1
|
Mukherjee SD, Batagello C, Adler A, Agudelo J, Zampini A, Suryavanshi M, Nguyen A, Orr T, Dearing D, Monga M, Miller AW. Complex system modeling reveals oxalate homeostasis is driven by diverse oxalate-degrading bacteria. eLife 2025; 14:RP104121. [PMID: 40310467 PMCID: PMC12045624 DOI: 10.7554/elife.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Decades of research have made clear that host-associated microbiomes touch all facets of health. However, effective therapies that target the microbiome have been elusive given its inherent complexity. Here, we experimentally examined diet-microbe-host interactions through a complex systems framework, centered on dietary oxalate. Using multiple, independent molecular, rodent, and in vitro experimental models, we found that microbiome composition influenced multiple oxalate-microbe-host interfaces. Importantly, the administration of the oxalate-degrading specialist, Oxalobacter formigenes, was only effective against a poor oxalate-degrading microbiota background and gives critical new insights into why clinical intervention trials with this species exhibit variable outcomes. Data suggest that, while heterogeneity in the microbiome impacts multiple diet-host-microbe interfaces, metabolic redundancy among diverse microorganisms in specific diet-microbe axes is a critical variable that may impact the efficacy of bacteriotherapies, which can help guide patient and probiotic selection criteria in probiotic clinical trials.
Collapse
Affiliation(s)
- Sromona D Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland ClinicClevelandUnited States
| | - Carlos Batagello
- Division of Urology, Hospital das Clínicas, University of Sao Paulo Medical SchoolSao PauloBrazil
| | - Ava Adler
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland ClinicClevelandUnited States
| | - Jose Agudelo
- Department of Cardiovascular and Metabolic Sciences, Cleveland ClinicClevelandUnited States
| | - Anna Zampini
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland ClinicClevelandUnited States
| | - Mangesh Suryavanshi
- Department of Cardiovascular and Metabolic Sciences, Cleveland ClinicClevelandUnited States
| | - Andrew Nguyen
- M Health Fairview Southdale HospitalEdinaUnited States
| | - Terry Orr
- Department of Biology, New Mexico State UniversityLas CrucesUnited States
| | - Denise Dearing
- School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Manoj Monga
- Department of Urology, University of California San DiegoSan DiegoUnited States
| | - Aaron W Miller
- Department of Cardiovascular and Metabolic Sciences, Cleveland ClinicClevelandUnited States
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland ClinicClevelandUnited States
| |
Collapse
|
2
|
Mukherjee SD, Batagello CA, Adler A, Agudelo J, Zampini A, Suryavanshi M, Nguyen A, Orr T, Dearing D, Monga M, Miller AW. Complex system modelling reveals oxalate homeostasis is driven by diverse oxalate-degrading bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.28.620613. [PMID: 39553961 PMCID: PMC11565779 DOI: 10.1101/2024.10.28.620613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Decades of research have made clear that host-associated microbiomes touch all facets of health. However, effective therapies that target the microbiome have been elusive given its inherent complexity. Here, we experimentally examined diet-microbe-host interactions through a complex systems framework, centered on dietary oxalate. Using multiple, independent molecular, animal, and in vitro experimental models, we found that microbiome composition influenced multiple oxalate-microbe-host interfaces. Importantly, administration of the oxalate-degrading specialist, Oxalobacter formigenes, was only effective against a poor oxalate-degrading microbiota background and gives critical new insights into why clinical intervention trials with this species exhibit variable outcomes. Data suggest that, while heterogeneity in the microbiome impacts multiple diet-host-microbe interfaces, metabolic redundancy among diverse microorganisms in specific diet-microbe axes is a critical variable that may impact the efficacy of bacteriotherapies, which can help guide patient and probiotic selection criteria in probiotic clinical trials.
Collapse
Affiliation(s)
- Sromona D. Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Carlos A. Batagello
- Division of Urology, Hospital das Clínicas, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Ava Adler
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jose Agudelo
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Zampini
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mangesh Suryavanshi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew Nguyen
- M Health Fairview Southdale Hospital, Edina, MN, USA
| | - Teri Orr
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Manoj Monga
- Department of Urology, University of California San Diego, San Diego, CA, USA
| | - Aaron W. Miller
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
Hasnain SE, Ahmed N. Rethinking Conservation in the Anthropocene-The Case of Holobionts. DISEASE BIOLOGY, GENETICS, AND SOCIOECOLOGY 2024; 1:2. [PMID: 40123705 PMCID: PMC11927786 DOI: 10.53941/dbgs.2025.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Editorial
Rethinking Conservation in the Anthropocene—The Case of Holobionts
Seyed E. Hasnain 1,2,* and Niyaz Ahmed 3,*
1 Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IITD), New Delhi 110016, India
2 Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, India
3 Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, India
* Correspondence: seyedhasnain@gmail.com (S.E.H.); niyaz.ahmed@uohyd.ac.in (N.A.)
Received: 29 September 2024; Accepted: 9 October 2024; Published: 11 October 2024
Collapse
Affiliation(s)
- Seyed E. Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IITD), New Delhi 110016, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, India
| | - Niyaz Ahmed
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
4
|
Zhang Y, Ju F. Uninheritable but Widespread Bacterial Symbiont Enterococcus casseliflavus Mediates Detoxification of the Insecticide Chlorantraniliprole in the Agricultural Invasive Pest Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18365-18377. [PMID: 39105749 DOI: 10.1021/acs.jafc.4c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Host-symbiont interaction plays a crucial role in determining the host's fitness under toxic stress, as observed in numerous insect species. However, the mechanism of the symbionts involved in the detoxification of insecticides remains poorly known. In this study, through microbiome, proteomic, and genomic analysis, we identified a prevalent symbiont, Enterococcus casseliflavus EMBL-3, in a major invasive insect pest,Spodoptera frugiperda. This symbiont enhances the host's insecticide resistance to chlorantraniliprole by breaking amide bonds and dehalogenating insecticides. Complying with the increase in exposure risk of chlorantraniliprole, the E. casseliflavus isolates of insects' symbionts but not those from mammals or environmental strains showed a significant enrichment of potential chlorantraniliprole degradation genes. EMBL-3 is popular in field population insects with efficient horizontal transmission ability through cross-diet and cannibalism. This study provides a new therapeutic target for agricultural pests based on symbiont-targeted insect control for global crop protection.
Collapse
Affiliation(s)
- Yunhua Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou ,Zhejiang Province 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou ,Zhejiang Province 310024, China
| | - Feng Ju
- Research Center for Industries of the Future, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou ,Zhejiang Province 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou ,Zhejiang Province 310024, China
| |
Collapse
|
5
|
Liu F, Gaul L, Giometto A, Wu M. Colimitation of light and nitrogen on algal growth revealed by an array microhabitat platform. ARXIV 2023:arXiv:2307.02646v1. [PMID: 37461420 PMCID: PMC10350088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Microalgae are key players in the global carbon cycle and emerging producers of biofuels. Algal growth is critically regulated by its complex microenvironment, including nitrogen and phosphorous levels, light intensity, and temperature. Mechanistic understanding of algal growth is important for maintaining a balanced ecosystem at a time of climate change and population expansion, as well as providing essential formulations for optimizing biofuel production. Current mathematical models for algal growth in complex environmental conditions are still in their infancy, due in part to the lack of experimental tools necessary to generate data amenable to theoretical modeling. Here, we present a high throughput microfluidic platform that allows for algal growth with precise control over light intensity and nutrient gradients, while also performing real-time microscopic imaging. We propose a general mathematical model that describes algal growth under multiple physical and chemical environments, which we have validated experimentally. We showed that light and nitrogen colimited the growth of the model alga Chlamydomonas reinhardtii following a multiplicative Monod kinetic model. The microfluidic platform presented here can be easily adapted to studies of other photosynthetic micro-organisms, and the algal growth model will be essential for future bioreactor designs and ecological predictions.
Collapse
Affiliation(s)
- Fangchen Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Larissa Gaul
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Andrea Giometto
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
6
|
Prinz R. Nothing in evolution makes sense except in the light of code biology. Biosystems 2023; 229:104907. [PMID: 37207840 DOI: 10.1016/j.biosystems.2023.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
This article highlights the potential contribution of biological codes to the course and dynamics of evolution. The concept of organic codes, developed by Marcello Barbieri, has fundamentally changed our view of how living systems function. The notion that molecular interactions built on adaptors that arbitrarily link molecules from different "worlds" in a conventional, i.e., rule-based way, departs significantly from the law-based constraints imposed on livening things by physical and chemical mechanisms. In other words, living and non-living things behave like rules and laws, respectively, but this important distinction is rarely considered in current evolutionary theory. The many known codes allow quantification of codes that relate to a cell, or comparisons between different biological systems and may pave the way to a quantitative and empirical research agenda in code biology. A starting point for such an endeavour is the introduction of a simple dichotomous classification of structural and regulatory codes. This classification can be used as a tool to analyse and quantify key organising principles of the living world, such as modularity, hierarchy, and robustness, based on organic codes. The implications for evolutionary research are related to the unique dynamics of codes, or ´Eigendynamics´ (self-momentum) and how they determine the behaviour of biological systems from within, whereas physical constraints are imposed mainly from without. A speculation on the drivers of macroevolution in light of codes is followed by the conclusion that a meaningful and comprehensive understanding of evolution depends including codes into the equation of life.
Collapse
|
7
|
Travagli V, Iorio EL. The Biological and Molecular Action of Ozone and Its Derivatives: State-of-the-Art, Enhanced Scenarios, and Quality Insights. Int J Mol Sci 2023; 24:ijms24108465. [PMID: 37239818 DOI: 10.3390/ijms24108465] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The ultimate objective of this review is to encourage a multi-disciplinary and integrated methodological approach that, starting from the recognition of some current uncertainties, helps to deepen the molecular bases of ozone treatment effects on human and animal well-being and to optimize their performance in terms of reproducibility of results, quality, and safety. In fact, the common therapeutic treatments are normally documented by healthcare professionals' prescriptions. The same applies to medicinal gases (whose uses are based on their pharmacological effects) that are intended for patients for treatment, diagnostic, or preventive purposes and that have been produced and inspected in accordance with good manufacturing practices and pharmacopoeia monographs. On the contrary, it is the responsibility of healthcare professionals, who thoughtfully choose to use ozone as a medicinal product, to achieve the following objectives: (i) to understand the molecular basis of the mechanism of action; (ii) to adjust the treatment according to the clinical responses obtained in accordance with the principles of precision medicine and personalized therapy; (iii) to ensure all quality standards.
Collapse
Affiliation(s)
- Valter Travagli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Viale Aldo Moro 2, 53100 Siena, Italy
| | - Eugenio Luigi Iorio
- International Observatory of Oxidative Stress, 84127 Salerno, Italy
- Campus Uberlândia, Universidade de Uberaba (UNIUBE), Uberlândia 38055-500, Brazil
| |
Collapse
|
8
|
Agache I, Laculiceanu A, Spanu D, Grigorescu D. The Concept of One Health for Allergic Diseases and Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:290-302. [PMID: 37188486 DOI: 10.4168/aair.2023.15.3.290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
The worldwide prevalence of allergic disease is rising as a result of complex gene-environment interactions that shape the immune system and host response. Climate change and loss of biodiversity are existential threats to humans, animals, plants, and ecosystems. While there is significant progress in the development of targeted therapeutic options to treat allergies and asthma, these approaches are inadequate to meet the challenges faced by climate change. The exposomic approach is needed with the recognition of the bidirectional effect between human beings and the environment. All stakeholders need to work together toward mitigating the effects of climate change and promoting a One Health concept in order to decrease the burden of asthma and allergy and to improve immune health. Healthcare professionals should strive to incorporate One Health counseling, environmental health precepts, and advocacy into their practice.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania.
| | | | - Daniela Spanu
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Dan Grigorescu
- Faculty of Medicine, Transylvania University, Brasov, Romania
| |
Collapse
|
9
|
Biodiversity: the overlooked source of human health. Trends Mol Med 2023; 29:173-187. [PMID: 36585352 DOI: 10.1016/j.molmed.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
Biodiversity is the measure of the variation of lifeforms in a given ecological system. Biodiversity provides ecosystems with the robustness, stability, and resilience that sustains them. This is ultimately essential for our survival because we depend on the services that natural ecosystems provide (food, fresh water, air, climate, and medicine). Despite this, human activity is driving an unprecedented rate of biodiversity decline, which may jeopardize the life-support systems of the planet if no urgent action is taken. In this article we show why biodiversity is essential for human health. We raise our case and focus on the biomedicine services that are enabled by biodiversity, and we present known and novel approaches to promote biodiversity conservation.
Collapse
|
10
|
A process ontology of organisms and its connection to biological individuality concepts. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Ding X, Jin F, Xu J, Zhang S, Chen D, Hu B, Hong Y. The impact of aquaculture system on the microbiome and gut metabolome of juvenile Chinese softshell turtle ( Pelodiscus sinensis). IMETA 2022; 1:e17. [PMID: 38868566 PMCID: PMC10989827 DOI: 10.1002/imt2.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2024]
Abstract
The commercial aquatic animal microbiome may markedly affect the successful host's farming in various aquaculture systems. However, very little was known about it. Here, two different aquaculture systems, the rice-fish culture (RFC) and intensive pond culture (IPC) systems, were compared to deconstruct the skin, oral, and gut microbiome, as well as the gut metabolome of juvenile Chinese softshell turtle (Pelodiscus sinensis). Higher alpha-diversity and functional redundancy of P. sinensis microbial community were found in the RFC than those of the IPC. The aquaculture systems have the strongest influence on the gut microbiome, followed by the skin microbiome, and finally the oral microbiome. Source-tracking analysis showed that the RFC's microbial community originated from more unknown sources than that of the IPC across all body regions. Strikingly, the RFC's oral and skin microbiome exhibited a significantly higher proportion of generalists and broader habitat niche breadth than those of the IPC, but not the gut. Null model analysis revealed that the RFC's oral and skin microbial community assembly was governed by a significantly greater proportion of deterministic processes than that of the IPC, but not the gut. We further identified the key gene and microbial contribution to five significantly changed gut metabolites, 2-oxoglutarate, N-acetyl-d-mannosamine, cis-4-hydroxy-d-proline, nicotinamide, and l-alanine, which were significantly correlated with important categories of microbe-mediated processes, including the amino acid metabolism, GABAergic synapse, ABC transporters, biosynthesis of unsaturated fatty acids, as well as citrate cycle. Moreover, different aquaculture systems have a significant impact on the hepatic lipid metabolism and body shape of P. sinensis. Our results provide new insight into the influence of aquaculture systems on the microbial community structure feature and assembly mechanism in an aquatic animal, also highlighting the key microbiome and gene contributions to the metabolite variation in the gut microbiome-metabolome association.
Collapse
Affiliation(s)
- Xia Ding
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Feng Jin
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Jiawang Xu
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Shulei Zhang
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Dongxu Chen
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Beijuan Hu
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Yijiang Hong
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
12
|
Dong C, Shao Q, Zhang Q, Yao T, Huang J, Liang Z, Han Y. Preferences for core microbiome composition and function by different definition methods: Evidence for the core microbiome of Eucommia ulmoides bark. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148091. [PMID: 34380268 DOI: 10.1016/j.scitotenv.2021.148091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
The core microbiome, as a unique group of microorganisms, is an emerging research hotspot that provides a new opportunity to improve growth and production of a host. However, the subjectivity associated with the concept of "core microbiome" means there is currently no uniform definition method for the core microbiome. In this study, the strengths and limitations of four commonly used definition methods for the core microbiome were explored from composition to function based on the 16S rRNA gene dataset of Eucommia ulmoides bark from 25 different biogeographical regions in China. There were differences in the composition of the core microbiomes defined by the different methods. The four definition methods of phylogeny, membership, composition, and network connection contained 274, 10, 5, and 5 core OTUs (operational taxonomic units), respectively. In contrast, the core microbiomes defined by different methods displayed similarities in function. In addition, different definition methods showed varying preferences for abundant taxa, intermediate taxa, and rare taxa. Some core taxa defined by the definition method of phylogeny were significantly associated with pharmacologically active ingredients of E. ulmoides bark. The findings of this study suggest that although the core microbiomes defined by different methods have preferences in composition and function, the term refers to a group of microbes that are particularly notable and important for host-associated microbiomes. Therefore, we propose: (I) The definition method of the core microbiome should be selected according to the ecological problems faced; (II) A combination of multiple methods may comprehensively reveal the core microbiome at different levels of the host, and may also facilitate understanding of the ecological and evolutionary processes that govern host-microbe interactions.
Collapse
Affiliation(s)
- Chunbo Dong
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Qiuyu Shao
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Qingqing Zhang
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Ting Yao
- Analysis and Test Center, Huangshan University, Huangshan 245041, Anhui, China
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350108, Fujian, China
| | - Zongqi Liang
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yanfeng Han
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
13
|
Oliveira BFR, Lopes IR, Canellas ALB, Muricy G, Dobson ADW, Laport MS. Not That Close to Mommy: Horizontal Transmission Seeds the Microbiome Associated with the Marine Sponge Plakina cyanorosea. Microorganisms 2020; 8:E1978. [PMID: 33322780 PMCID: PMC7764410 DOI: 10.3390/microorganisms8121978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 01/28/2023] Open
Abstract
Marine sponges are excellent examples of invertebrate-microbe symbioses. In this holobiont, the partnership has elegantly evolved by either transmitting key microbial associates through the host germline and/or capturing microorganisms from the surrounding seawater. We report here on the prokaryotic microbiota during different developmental stages of Plakina cyanorosea and their surrounding environmental samples by a 16S rRNA metabarcoding approach. In comparison with their source adults, larvae housed slightly richer and more diverse microbial communities, which are structurally more related to the environmental microbiota. In addition to the thaumarchaeal Nitrosopumilus, parental sponges were broadly dominated by Alpha- and Gamma-proteobacteria, while the offspring were particularly enriched in the Vibrionales, Alteromonodales, Enterobacterales orders and the Clostridia and Bacteroidia classes. An enterobacterial operational taxonomic unit (OTU) was the dominant member of the strict core microbiota. The most abundant and unique OTUs were not significantly enriched amongst the microbiomes from host specimens included in the sponge microbiome project. In a wider context, Oscarella and Plakina are the sponge genera with higher divergence in their associated microbiota compared to their Homoscleromorpha counterparts. Our results indicate that P. cyanorosea is a low microbial abundance sponge (LMA), which appears to heavily depend on the horizontal transmission of its microbial partners that likely help the sponge host in the adaptation to its habitat.
Collapse
Affiliation(s)
- Bruno F. R. Oliveira
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
- School of Microbiology, University College Cork, T12 Y960 Cork, Ireland;
| | - Isabelle R. Lopes
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
| | - Anna L. B. Canellas
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
| | - Guilherme Muricy
- Laboratório de Biologia de Porifera, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20940040, Brazil;
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, T12 Y960 Cork, Ireland;
- Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| | - Marinella S. Laport
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
| |
Collapse
|
14
|
Suárez J, Stencel A. A part‐dependent account of biological individuality: why holobionts are individuals
and
ecosystems simultaneously. Biol Rev Camb Philos Soc 2020; 95:1308-1324. [DOI: 10.1111/brv.12610] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Javier Suárez
- Department of Philosophy, Logos/BIAP University of Barcelona C/Montalegre 6 Barcelona E‐08001 Spain
- Egenis – The Centre for the Study of Life Sciences University of Exeter St. German's Rd Exeter EX4 4PJ U.K
| | - Adrian Stencel
- Institute of Philosophy Jagiellonian University Kraków 31‐044 Poland
| |
Collapse
|
15
|
Tomáška Ľ, Nosek J. Co-evolution in the Jungle: From Leafcutter Ant Colonies to Chromosomal Ends. J Mol Evol 2020; 88:293-318. [PMID: 32157325 DOI: 10.1007/s00239-020-09935-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Biological entities are multicomponent systems where each part is directly or indirectly dependent on the others. In effect, a change in a single component might have a consequence on the functioning of its partners, thus affecting the fitness of the entire system. In this article, we provide a few examples of such complex biological systems, ranging from ant colonies to a population of amino acids within a single-polypeptide chain. Based on these examples, we discuss one of the central and still challenging questions in biology: how do such multicomponent consortia co-evolve? More specifically, we ask how telomeres, nucleo-protein complexes protecting the integrity of linear DNA chromosomes, originated from the ancestral organisms having circular genomes and thus not dealing with end-replication and end-protection problems. Using the examples of rapidly evolving topologies of mitochondrial genomes in eukaryotic microorganisms, we show what means of co-evolution were employed to accommodate various types of telomere-maintenance mechanisms in mitochondria. We also describe an unprecedented runaway evolution of telomeric repeats in nuclei of ascomycetous yeasts accompanied by co-evolution of telomere-associated proteins. We propose several scenarios derived from research on telomeres and supported by other studies from various fields of biology, while emphasizing that the relevant answers are still not in sight. It is this uncertainty and a lack of a detailed roadmap that makes the journey through the jungle of biological systems still exciting and worth undertaking.
Collapse
Affiliation(s)
- Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
16
|
Chen Y, Wu G, Zhao Y. Gut Microbiota and Alimentary Tract Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1238:11-22. [PMID: 32323177 DOI: 10.1007/978-981-15-2385-4_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gastrointestinal (GI) tract is inhabited by a diverse array of microbes, which play crucial roles in health and disease. Dysbiosis of microbiota has been tightly linked to gastrointestinal inflammatory and malignant diseases. Here we highlight the role of Helicobacter pylori alongside gastric microbiota associated with gastric inflammation and cancer. We summarize the taxonomic and functional aspects of intestinal microbiota linked to inflammatory bowel diseases (IBD), irritable bowel syndrome (IBS), and colorectal cancer in clinical investigations. We also discuss microbiome-related animal models. Nevertheless, there are tremendous opportunities to reveal the causality of microbiota in health and disease and detailed microbe-host interaction mechanisms by which how dysbiosis is causally linked to inflammatory disease and cancer, in turn, potentializing clinical interventions with a personalized high efficacy.
Collapse
Affiliation(s)
- Ye Chen
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangyan Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yongzhong Zhao
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
17
|
Laviad-Shitrit S, Izhaki I, Lalzar M, Halpern M. Comparative Analysis of Intestine Microbiota of Four Wild Waterbird Species. Front Microbiol 2019; 10:1911. [PMID: 31481943 PMCID: PMC6711360 DOI: 10.3389/fmicb.2019.01911] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/05/2019] [Indexed: 01/07/2023] Open
Abstract
Waterbirds are ubiquitous and globally distributed. Yet, studies on wild waterbirds' gut microbiota are still rare. Our aim was to explore and compare the gut microbial community composition of wild waterbird species. Four wild waterbird species that are either wintering or all-year residents in Israel were studied: great cormorants, little egrets, black-crowned night herons and black-headed gulls. For each bird, three intestinal sections were sampled; anterior, middle and posterior. No significant differences were found among the microbiota compositions in the three intestine sections of each individual bird. Each waterbird species had a unique microbial composition. The gut microbiota of the black-headed gulls' fundamentally deviated from that of the other bird species, probably due to a very high abundance (58.8%) of the genus Catellicoccus (Firmicutes). Our results suggest a correlation between the waterbird species' phylogeny and their intestine microbial community hierarchical tree, which evinced phylosymbiosis. This recent coinage stands for eco-evolutionary patterns between the host phylogeny and its microbiota composition. We conclude that eco-evolutionary processes termed phylosymbiosis may occur between wild waterbird species and their gut microbial community composition.
Collapse
Affiliation(s)
- Sivan Laviad-Shitrit
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ido Izhaki
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.,Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa at Oranim, Tivon, Israel
| |
Collapse
|
18
|
Morar N, Bohannan BJM. The Conceptual Ecology of the Human Microbiome. QUARTERLY REVIEW OF BIOLOGY 2019. [DOI: 10.1086/703582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Baquero F. Causality in Biological Transmission: Forces and Energies. Microbiol Spectr 2018; 6:10.1128/microbiolspec.mtbp-0018-2016. [PMID: 30191806 PMCID: PMC11633629 DOI: 10.1128/microbiolspec.mtbp-0018-2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 11/20/2022] Open
Abstract
Transmission is a basic process in biology that can be analyzed in accordance with information theory. A sender or transmitter located in a particular patch of space is the source of the transmitted object, the message. A receiver patch interacts to receive the message. The "messages" that are transmitted between patches (eventually located in different hierarchical biological levels) are "meaningful" biological entities (biosemiotics). cis-acting transmission occurs when unenclosed patches acting as emitter and receiver entities of the same hierarchical level are linked (frequently by a vehicle) across an unfit space; trans-acting transmission occurs between biological individuals of different hierarchical levels, embedded within a close external common limit. To understand the causal frame of transmission events, we analyze the ultimate, but most importantly also the proximate, causes of transmission. These include the repelling, centrifugal "forces" influencing the transmission (emigration) and the attractive, centripetal "energies" involved in the reception (immigration). As transmission is a key process in evolution, creating both genetic-embedded complexity-diversity (trans-acting transmission, as introgression), and exposure to novel and alternative patches-environments (cis-acting transmission, as migration), the causal frame of transmission shows the cis-evolutionary and trans-evolutionary dimensions of evolution.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Hospital Universitario Ramón y Cajal (IRYCIS) and Centro de Investigacion Biomedica en Red (CIBERESP), Madrid, Spain
| |
Collapse
|
20
|
Systems biology of eukaryotic superorganisms and the holobiont concept. Theory Biosci 2018; 137:117-131. [DOI: 10.1007/s12064-018-0265-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/05/2018] [Indexed: 01/25/2023]
|
21
|
Low Maternal Microbiota Sharing across Gut, Breast Milk and Vagina, as Revealed by 16S rRNA Gene and Reduced Metagenomic Sequencing. Genes (Basel) 2018; 9:genes9050231. [PMID: 29724017 PMCID: PMC5977171 DOI: 10.3390/genes9050231] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022] Open
Abstract
The maternal microbiota plays an important role in infant gut colonization. In this work we have investigated which bacterial species are shared across the breast milk, vaginal and stool microbiotas of 109 women shortly before and after giving birth using 16S rRNA gene sequencing and a novel reduced metagenomic sequencing (RMS) approach in a subgroup of 16 women. All the species predicted by the 16S rRNA gene sequencing were also detected by RMS analysis and there was good correspondence between their relative abundances estimated by both approaches. Both approaches also demonstrate a low level of maternal microbiota sharing across the population and RMS analysis identified only two species common to most women and in all sample types (Bifidobacterium longum and Enterococcus faecalis). Breast milk was the only sample type that had significantly higher intra- than inter- individual similarity towards both vaginal and stool samples. We also searched our RMS dataset against an in silico generated reference database derived from bacterial isolates in the Human Microbiome Project. The use of this reference-based search enabled further separation of Bifidobacterium longum into Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp. infantis. We also detected the Lactobacillus rhamnosus GG strain, which was used as a probiotic supplement by some women, demonstrating the potential of RMS approach for deeper taxonomic delineation and estimation.
Collapse
|
22
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
23
|
Baquero F. Transmission as a basic process in microbial biology. Lwoff Award Prize Lecture. FEMS Microbiol Rev 2017; 41:816-827. [PMID: 29136422 DOI: 10.1093/femsre/fux042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
Transmission is a basic process in biology and evolution, as it communicates different biological entities within and across hierarchical levels (from genes to holobionts) both in time and space. Vertical descent, replication, is transmission of information across generations (in the time dimension), and horizontal descent is transmission of information across compartments (in the space dimension). Transmission is essentially a communication process that can be studied by analogy of the classic information theory, based on 'emitters', 'messages' and 'receivers'. The analogy can be easily extended to the triad 'emigration', 'migration' and 'immigration'. A number of causes (forces) determine the emission, and another set of causes (energies) assures the reception. The message in fact is essentially constituted by 'meaningful' biological entities. A DNA sequence, a cell and a population have a semiotic dimension, are 'signs' that are eventually recognized (decoded) and integrated by receiver biological entities. In cis-acting or unenclosed transmission, the emitters and receivers correspond to separated entities of the same hierarchical level; in trans-acting or embedded transmission, the information flows between different, but frequently nested, hierarchical levels. The result (as in introgressive events) is constantly producing innovation and feeding natural selection, influencing also the evolution of transmission processes. This review is based on the concepts presented at the André Lwoff Award Lecture in the FEMS Microbiology Congress in Maastricht in 2015.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Division of Biology and Evolution of Microorganisms, Ramón y Cajal Institute for Health Research (IRYCIS), Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, de Colmenar km 9,100, 28034 Madrid, Spain
| |
Collapse
|