1
|
Dermody N, Lorenz R, Goddard E, Villringer A, Woolgar A. Spatial and feature-selective attention interact to drive selective coding in frontoparietal cortex. Neuropsychologia 2025:109172. [PMID: 40409407 DOI: 10.1016/j.neuropsychologia.2025.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/11/2025] [Accepted: 05/13/2025] [Indexed: 05/25/2025]
Abstract
Attention enables the selective processing of relevant information. Two types of selective attention, spatial and feature-selective attention, have separable neural effects but in real life are often used together. Here, we asked how these types of attention interact to affect information coding in a frontoparietal 'multiple-demand' (MD) network, essential for attentional control. Using functional magnetic resonance imaging (fMRI) with multivariate pattern analysis, we examined how covert attention to object features (colour or shape) and spatial locations (left or right) influences coding of task-related stimulus information. We found that spatial and feature-selective attention interacted multiplicatively on information coding in MD and visual regions, such that there was above-chance decoding of the attended feature of the attended object and no detectable coding of visually equivalent but behaviourally irrelevant aspects of the visual display. The attended information had a multidimensional neural representation, with stimulus information (e.g., colour) and discrimination difficulty (distance from the categorical decision boundary) reflected in separate dimensions. Rather than boosting processing of whole objects or relevant features across space, our results suggest neural activity reflects precise tuning to relevant information, indicating a highly selective control process that codes behaviourally relevant information across multiple dimensions.
Collapse
Affiliation(s)
- Nadene Dermody
- MRC Cognitive and Brain Sciences Unit, University of Cambridge, UK.
| | - Romy Lorenz
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Erin Goddard
- University of New South Wales, Sydney, Australia
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Berlin School of Mind and Brain, Berlin, Germany; Clinic of Cognitive Neurology, Leipzig University, Leipzig, Germany; Charité University Medicine Berlin, Berlin, Germany
| | - Alexandra Woolgar
- MRC Cognitive and Brain Sciences Unit, University of Cambridge, UK; Department of Psychology, University of Cambridge, UK
| |
Collapse
|
2
|
Huang Y, Zhang X, Cheng M, Yang Z, Liu W, Ai K, Tang M, Zhang X, Lei X, Zhang D. Altered cortical thickness-based structural covariance networks in type 2 diabetes mellitus. Front Neurosci 2024; 18:1327061. [PMID: 38332862 PMCID: PMC10851426 DOI: 10.3389/fnins.2024.1327061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cognitive impairment is a common complication of type 2 diabetes mellitus (T2DM), and early cognitive dysfunction may be associated with abnormal changes in the cerebral cortex. This retrospective study aimed to investigate the cortical thickness-based structural topological network changes in T2DM patients without mild cognitive impairment (MCI). Fifty-six T2DM patients and 59 healthy controls underwent neuropsychological assessments and sagittal 3-dimensional T1-weighted structural magnetic resonance imaging. Then, we combined cortical thickness-based assessments with graph theoretical analysis to explore the abnormalities in structural covariance networks in T2DM patients. Correlation analyses were performed to investigate the relationship between the altered topological parameters and cognitive/clinical variables. T2DM patients exhibited significantly lower clustering coefficient (C) and local efficiency (Elocal) values and showed nodal property disorders in the occipital cortical, inferior temporal, and inferior frontal regions, the precuneus, and the precentral and insular gyri. Moreover, the structural topological network changes in multiple nodes were correlated with the findings of neuropsychological tests in T2DM patients. Thus, while T2DM patients without MCI showed a relatively normal global network, the local topological organization of the structural network was disordered. Moreover, the impaired ventral visual pathway may be involved in the neural mechanism of visual cognitive impairment in T2DM patients. This study enriched the characteristics of gray matter structure changes in early cognitive dysfunction in T2DM patients.
Collapse
Affiliation(s)
- Yang Huang
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xin Zhang
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Miao Cheng
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Zhen Yang
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Wanting Liu
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Kai Ai
- Department of Clinical and Technical Support, Philips Healthcare, Xi’an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
3
|
Novicky F, Parr T, Friston K, Mirza MB, Sajid N. Bistable perception, precision and neuromodulation. Cereb Cortex 2024; 34:bhad401. [PMID: 37950879 PMCID: PMC10793076 DOI: 10.1093/cercor/bhad401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/13/2023] Open
Abstract
Bistable perception follows from observing a static, ambiguous, (visual) stimulus with two possible interpretations. Here, we present an active (Bayesian) inference account of bistable perception and posit that perceptual transitions between different interpretations (i.e. inferences) of the same stimulus ensue from specific eye movements that shift the focus to a different visual feature. Formally, these inferences are a consequence of precision control that determines how confident beliefs are and change the frequency with which one can perceive-and alternate between-two distinct percepts. We hypothesized that there are multiple, but distinct, ways in which precision modulation can interact to give rise to a similar frequency of bistable perception. We validated this using numerical simulations of the Necker cube paradigm and demonstrate the multiple routes that underwrite the frequency of perceptual alternation. Our results provide an (enactive) computational account of the intricate precision balance underwriting bistable perception. Importantly, these precision parameters can be considered the computational homologs of particular neurotransmitters-i.e. acetylcholine, noradrenaline, dopamine-that have been previously implicated in controlling bistable perception, providing a computational link between the neurochemistry and perception.
Collapse
Affiliation(s)
- Filip Novicky
- Department of Neurophysics, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 406229 ER, Maastricht, Netherlands
| | - Thomas Parr
- Wellcome Centre for Human Neuroimaging, UCL, 12 Queen Square London WC1N 3AR, United Kingdom
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, UCL, 12 Queen Square London WC1N 3AR, United Kingdom
| | - Muammer Berk Mirza
- Department of Psychology, University of Cambridge, Downing Pl, Cambridge CB2 3EB, United Kingdom
| | - Noor Sajid
- Wellcome Centre for Human Neuroimaging, UCL, 12 Queen Square London WC1N 3AR, United Kingdom
| |
Collapse
|
4
|
Witkowski PP, Geng JJ. Prefrontal Cortex Codes Representations of Target Identity and Feature Uncertainty. J Neurosci 2023; 43:8769-8776. [PMID: 37875376 PMCID: PMC10727173 DOI: 10.1523/jneurosci.1117-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 10/07/2023] [Indexed: 10/26/2023] Open
Abstract
Many objects in the real world have features that vary over time, creating uncertainty in how they will look in the future. This uncertainty makes statistical knowledge about the likelihood of features critical to attention demanding processes such as visual search. However, little is known about how the uncertainty of visual features is integrated into predictions about search targets in the brain. In the current study, we test the idea that regions prefrontal cortex code statistical knowledge about search targets before the onset of search. Across 20 human participants (13 female; 7 male), we observe target identity in the multivariate pattern and uncertainty in the overall activation of dorsolateral prefrontal cortex (DLPFC) and inferior frontal junction (IFJ) in advance of the search display. This indicates that the target identity (mean) and uncertainty (variance) of the target distribution are coded independently within the same regions. Furthermore, once the search display appears the univariate IFJ signal scaled with the distance of the actual target from the expected mean, but more so when expected variability was low. These results inform neural theories of attention by showing how the prefrontal cortex represents both the identity and expected variability of features in service of top-down attentional control.SIGNIFICANCE STATEMENT Theories of attention and working memory posit that when we engage in complex cognitive tasks our performance is determined by how precisely we remember task-relevant information. However, in the real world the properties of objects change over time, creating uncertainty about many aspects of the task. There is currently a gap in our understanding of how neural systems represent this uncertainty and combine it with target identity information in anticipation of attention demanding cognitive tasks. In this study, we show that the prefrontal cortex represents identity and uncertainty as unique codes before task onset. These results advance theories of attention by showing that the prefrontal cortex codes both target identity and uncertainty to implement top-down attentional control.
Collapse
Affiliation(s)
- Phillip P Witkowski
- Center for Mind and Brain, University of California, Davis, Davis, California 95618
- Department of Psychology, University of California, Davis, Davis, California 95618
| | - Joy J Geng
- Center for Mind and Brain, University of California, Davis, Davis, California 95618
- Department of Psychology, University of California, Davis, Davis, California 95618
| |
Collapse
|
5
|
Huang L, Wang J, He Q, Li C, Sun Y, Seger CA, Zhang X. A source for category-induced global effects of feature-based attention in human prefrontal cortex. Cell Rep 2023; 42:113080. [PMID: 37659080 DOI: 10.1016/j.celrep.2023.113080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 09/04/2023] Open
Abstract
Global effects of feature-based attention (FBA) are generally limited to stimuli sharing the same or similar features, as hypothesized in the "feature-similarity gain model." Visual perception, however, often reflects categories acquired via experience/learning; whether the global-FBA effect can be induced by the categorized features remains unclear. Here, human subjects were trained to classify motion directions into two discrete categories and perform a classical motion-based attention task. We found a category-induced global-FBA effect in both the middle temporal area (MT+) and frontoparietal areas, where attention to a motion direction globally spread to unattended motion directions within the same category, but not to those in a different category. Effective connectivity analysis showed that the category-induced global-FBA effect in MT+ was derived by feedback from the inferior frontal junction (IFJ). Altogether, our study reveals a category-induced global-FBA effect and identifies a source for this effect in human prefrontal cortex, implying that FBA is of greater ecological significance than previously thought.
Collapse
Affiliation(s)
- Ling Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Jingyi Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Qionghua He
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Chu Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yueling Sun
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Carol A Seger
- School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China; Department of Psychology, Colorado State University, Fort Collins, CO 80523, USA
| | - Xilin Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China.
| |
Collapse
|
6
|
Bedini M, Olivetti E, Avesani P, Baldauf D. Accurate localization and coactivation profiles of the frontal eye field and inferior frontal junction: an ALE and MACM fMRI meta-analysis. Brain Struct Funct 2023; 228:997-1017. [PMID: 37093304 PMCID: PMC10147761 DOI: 10.1007/s00429-023-02641-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
The frontal eye field (FEF) and the inferior frontal junction (IFJ) are prefrontal structures involved in mediating multiple aspects of goal-driven behavior. Despite being recognized as prominent nodes of the networks underlying spatial attention and oculomotor control, and working memory and cognitive control, respectively, the limited quantitative evidence on their precise localization has considerably impeded the detailed understanding of their structure and connectivity. In this study, we performed an activation likelihood estimation (ALE) fMRI meta-analysis by selecting studies that employed standard paradigms to accurately infer the localization of these regions in stereotaxic space. For the FEF, we found the highest spatial convergence of activations for prosaccade and antisaccade paradigms at the junction of the precentral sulcus and superior frontal sulcus. For the IFJ, we found consistent activations across oddball/attention, working memory, task-switching and Stroop paradigms at the junction of the inferior precentral sulcus and inferior frontal sulcus. We related these clusters to previous meta-analyses, sulcal/gyral neuroanatomy, and a comprehensive brain parcellation, highlighting important differences compared to their results and taxonomy. Finally, we leveraged the ALE peak coordinates as seeds to perform a meta-analytic connectivity modeling (MACM) analysis, which revealed systematic coactivation patterns spanning the frontal, parietal, and temporal cortices. We decoded the behavioral domains associated with these coactivations, suggesting that these may allow FEF and IFJ to support their specialized roles in flexible behavior. Our study provides the meta-analytic groundwork for investigating the relationship between functional specialization and connectivity of two crucial control structures of the prefrontal cortex.
Collapse
Affiliation(s)
- Marco Bedini
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy.
- Department of Psychology, University of California, San Diego, McGill Hall 9500 Gilman Dr, La Jolla, CA, 92093-0109, USA.
| | - Emanuele Olivetti
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy
- NILab, Bruno Kessler Foundation (FBK), Via delle Regole 101, 38123, Trento, Italy
| | - Paolo Avesani
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy
- NILab, Bruno Kessler Foundation (FBK), Via delle Regole 101, 38123, Trento, Italy
| | - Daniel Baldauf
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy
| |
Collapse
|
7
|
Soyuhos O, Baldauf D. Functional connectivity fingerprints of the frontal eye field and inferior frontal junction suggest spatial versus nonspatial processing in the prefrontal cortex. Eur J Neurosci 2023; 57:1114-1140. [PMID: 36789470 DOI: 10.1111/ejn.15936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Neuroimaging evidence suggests that the frontal eye field (FEF) and inferior frontal junction (IFJ) govern the encoding of spatial and nonspatial (such as feature- or object-based) representations, respectively, both during visual attention and working memory tasks. However, it is still unclear whether such contrasting functional segregation is also reflected in their underlying functional connectivity patterns. Here, we hypothesized that FEF has predominant functional coupling with spatiotopically organized regions in the dorsal ('where') visual stream whereas IFJ has predominant functional connectivity with the ventral ('what') visual stream. We applied seed-based functional connectivity analyses to temporally high-resolving resting-state magnetoencephalography (MEG) recordings. We parcellated the brain according to the multimodal Glasser atlas and tested, for various frequency bands, whether the spontaneous activity of each parcel in the ventral and dorsal visual pathway has predominant functional connectivity with FEF or IFJ. The results show that FEF has a robust power correlation with the dorsal visual pathway in beta and gamma bands. In contrast, anterior IFJ (IFJa) has a strong power coupling with the ventral visual stream in delta, beta and gamma oscillations. Moreover, while FEF is phase-coupled with the superior parietal lobe in the beta band, IFJa is phase-coupled with the middle and inferior temporal cortex in delta and gamma oscillations. We argue that these intrinsic connectivity fingerprints are congruent with each brain region's function. Therefore, we conclude that FEF and IFJ have dissociable connectivity patterns that fit their respective functional roles in spatial versus nonspatial top-down attention and working memory control.
Collapse
Affiliation(s)
- Orhan Soyuhos
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy.,Center for Neuroscience, University of California, Davis, California, USA
| | - Daniel Baldauf
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| |
Collapse
|
8
|
Abstract
Voluntary attention selects behaviorally relevant signals for further processing while filtering out distracter signals. Neural correlates of voluntary visual attention have been reported across multiple areas of the primate visual processing streams, with the earliest and strongest effects isolated in the prefrontal cortex. In this article, I review evidence supporting the hypothesis that signals guiding the allocation of voluntary attention emerge in areas of the prefrontal cortex and reach upstream areas to modulate the processing of incoming visual information according to its behavioral relevance. Areas located anterior and dorsal to the arcuate sulcus and the frontal eye fields produce signals that guide the allocation of spatial attention. Areas located anterior and ventral to the arcuate sulcus produce signals for feature-based attention. Prefrontal microcircuits are particularly suited to supporting voluntary attention because of their ability to generate attentional template signals and implement signal gating and their extensive connectivity with the rest of the brain. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Julio Martinez-Trujillo
- Department of Physiology, Pharmacology and Psychiatry, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada;
| |
Collapse
|
9
|
Lanssens A, Mantini D, de Beeck HO, Gillebert CR. Activity in the Fronto-Parietal and Visual Cortex Is Modulated by Feature-Based Attentional Weighting. Front Neurosci 2022; 16:838683. [PMID: 35546874 PMCID: PMC9082947 DOI: 10.3389/fnins.2022.838683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
In day-to-day dynamic activities where sensory input is abundant, stimulus representations in the visual cortex are modulated based on their attentional priority. Several studies have established the top-down role of a fronto-parietal dorsal attention network in selective attention. In the current study, we aimed to investigate whether activity of subregions of this network and the visual cortex is modulated by feature-based attentional weighting, and if so, whether their timecourses of activity are correlated. To this end, we analyzed fMRI data of 28 healthy subjects, who performed a feature-based go/no-go task. Participants had to attend to one or two colored streams of sinusoidal gratings and respond to each grating in the task-relevant stream(s) except to a single non-target grating. Univariate and multivariate fMRI results indicated that activity in bilateral fronto-parietal (frontal eye fields, intraparietal sulcus and superior parietal lobe) and visual (V1-V4, lateral occipital cortex and fusiform gyrus) regions was modulated by selecting one instead of attending to two gratings. Functional connectivity was not significantly different between fronto-parietal and visual regions when attending to one as opposed to two gratings. Our study demonstrates that activity in subregions of both the fronto-parietal and visual cortex is modified by feature-based attentional weighting.
Collapse
Affiliation(s)
- Armien Lanssens
- Department of Brain and Cognition, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Hans Op de Beeck
- Department of Brain and Cognition, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Celine R Gillebert
- Department of Brain and Cognition, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Ruland SH, Palomero-Gallagher N, Hoffsteadter F, Eickhoff SB, Mohlberg H, Amunts K. The inferior frontal sulcus: cortical segregation, molecular architecture and function. Cortex 2022; 153:235-256. [DOI: 10.1016/j.cortex.2022.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 01/13/2023]
|
11
|
Wang L, Huang L, Li M, Wang X, Wang S, Lin Y, Zhang X. An awareness-dependent mapping of saliency in the human visual system. Neuroimage 2021; 247:118864. [PMID: 34965453 DOI: 10.1016/j.neuroimage.2021.118864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 11/25/2022] Open
Abstract
The allocation of exogenously cued spatial attention is governed by a saliency map. Yet, how salience is mapped when multiple salient stimuli are present simultaneously, and how this mapping interacts with awareness remains unclear. These questions were addressed here using either visible or invisible displays presenting two foreground stimuli (whose bars were oriented differently from the bars in the otherwise uniform background): a high salience target and a distractor of varied, lesser salience. Interference, or not, by the distractor with the effective salience of the target served to index a graded or non-graded nature of salience mapping, respectively. The invisible and visible displays were empirically validated by a two-alternative forced choice test (detecting the quadrant of the target) demonstrating subjects' performance at or above chance level, respectively. By combining psychophysics, fMRI, and effective connectivity analysis, we found a graded distribution of salience with awareness, changing to a non-graded distribution without awareness. Crucially, we further revealed that the graded distribution was contingent upon feedback from the posterior intraparietal sulcus (pIPS, especially from the right pIPS), whereas the non-graded distribution was innate to V1. Together, this awareness-dependent mapping of saliency reconciles several previous, seemingly contradictory findings regarding the nature of the saliency map.
Collapse
Affiliation(s)
- Lijuan Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Ling Huang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Mengsha Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Xiaotong Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Shiyu Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yuefa Lin
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Xilin Zhang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, Guangdong 510631, China; Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China.
| |
Collapse
|
12
|
Ekert JO, Lorca-Puls DL, Gajardo-Vidal A, Crinion JT, Hope TMH, Green DW, Price CJ. A functional dissociation of the left frontal regions that contribute to single word production tasks. Neuroimage 2021; 245:118734. [PMID: 34793955 PMCID: PMC8752962 DOI: 10.1016/j.neuroimage.2021.118734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/06/2021] [Accepted: 11/14/2021] [Indexed: 11/02/2022] Open
Abstract
Controversy surrounds the interpretation of higher activation for pseudoword compared to word reading in the left precentral gyrus and pars opercularis. Specifically, does activation in these regions reflect: (1) the demands on sublexical assembly of articulatory codes, or (2) retrieval effort because the combinations of articulatory codes are unfamiliar? Using fMRI, in 84 neurologically intact participants, we addressed this issue by comparing reading and repetition of words (W) and pseudowords (P) to naming objects (O) from pictures or sounds. As objects do not provide sublexical articulatory cues, we hypothesis that retrieval effort will be greater for object naming than word repetition/reading (which benefits from both lexical and sublexical cues); while the demands on sublexical assembly will be higher for pseudoword production than object naming. We found that activation was: (i) highest for pseudoword reading [P>O&W in the visual modality] in the anterior part of the ventral precentral gyrus bordering the precentral sulcus (vPCg/vPCs), consistent with the sublexical assembly of articulatory codes; but (ii) as high for object naming as pseudoword production [P&O>W] in dorsal precentral gyrus (dPCg) and the left inferior frontal junction (IFJ), consistent with retrieval demands and cognitive control. In addition, we dissociate the response properties of vPCg/vPCs, dPCg and IFJ from other left frontal lobe regions that are activated during single word speech production. Specifically, in both auditory and visual modalities: a central part of vPCg (head and face area) was more activated for verbal than nonverbal stimuli [P&W>O]; and the pars orbitalis and inferior frontal sulcus were most activated during object naming [O>W&P]. Our findings help to resolve a previous discrepancy in the literature, dissociate three functionally distinct parts of the precentral gyrus, and refine our knowledge of the functional anatomy of speech production in the left frontal lobe.
Collapse
Affiliation(s)
- Justyna O Ekert
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom.
| | - Diego L Lorca-Puls
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom; Department of Speech, Language and Hearing Sciences, Faculty of Medicine, Universidad de Concepcion, Concepcion, Chile
| | - Andrea Gajardo-Vidal
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom; Faculty of Health Sciences, Universidad del Desarrollo, Concepcion, Chile
| | - Jennifer T Crinion
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Thomas M H Hope
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom
| | - David W Green
- Department of Experimental Psychology, University College London, London, United Kingdom
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom
| |
Collapse
|
13
|
Meyyappan S, Rajan A, Mangun GR, Ding M. Role of Inferior Frontal Junction (IFJ) in the Control of Feature versus Spatial Attention. J Neurosci 2021; 41:8065-8074. [PMID: 34380762 PMCID: PMC8460144 DOI: 10.1523/jneurosci.2883-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022] Open
Abstract
Feature-based visual attention refers to preferential selection and processing of visual stimuli based on their nonspatial attributes, such as color or shape. Recent studies have highlighted the inferior frontal junction (IFJ) as a control region for feature but not spatial attention. However, the extent to which IFJ contributes to spatial versus feature attention control remains a topic of debate. We investigated in humans of both sexes the role of IFJ in the control of feature versus spatial attention in a cued visual spatial (attend-left or attend-right) and feature (attend-red or attend-green) attention task using fMRI. Analyzing cue-related fMRI using both univariate activation and multivoxel pattern analysis, we found the following results in IFJ. First, in line with some prior studies, the univariate activations were not different between feature and spatial attentional control. Second, in contrast, the multivoxel pattern analysis decoding accuracy was above chance level for feature attention (attend-red vs attend-green) but not for spatial attention (attend-left vs attend-right). Third, while the decoding accuracy for feature attention was above chance level during attentional control in the cue-to-target interval, it was not during target processing. Fourth, the right IFJ and visual cortex (V4) were observed to be functionally connected during feature but not during spatial attention control, and this functional connectivity was positively associated with subsequent attentional selection of targets in V4, as well as with behavioral performance. These results support a model in which IFJ plays a crucial role in top-down control of visual feature but not visual spatial attention.SIGNIFICANCE STATEMENT Past work has shown that the inferior frontal junction (IFJ), a prefrontal structure, is activated by both attention-to-feature (e.g., color) and attention-to-location, but the precise role of IFJ in the control of feature- versus spatial-attention is debated. We investigated this issue in a cued visual spatial (attend-left or attend-right) and feature (attend-red or attend-green) attention task using fMRI, multivoxel pattern analysis, and functional connectivity methods. The results show that (1) attend-red versus attend-green can be decoded in single-trial cue-evoked BOLD activity in IFJ but not attend-left versus attend-right and (2) only right IFJ modulates V4 to enhance task performance. This study sheds light on the function and hemispheric specialization of IFJ in the control of visual attention.
Collapse
Affiliation(s)
- Sreenivasan Meyyappan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
- Center for Mind and Brain, University of California, Davis, California 95618
| | - Abhijit Rajan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| | - George R Mangun
- Center for Mind and Brain, University of California, Davis, California 95618
- Departments of Psychology and Neurology, University of California, Davis, California 95616
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
14
|
Bedini M, Baldauf D. Structure, function and connectivity fingerprints of the frontal eye field versus the inferior frontal junction: A comprehensive comparison. Eur J Neurosci 2021; 54:5462-5506. [PMID: 34273134 PMCID: PMC9291791 DOI: 10.1111/ejn.15393] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/16/2021] [Accepted: 07/02/2021] [Indexed: 02/01/2023]
Abstract
The human prefrontal cortex contains two prominent areas, the frontal eye field and the inferior frontal junction, that are crucially involved in the orchestrating functions of attention, working memory and cognitive control. Motivated by comparative evidence in non-human primates, we review the human neuroimaging literature, suggesting that the functions of these regions can be clearly dissociated. We found remarkable differences in how these regions relate to sensory domains and visual topography, top-down and bottom-up spatial attention, spatial versus non-spatial (i.e., feature- and object-based) attention and working memory and, finally, the multiple-demand system. Functional magnetic resonance imaging (fMRI) studies using multivariate pattern analysis reveal the selectivity of the frontal eye field and inferior frontal junction to spatial and non-spatial information, respectively. The analysis of functional and effective connectivity provides evidence of the modulation of the activity in downstream visual areas from the frontal eye field and inferior frontal junction and sheds light on their reciprocal influences. We therefore suggest that future studies should aim at disentangling more explicitly the role of these regions in the control of spatial and non-spatial selection. We propose that the analysis of the structural and functional connectivity (i.e., the connectivity fingerprints) of the frontal eye field and inferior frontal junction may be used to further characterize their involvement in a spatial ('where') and a non-spatial ('what') network, respectively, highlighting segregated brain networks that allow biasing visual selection and working memory performance to support goal-driven behaviour.
Collapse
Affiliation(s)
- Marco Bedini
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Daniel Baldauf
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| |
Collapse
|
15
|
A Heteromodal Word-Meaning Binding Site in the Visual Word Form Area under Top-Down Frontoparietal Control. J Neurosci 2021; 41:3854-3869. [PMID: 33687963 DOI: 10.1523/jneurosci.2771-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
The integral capacity of human language together with semantic memory drives the linkage of words and their meaning, which theoretically is subject to cognitive control. However, it remains unknown whether, across different language modalities and input/output formats, there is a shared system in the human brain for word-meaning binding and how this system interacts with cognitive control. Here, we conducted a functional magnetic resonance imaging experiment based on a large cohort of subjects (50 females, 50 males) to comprehensively measure the brain responses evoked by semantic processing in spoken and written word comprehension and production tasks (listening, speaking, reading, and writing). We found that heteromodal word input and output tasks involved distributed brain regions within a frontal-parietal-temporal network and focally coactivated the anterior lateral visual word form area (VWFA), which is located in the basal occipitotemporal area. Directed connectivity analysis revealed that the VWFA was invariably under significant top-down modulation of the frontoparietal control network and interacts with regions related to attention and semantic representation. This study reveals that the VWFA is a key site subserving general semantic processes linking words and meaning, challenging the predominant emphasis on this area's specific role in reading or more general visual processes. Our findings also suggest that the dynamics between semantic memory and cognitive control mechanisms during word processing are largely independent of the modalities of input or output.SIGNIFICANCE STATEMENT Binding words and their meaning into a coherent whole during retrieval requires accessing semantic memory and cognitive control, allowing our thoughts to be expressed and comprehended through mind-external tokens in multiple modalities, such as written or spoken forms. However, it is still unknown whether multimodal language comprehension and production share a common word-meaning binding system in human brains and how this system is connected to a cognitive control mechanism. By systematically measuring brain activity evoked by spoken and written verbal input and output tasks tagging word-meaning binding processes, we demonstrate a general word-meaning binding site within the visual word form area (VWFA) and how this site is modulated by the frontal-parietal control network.
Collapse
|
16
|
Liu N, Zhang H, Zhang X, Yang J, Weng X, Chen L. In Memory of Leslie G. Ungerleider. Neurosci Bull 2021; 37:592-595. [PMID: 33675525 DOI: 10.1007/s12264-021-00648-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Ning Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hui Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
| | - Xilin Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, 510631, Guangdong, China
- School of Psychology, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Jiongjiong Yang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, 100871, China
| | - Xuchu Weng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, 510631, Guangdong, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Lin Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Januszko P, Gmaj B, Piotrowski T, Kopera M, Klimkiewicz A, Wnorowska A, Wołyńczyk-Gmaj D, Brower KJ, Wojnar M, Jakubczyk A. Delta resting-state functional connectivity in the cognitive control network as a prognostic factor for maintaining abstinence: An eLORETA preliminary study. Drug Alcohol Depend 2021; 218:108393. [PMID: 33158664 DOI: 10.1016/j.drugalcdep.2020.108393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/11/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cortical regions that support cognitive control are increasingly well recognized, but the functional mechanisms that promote such control over emotional and behavioral hyperreactivity to alcohol in recently abstinent alcohol-dependent patients are still insufficiently understood. This study aimed to identify neurophysiological biomarkers of maintaining abstinence in alcohol-dependent individuals after alcohol treatment by investigating the resting-state EEG-based functional connectivity in the cognitive control network (CCN). METHODS Lagged phase synchronization between CCN areas by means of eLORETA as well as the Barratt Impulsiveness Scale (BIS-11) and Beck Depression Inventory (BDI) were assessed in abstinent alcohol-dependent patients recruited from treatment centers. A preliminary prospective study design was used to classify participants into those who did and did not maintain abstinence during a follow-up period (median 12 months) after discharge from residential treatment. RESULTS Alcohol-dependent individuals, who maintained abstinence (N = 18), showed significantly increased lagged phase synchronization between the left dorsolateral prefrontal cortex (DLPFC) and the left posterior parietal cortex (IPL) as well as between the right anterior insula cortex/frontal operculum (IA/FO) and the right inferior frontal junction (IFJ) in the delta band compared to those who later relapsed (N = 16). Regression analysis showed that the increased left frontoparietal delta connectivity in the early period of abstinence significantly predicted maintaining abstinence over the ensuing 12 months. Furthermore, right frontoinsular delta connectivity correlated negatively with impulsivity and depression measures. CONCLUSIONS These results suggest that the increased delta resting-state functional connectivity in the CCN may be a promising neurophysiological predictor of maintaining abstinence in individuals with alcohol dependence.
Collapse
Affiliation(s)
- Piotr Januszko
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland
| | - Bartłomiej Gmaj
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland.
| | - Tadeusz Piotrowski
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland
| | - Maciej Kopera
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland
| | - Anna Klimkiewicz
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland
| | - Anna Wnorowska
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland
| | - Dorota Wołyńczyk-Gmaj
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland
| | - Kirk J Brower
- Department of Psychiatry, Addiction Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marcin Wojnar
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland; Department of Psychiatry, Addiction Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrzej Jakubczyk
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland
| |
Collapse
|
18
|
A source for awareness-dependent figure-ground segregation in human prefrontal cortex. Proc Natl Acad Sci U S A 2020; 117:30836-30847. [PMID: 33199608 DOI: 10.1073/pnas.1922832117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Figure-ground modulation, i.e., the enhancement of neuronal responses evoked by the figure relative to the background, has three complementary components: edge modulation (boundary detection), center modulation (region filling), and background modulation (background suppression). However, the neuronal mechanisms mediating these three modulations and how they depend on awareness remain unclear. For each modulation, we compared both the cueing effect produced in a Posner paradigm and fMRI blood oxygen-level dependent (BOLD) signal in primary visual cortex (V1) evoked by visible relative to invisible orientation-defined figures. We found that edge modulation was independent of awareness, whereas both center and background modulations were strongly modulated by awareness, with greater modulations in the visible than the invisible condition. Effective-connectivity analysis further showed that the awareness-dependent region-filling and background-suppression processes in V1 were not derived through intracortical interactions within V1, but rather by feedback from the frontal eye field (FEF) and dorsolateral prefrontal cortex (DLPFC), respectively. These results indicate a source for an awareness-dependent figure-ground segregation in human prefrontal cortex.
Collapse
|
19
|
Qiao L, Xu M, Luo X, Zhang L, Li H, Chen A. Flexible adjustment of the effective connectivity between the fronto-parietal and visual regions supports cognitive flexibility. Neuroimage 2020; 220:117158. [DOI: 10.1016/j.neuroimage.2020.117158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
|
20
|
Mengotti P, Käsbauer AS, Fink GR, Vossel S. Lateralization, functional specialization, and dysfunction of attentional networks. Cortex 2020; 132:206-222. [PMID: 32998061 DOI: 10.1016/j.cortex.2020.08.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/20/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022]
Abstract
The present review covers the latest findings on the lateralization of the dorsal and ventral attention systems, their functional specialization, and their clinical relevance for stroke-induced attentional dysfunction. First, the original assumption of a bilateral dorsal system for top-down attention and a right-lateralized ventral system for stimulus-driven attention is critically reviewed. The evidence for the involvement of the left parietal cortex in attentional functions is discussed and findings on putative pathways linking the dorsal and ventral network are presented. In the second part of the review, we focus on the different attentional subsystems and their lateralization, discussing the differences between spatial, feature- and object-based attention, and motor attention. We also review studies based on predictive coding frameworks of attentional functions. Finally, in the third section, we provide an overview of the consequences of specific disruption within the attention networks after stroke. The role of the interhemispheric (im)balance is discussed, and the results of new promising therapeutic approaches employing brain stimulation techniques such as transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) are presented.
Collapse
Affiliation(s)
- Paola Mengotti
- Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany.
| | - Anne-Sophie Käsbauer
- Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simone Vossel
- Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; Department of Psychology, Faculty of Human Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
21
|
Area 8A within the Posterior Middle Frontal Gyrus Underlies Cognitive Selection between Competing Visual Targets. eNeuro 2020; 7:ENEURO.0102-20.2020. [PMID: 32817199 PMCID: PMC7540933 DOI: 10.1523/eneuro.0102-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022] Open
Abstract
There are several distinct areas in the granular part of the lateral frontal cortex, and these areas provide high-level regulation of cognitive processing. Lesions of the dorsolateral frontal cortex that include area 8A in the human brain and lesions restricted to area 8A in the macaque monkey have demonstrated impairments in tasks requiring selection between visual targets based on rules, such as conditional if/then rules. These same subjects show no impairment in the ability to discriminate between visual stimuli nor in the ability to learn selection rules in general. Area 8A can be considered as a key area for the top-down control of attentional selection. The present functional neuroimaging study demonstrates that activity in area 8A that lies on the posterior part of the middle frontal gyrus underlies the trial-to-trial selection between competing visual targets based on previously acquired conditional rules. Critically, the activity of area 8A could clearly be dissociated from activity related to the performance of eye movements per se that lies posterior to it. Thus, area 8A with its rich corticocortical connections with the posterior parietal region involved in spatial processing and the multisensory temporal cortex appears to be the key prefrontal area for the higher order selection between competing stimuli in the environment, most likely by the allocation of attention.
Collapse
|
22
|
The Ventral Part of Dorsolateral Frontal Area 8A Regulates Visual Attentional Selection and the Dorsal Part Auditory Attentional Selection. Neuroscience 2020; 441:209-216. [PMID: 32512135 DOI: 10.1016/j.neuroscience.2020.05.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/21/2022]
Abstract
The allocation of attention to specific target stimuli is key to pursue a task successfully and attain a goal in an environment that is full of distractions and competing stimuli. Area 8A in the caudal dorsolateral prefrontal cortex is considered a central area for the top-down control of attention and lesion studies in both human and non-human primates have demonstrated that this area is critical for the successful selection of targets according to internal rules. Area 8A can be subdivided into a dorsal part (8Ad) that has unique connections to auditory regions, and a ventral part (8Av) connected with higher-order visual areas. Both parts of area 8A share connections with the parietal multimodal higher order spatial processing region. The present functional neuroimaging study demonstrates that (a) frontal area 8A is critical for the rule-based attentional selection between alternative stimuli that face the individual and (b) that there is a functional dissociation between dorsal area 8A involved in the attentional selection of auditory stimuli and ventral area 8A in the selection of visual stimuli.
Collapse
|
23
|
Jo YT, Joo SW, Shon SH, Kim H, Kim Y, Lee J. Diagnosing schizophrenia with network analysis and a machine learning method. Int J Methods Psychiatr Res 2020; 29:e1818. [PMID: 32022360 PMCID: PMC7051840 DOI: 10.1002/mpr.1818] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Schizophrenia is a chronic and debilitating neuropsychiatric disorder. It has been suggested that impaired brain connectivity underlies the pathophysiology of schizophrenia. Network analysis has thus recently emerged in the field of schizophrenia research. METHODS We investigated 48 schizophrenia patients and 24 healthy controls using network analysis and a machine learning method. A number of global and nodal network properties were estimated from graphs that were reconstructed using probabilistic brain tractography. These network properties were then compared between groups and used for machine learning to classify schizophrenia patients and healthy controls. RESULTS In classifying schizophrenia patients and healthy controls via network properties, the support vector machine, random forest, naïve Bayes, and gradient boosting machine learning models showed an encouraging level of performance. The overall connectivity was revealed as the most significant contributing feature to this classification among the global network properties. Among the nodal network properties, although the relative importance of each region of interest was not identical, there were still some patterns. CONCLUSION In conclusion, the possibility exists to classify schizophrenia patients and healthy controls using network properties, and we have found that there is a provisional pattern of involved brain regions among patients with schizophrenia.
Collapse
Affiliation(s)
- Young Tak Jo
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Woo Joo
- Medical Corps, 1st fleet, Republic of Korea Navy, Donghae, Korea
| | - Seung-Hyun Shon
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Harin Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yangsik Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jungsun Lee
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Bichot NP, Xu R, Ghadooshahy A, Williams ML, Desimone R. The role of prefrontal cortex in the control of feature attention in area V4. Nat Commun 2019; 10:5727. [PMID: 31844117 PMCID: PMC6915702 DOI: 10.1038/s41467-019-13761-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 11/25/2019] [Indexed: 11/09/2022] Open
Abstract
When searching for an object in a cluttered scene, we can use our memory of the target object features to guide our search, and the responses of neurons in multiple cortical visual areas are enhanced when their receptive field contains a stimulus sharing target object features. Here we tested the role of the ventral prearcuate region (VPA) of prefrontal cortex in the control of feature attention in cortical visual area V4. VPA was unilaterally inactivated in monkeys performing a free-viewing visual search for a target stimulus in an array of stimuli, impairing monkeys' ability to find the target in the array in the affected hemifield, but leaving intact their ability to make saccades to targets presented alone. Simultaneous recordings in V4 revealed that the effects of feature attention on V4 responses were eliminated or greatly reduced while leaving the effects of spatial attention on responses intact. Altogether, the results suggest that feedback from VPA modulates processing in visual cortex during attention to object features.
Collapse
Affiliation(s)
- Narcisse P Bichot
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Rui Xu
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Azriel Ghadooshahy
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael L Williams
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Desimone
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
25
|
Liu T. Feature-based attention: effects and control. Curr Opin Psychol 2019; 29:187-192. [PMID: 31015180 PMCID: PMC6756988 DOI: 10.1016/j.copsyc.2019.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/07/2019] [Accepted: 03/19/2019] [Indexed: 11/26/2022]
Abstract
Feature-based attention prioritizes the processing of non-spatial features across the visual field. Classical studies revealed a feature-similarity gain modulation of sensory neuron's activity. While early studies that quantified behavioral performance have provided support for this model, recent studies have revealed a non-monotonic, surround suppression effect in near feature space. The attentional suppression effects may give rise to a highly limited capacity when selecting multiple features, as documented by studies manipulating the number of attended features. These effects of feature-based attention are likely due to attentional control mechanisms exerting top-down modulations, which have been linked to neural signals in the dorsal frontoparietal network. The neural representation of attentional priority at multiple levels of the visual hierarchy thus shape visual perception and behavioral performance.
Collapse
Affiliation(s)
- Taosheng Liu
- Department of Psychology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
26
|
Gong M, Liu T. Continuous and discrete representations of feature-based attentional priority in human frontoparietal network. Cogn Neurosci 2019; 11:47-59. [PMID: 30922203 DOI: 10.1080/17588928.2019.1601074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies suggest that human frontoparietal network represents feature-based attentional priority, yet the precise nature of the priority signals remains unclear. Here, we examined whether priority signals vary continuously or discretely as a function of feature similarity. In an fMRI experiment, we presented two superimposed dot fields moving along two linear directions (leftward and rightward) while varying the angular separation between the two directions. Subjects were cued to attend to one of the two dot fields and respond to a possible speed-up in the cued direction. We used multivariate analysis to evaluate how priority representation of the attended direction changes with feature similarity. We found that in early visual areas as well as posterior intraparietal sulcus and inferior frontal junction, the patterns of neural activity became more different as the feature similarity decreased, indicating a continuous representation of the attended feature. In contrast, patterns of neural activity in anterior intraparietal sulcus and frontal eye field remained invariant to changes in feature similarity, indicating a discrete representation of the attended feature. Such distinct neural coding of attentional priority across the frontoparietal network may make complementary contributions to enable flexible attentional control.
Collapse
Affiliation(s)
- Mengyuan Gong
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Taosheng Liu
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
27
|
Noah S, Mangun GR. Recent evidence that attention is necessary, but not sufficient, for conscious perception. Ann N Y Acad Sci 2019; 1464:52-63. [PMID: 30883785 DOI: 10.1111/nyas.14030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 12/27/2018] [Accepted: 01/25/2019] [Indexed: 11/26/2022]
Abstract
Early descriptions of attention in the psychological literature highlighted its interdependence with conscious awareness. As the study of attention developed, consciousness and attention began to be considered separable phenomena, experimentally and theoretically. In recent years, an energetic debate has developed concerning the extent to which the two phenomena are related. One school of thought considers the two to be doubly dissociable, whereas the other considers them to be necessarily linked. In this review, we highlight experimental findings from the last 5 years that contribute to the leading consensus view: attention is necessary, but not sufficient, for conscious perception. We review studies that show attention operating in conjunction with unconscious information, and other evidence linking attention necessarily to conscious perception. By drawing upon evidence that attention comprises many cognitive and neural processes, we argue that by studying how different forms of attention are related to conscious perception, it is possible to gain new insights about the neural states or processes that are necessary for conscious perception to occur.
Collapse
Affiliation(s)
- Sean Noah
- Department of Psychology, and Center for Mind and Brain, University of California, Davis, California
| | - George R Mangun
- Department of Psychology, and Center for Mind and Brain, University of California, Davis, California
| |
Collapse
|