as 'quorum sensing'. The prototypical quorum sensing system of Gram-negative bacteria consists of a LuxI-type autoinducer synthase that produces acyl-homoserine lactones (AHLs) as signals and a LuxR-type receptor that detects the AHLs to control expression of specific genes. However, many bacteria possess LuxR homologs but lack a cognate LuxI-type AHL-synthase. Those LuxR-type receptors are designated as 'LuxR orphans' or 'solos'. Entomopathogenic bacteria of the genus Photorhabdus all harbour a large number of LuxR solos, more than any other bacteria examined so far. Two novel quorum sensing systems were found to regulate cell clumping in Photorhabdus and therefore affect pathogenicity. In Photorhabdus luminescens and Photorhabdus temperata the LuxR solo PluR senses α-pyrones named 'photopyrones' instead of AHLs, which are produced by the pyrone synthase PpyS. In contrast, Photorhabdus asymbiotica, a closely related insect and human pathogen, has the PluR homolog PauR, which senses dialkylresorcinols produced by the DarABC pathway to regulate pathogenicity. All three Photorhabdus species harbour at least one LuxR solo with an intact AHL-binding motif, which might also allow sensing of exogenous AHLs. However, the majority of the LuxR solos in all Photorhabdus species have a PAS4 signal-binding domain. These receptors are assumed to detect eukaryotic compounds and are proposed to be involved in host sensing. Overall, because of the large number of LuxR solos they encode, bacteria of the genus Photorhabdus are ideal candidates to study and to identify novel bacterial communication networks.
Collapse
Affiliation(s)
- Sophie Brameyer
- Biozentrum, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Martinsried/München, Germany
| | - Ralf Heermann
- Biozentrum, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Martinsried/München, Germany.
| |
Collapse
|