1
|
Liu X, Yuan Y, Wu Y, Zhu C, Liu Y, Ke B. Extracellular Matrix Stiffness Modulates Myopia Scleral Remodeling Through Integrin/F-Actin/YAP Axis. Invest Ophthalmol Vis Sci 2025; 66:22. [PMID: 39918477 PMCID: PMC11809450 DOI: 10.1167/iovs.66.2.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/15/2025] [Indexed: 02/12/2025] Open
Abstract
Purpose Scleral extracellular matrix (ECM) remodeling and weakened scleral stiffness are characteristic of myopia. The purpose of this study was to investigate the precise underlying mechanisms of scleral remodeling regulated by mechanical signals emanating from the ECM. Methods The expression and regulation of YES-associated protein (YAP) were confirmed in human samples or guinea pig myopia models by Western blot (WB) or ELISA. To mimic the biomechanical microenvironment associated with myopia, stiff (50 kPa) and soft (8 kPa) substrates were established. The underlying mechanisms were further investigated by quantitative real-time RT-PCR, WB, and fluorescence staining in cells treated with siRNAs, plasmids or inhibitors. In vivo, a YAP activator, inhibitor and F-actin polymerization facilitator were applied to evaluate their therapeutic significance for myopia. Results Our findings revealed that YAP expression is decreased in the sclera of guinea pigs and humans with myopia. Under mechanical stimuli, YAP functions as a mediator, transducing mechanical signals and modulating collagen expression. Furthermore, integrin α1β1 acts as a regulator of YAP and operates through modification of the F-actin cytoskeleton. Specifically, in response to mechanical forces, integrin α1β1 modulates F-actin restructuring. This modified actin cytoskeletal architecture subsequently facilitates the nuclear translocation of YAP, ultimately leading to the suppression of COL1A1 expression. Conclusions Our results suggest that the integrin α1β1-F-actin-YAP-COL1A1 axis constitutes a vital regulatory mechanism intrinsically associated with the pathogenesis of myopia.
Collapse
Affiliation(s)
- Xin Liu
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Yuan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wu
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengcheng Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuying Liu
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bilian Ke
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Palumaa T, Balamurugan S, Pardue MT. Meta-analysis of retinal transcriptome profiling studies in animal models of myopia. Front Med (Lausanne) 2025; 11:1479891. [PMID: 39876870 PMCID: PMC11772478 DOI: 10.3389/fmed.2024.1479891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/10/2024] [Indexed: 01/31/2025] Open
Abstract
Objective Myopia prevalence is increasing at alarming rates, yet the underlying mechanistic causes are not understood. Several studies have employed experimental animal models of myopia and transcriptome profiling to identify genes and pathways contributing to myopia. In this study, we determined the retinal transcriptome changes in response to form deprivation in mouse retinas. We then conducted a transcriptome meta-analysis incorporating all publicly available datasets and analyzed how the results related to the genes associated with refractive errors in human genome-wide association studies (GWAS). Methods Form deprivation was induced in three male C57BL6/J mice from postnatal day 28 (P28) to P42. Retinal gene expression was analyzed with RNA sequencing, followed by differential gene expression analysis with DESeq2 and identification of associated pathways with the Kyoto Encyclopedia of Genes and Genomes (KEGG). A systematic search identified four similar retinal transcriptomics datasets in response to experimental myopia using chicks or mice. The five studies underwent transcriptome meta-analyses to determine retinal gene expression changes and associated pathways. The results were compared with genes associated with human myopia. Results Differential gene expression analysis of form-deprived mouse retinas revealed 235 significantly altered transcripts, implicating the BMP2 signaling pathway and circadian rhythms, among others. Transcriptome-wide meta-analyses of experimental myopia datasets found 427 differentially expressed genes in the mouse model and 1,110 in the chick model, with limited gene overlap between species. Pathway analysis of these two gene sets implicated TGF-beta signaling and circadian rhythm pathways in both mouse and chick retinas. Some pathways associated only with mouse retinal changes included dopamine signaling and HIF-1 signaling pathway, whereas glucagon signaling was only associated with gene changes in chick retinas. The follistatin gene changed in both mouse and chick retinas and has also been implicated in human myopia. TGF-beta signaling pathway and circadian entrainment processes were associated with myopia in mice, chicks, and humans. Conclusion This study highlights the power of combining datasets to enhance statistical power and identify robust gene expression changes across different experimental animal models and conditions. The data supports other experimental evidence that TGF-beta signaling pathway and circadian rhythms are involved in myopic eye growth.
Collapse
Affiliation(s)
- Teele Palumaa
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Shruti Balamurugan
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Machelle T. Pardue
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
3
|
Liu ESF, Cudia MKET, Wong GKY, Ko CN, Lam DSC. The concept of cone opponency may extend beyond accommodation, to myopiagenesis and emmetropization, for a better peripheral defocus lens. Asia Pac J Ophthalmol (Phila) 2024; 13:100125. [PMID: 39662699 DOI: 10.1016/j.apjo.2024.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
Myopia has ever-rising prevalence in the past few decades globally. Its pathogenesis is still not adequately elucidated especially at the signal transduction level. For the environmental risk factors, there is a large body of fragmented knowledge about the visual inputs for accommodation, myopiagenesis and emmetropization, with the latter two being essentially local processes. The red-green and yellow-blue chromatic pathways, together with the underlying L-M and S-(L+M) cone opponency, seem to be the common denominator amongst them. In this review, experimental and observational evidence are summarized to delineate the interplay of them. This review may establish the pivotal role of longitudinal chromatic aberration (LCA) for a mechanistic approach to future research in myopia control. This review looks into the mechanistic processes underlying myopiagenesis and emmetropization, specifically focusing on chromatic aberration and cone opponency in vision as pivotal components. The roles of longitudinal chromatic aberration (LCA) and cone contrast in myopia onset and development are intriguing. How visual input and chromatic pathways (specifically, red-green and blue-yellow cone opponency) contribute to accommodation that may trigger emmetropization mechanisms, thereby influencing eye growth patterns are explored and discussed. In brief, this manuscript delves into the physiology of visual processing and highlights a foundational aspect of visual science that may account for a "Go" or "Stop" signaling in axial eye growth. It further proposes a metric to gauge myopia-inhibiting optical devices such as the peripheral defocus lenses, for its best iteration. Future research in the above-mentioned areas is warranted.
Collapse
Affiliation(s)
- Edward S F Liu
- The Primasia International Eye Research Institute of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China.
| | | | - Graham K Y Wong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chung-Nga Ko
- The Primasia International Eye Research Institute of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Dennis S C Lam
- The Primasia International Eye Research Institute of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China.
| |
Collapse
|
4
|
Pusti D, Benito A, Madrid-Valero JJ, Ordoñana JR, Artal P. Impact of Genetic and Environmental Factors on Peripheral Refraction. Transl Vis Sci Technol 2024; 13:33. [PMID: 39441572 PMCID: PMC11512578 DOI: 10.1167/tvst.13.10.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Purpose Investigate genetic and environmental influences on refractive errors in monozygotic (MZ) and dizygotic (DZ) twin pairs. Methods We assessed foveal and peripheral refractions in 54 MZ and 46 DZ twins, capturing three scans across the retina. The study focused on spherical equivalent (M) at the fovea (MLOS) and changes in midperipheral (δMmid-periphery), and peripheral (δMperiphery) defocus, along with nasal-temporal asymmetry (root mean squared error [RMSEASY]) and image shell contour (RMSEAVG). Genetic and environmental contributions were analyzed using structural equation models. Results No significant differences were observed between MZ and DZ twins for the examined variables. Intraclass correlations (ICC) indicated an important difference in genetic influence between MLOS, with the MZ twin pairs showing a higher correlation (0.83) than DZ (0.69) pairs, and δMperiphery, because the ICC for the MZ doubled (0.87) that of the DZ (0.42) pairs. Heritability estimates from the ACE model confirmed the large difference on genetic factors' influence on the variance for MLOS (0.13) and δMperiphery (0.77) change in refractive error. RMSEASY and RMSEAVG metrics showed significant genetic impact, particularly pronounced in the peripheral measurements, revealing high genetic control. Conclusions The study delineates a marked environmental impact on central refractive errors, whereas genetic factors had a more significant influence on peripheral refractive variance and retinal image traits. Findings of the ACE model highlight the intricate genetic and environmental interplay in refractive error development, with a notable genetic dominance in peripheral vision characteristics. This suggests potential genetic targets for interventions in myopia management and emphasizes the need for personalized approaches based on genetic predispositions. Translational Relevance Understanding the impact of genetics and environment on peripheral refraction is essential for deepening our fundamental knowledge of myopia and guiding the development of advanced myopia control strategies.
Collapse
Affiliation(s)
- Dibyendu Pusti
- Laboratorio de Óptica, Universidad de Murcia, Murcia, Spain
| | - Antonio Benito
- Laboratorio de Óptica, Universidad de Murcia, Murcia, Spain
| | - Juan J. Madrid-Valero
- Departamento de Anatomía Humana y Psicobiología, Universidad de Murcia, Spain and IMIB-Arrixaca, Murcia, Spain
| | - Juan R. Ordoñana
- Departamento de Anatomía Humana y Psicobiología, Universidad de Murcia, Spain and IMIB-Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Universidad de Murcia, Spain
| | - Pablo Artal
- Laboratorio de Óptica, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
5
|
Xie J, Goodbourn PT, Bui BV, Jusuf PR. Establishment and comprehensive characterization of a novel dark-reared zebrafish model for myopia studies. Exp Eye Res 2024; 246:110009. [PMID: 39067805 DOI: 10.1016/j.exer.2024.110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Myopia is predicted to impact approximately 5 billion people by 2050, necessitating mechanistic understanding of its development. Myopia results from dysregulated genetic mechanisms of emmetropization, caused by over-exposure to aberrant visual environments; however, these genetic mechanisms remain unclear. Recent human genome-wide association studies have identified a range of novel myopia-risk genes. To facilitate large-scale in vivo mechanistic examination of gene-environment interactions, this study aims to establish a myopia model platform that allows efficient environmental and genetic manipulations. We established an environmental zebrafish myopia model by dark-rearing. Ocular biometrics including relative ocular refraction were quantified using optical coherence tomography images. Spatial vision was assessed using optomotor response (OMR). Retinal function was analyzed via electroretinography (ERG). Myopia-associated molecular contents or distributions were examined using RT-qPCR or immunohistochemistry. Our model produces robust phenotypic changes, showing myopia after 2 weeks of dark-rearing, which were recoverable within 2 weeks after returning animals to normal lighting. 2-week dark-reared zebrafish have reduced spatial-frequency tuning function. ERG showed reduced photoreceptor and bipolar cell function (a- and b-waves) after only 2 days of dark-rearing, which worsened after 2 weeks of dark-rearing. We also found dark-rearing-induced changes to expression of myopia-risk genes, including egr1, vegfaa, vegfab, rbp3, gjd2a and gjd2b, inner retinal distribution of EFEMP1, TIMP2 and MMP2, as well as transiently reduced PSD95 density in the inner plexiform layer. Coupled with the gene editing tools available for zebrafish, our environmental myopia model provides an excellent platform for large-scale investigation of gene-environment interactions in myopia development.
Collapse
Affiliation(s)
- Jiaheng Xie
- School of Biosciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Patrick T Goodbourn
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| | - Patricia Regina Jusuf
- School of Biosciences, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| |
Collapse
|
6
|
Lal B, She Z, Beach KM, Hung LF, Patel NB, Smith EL, Ostrin LA. Inner Retinal Microvasculature With Refraction in Juvenile Rhesus Monkeys. Transl Vis Sci Technol 2024; 13:42. [PMID: 39186302 PMCID: PMC11361384 DOI: 10.1167/tvst.13.8.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Purpose To characterize inner retinal microvasculature of rhesus monkeys with a range of refractive errors using optical coherence tomography angiography. Method Refractive error was induced in right eyes of 18 rhesus monkeys. At 327 to 347 days of age, axial length and spherical equivalent refraction (SER) were measured, and optical coherence tomography and optical coherence tomography angiography scans (Spectralis, Heidelberg) were collected. Magnification-corrected metrics included foveal avascular zone area and perfusion density, fractal dimension, and lacunarity of the superficial vascular complex (SVC) and deep vascular complex (DVC) in the central 1-mm diameter and 1.0- to 1.5-mm, 1.5- to 2.0-mm, and 2.0- to 2.5-mm annuli. Pearson correlations were used to explore relationships. Results The mean SER and axial length were 0.78 ± 4.02 D (-7.12 to +7.13 D) and 17.96 ± 1.08 mm (16.41 to 19.93 mm), respectively. The foveal avascular zone area and SVC perfusion density were correlated with retinal thickness for the central 1 mm (P < 0.05). SVC perfusion density of 2.0- to 2.5-mm annulus decreased with increasing axial length (P < 0.001). SVC and DVC fractal dimensions of 2.0- to 2.5-mm were correlated with axial length and SER, and DVC lacunarity of 1.5- to 2.0-mm annulus was correlated with axial length (P < 0.05). Conclusions Several inner retinal microvasculature parameters were associated with increasing axial length and SER in juvenile rhesus monkeys. These findings suggest that changes in retinal microvasculature could be indicators of refractive error development. Translational Relevance In juvenile rhesus monkeys, increasing myopic refraction and axial length are associated with alterations in the inner retinal microvasculature, which may have implications in myopia-related changes in humans.
Collapse
Affiliation(s)
- Barsha Lal
- University of Houston College of Optometry, Houston, TX, USA
| | - Zhihui She
- University of Houston College of Optometry, Houston, TX, USA
| | - Krista M. Beach
- University of Houston College of Optometry, Houston, TX, USA
| | - Li-Fang Hung
- University of Houston College of Optometry, Houston, TX, USA
| | - Nimesh B. Patel
- University of Houston College of Optometry, Houston, TX, USA
| | - Earl L. Smith
- University of Houston College of Optometry, Houston, TX, USA
| | - Lisa A. Ostrin
- University of Houston College of Optometry, Houston, TX, USA
| |
Collapse
|
7
|
Stone RA, Tobias JW, Wei W, Carlstedt X, Zhang L, Iuvone PM, Nickla DL. Diurnal gene expression patterns in retina and choroid distinguish myopia progression from myopia onset. PLoS One 2024; 19:e0307091. [PMID: 39028695 PMCID: PMC11259283 DOI: 10.1371/journal.pone.0307091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/30/2024] [Indexed: 07/21/2024] Open
Abstract
The world-wide prevalence of myopia (nearsightedness) is increasing, but its pathogenesis is incompletely understood. Among many putative mechanisms, laboratory and clinical findings have implicated circadian biology in the etiology of myopia. Consistent with a circadian hypothesis, we recently reported a marked variability in diurnal patterns of gene expression in two crucial tissues controlling post-natal refractive development - the retina and choroid-at the onset of form-deprivation myopia in chick, a widely studied and validated model. To extend these observations, we assayed gene expression by RNA-Seq in retina and choroid during the progression of established unilateral form-deprivation myopia of chick. We assayed gene expression every 4 hours during a single day from myopic and contralateral control eyes. Retinal and choroidal gene expression in myopic vs. control eyes during myopia progression differed strikingly at discrete times during the day. Very few differentially expressed genes occurred at more than one time in either tissue during progressing myopia. Similarly, Gene Set Enrichment Analysis pathways varied markedly by time during the day. Some of the differentially expressed genes in progressing myopia coincided with candidate genes for human myopia, but only partially corresponded with genes previously identified at myopia onset. Considering other laboratory findings and human genetics and epidemiology, these results further link circadian biology to the pathogenesis of myopia; but they also point to important mechanistic differences between the onset of myopia and the progression of established myopia. Future laboratory and clinical investigations should systematically incorporate circadian mechanisms in studying the etiology of myopia and in seeking more effective treatments to normalize eye growth in children.
Collapse
Affiliation(s)
- Richard A. Stone
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John W. Tobias
- Penn Genomics and Sequencing Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wenjie Wei
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Xia Carlstedt
- Department of Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States of America
| | - Lixin Zhang
- Department of Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States of America
| | - P. Michael Iuvone
- Department of Ophthalmology & Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Debora L. Nickla
- Department of Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Schaeffel F, Swiatczak B. Mechanisms of emmetropization and what might go wrong in myopia. Vision Res 2024; 220:108402. [PMID: 38705024 DOI: 10.1016/j.visres.2024.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 05/07/2024]
Abstract
Studies in animal models and humans have shown that refractive state is optimized during postnatal development by a closed-loop negative feedback system that uses retinal image defocus as an error signal, a mechanism called emmetropization. The sensor to detect defocus and its sign resides in the retina itself. The retina and/or the retinal pigment epithelium (RPE) presumably releases biochemical messengers to change choroidal thickness and modulate the growth rates of the underlying sclera. A central question arises: if emmetropization operates as a closed-loop system, why does it not stop myopia development? Recent experiments in young human subjects have shown that (1) the emmetropic retina can perfectly distinguish between real positive defocus and simulated defocus, and trigger transient axial eye shortening or elongation, respectively. (2) Strikingly, the myopic retina has reduced ability to inhibit eye growth when positive defocus is imposed. (3) The bi-directional response of the emmetropic retina is elicited with low spatial frequency information below 8 cyc/deg, which makes it unlikely that optical higher-order aberrations play a role. (4) The retinal mechanism for the detection of the sign of defocus involves a comparison of defocus blur in the blue (S-cone) and red end of the spectrum (L + M-cones) but, again, the myopic retina is not responsive, at least not in short-term experiments. This suggests that it cannot fully trigger the inhibitory arm of the emmetropization feedback loop. As a result, with an open feedback loop, myopia development becomes "open-loop".
Collapse
Affiliation(s)
- Frank Schaeffel
- Myopia Research Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Switzerland; Section Neurobiology of the Eye, Institute of Ophthalmic Research, University of Tübingen, Germany; Zeiss Vision Lab, Institute of Ophthalmic Research, University of Tübingen, Germany.
| | - Barbara Swiatczak
- Myopia Research Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Switzerland
| |
Collapse
|
9
|
Ablordeppey RK, Nieu R, Lin CR, Benavente-Perez A. Early Alterations in Inner-Retina Neural and Glial Saturated Responses in Lens-Induced Myopia. Transl Vis Sci Technol 2024; 13:16. [PMID: 38591944 PMCID: PMC11008749 DOI: 10.1167/tvst.13.4.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Purpose Myopic marmosets are known to exhibit significant inner retinal thinning compared to age-matched controls. The purpose of this study was to assess inner retinal activity in marmosets with lens-induced myopia compared to age-matched controls and evaluate its relationship with induced changes in refractive state and eye growth. Methods Cycloplegic refractive error (Rx), vitreous chamber depth (VCD), and photopic full-field electroretinogram were measured in 14 marmosets treated binocularly with negative contact lenses compared to 9 untreated controls at different stages throughout the experimental period (from 74 to 369 days of age). The implicit times of the a-, b-, d-, and photopic negative response (PhNR) waves, as well as the saturated amplitude (Vmax), semi-saturation constant (K), and slope (n) estimated from intensity-response functions fitted with Naka-Rushton equations were analyzed. Results Compared to controls, treated marmosets exhibited attenuated b-, d-, and PhNR waves Vmax amplitudes 7 to 14 days into treatment before compensatory changes in refraction and eye growth occurred. At later time points, when treated marmosets had developed axial myopia, the amplitudes and implicit times of the b-, d-, and PhNR waves were similar between groups. In controls, the PhNR wave saturated amplitude increased as the b + d-wave Vmax increased. This trend was absent in treated marmosets. Conclusions Marmosets induced with negative defocus exhibit early alterations in inner retinal saturated amplitudes compared to controls, prior to the development of compensatory myopia. These early ERG changes are independent of refraction and eye size and may reflect early changes in bipolar, ganglion, amacrine, or glial cell physiology prior to myopia development. Translational Relevance The early changes in retinal function identified in the negative lens-treated marmosets may serve as clinical biomarkers to help identify children at risk of developing myopia.
Collapse
Affiliation(s)
- Reynolds K. Ablordeppey
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Rita Nieu
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Carol R. Lin
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Alexandra Benavente-Perez
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| |
Collapse
|
10
|
Chen YY, Tsai TH, Liu YL, Lin HJ, Wang IJ. The impact of light properties on ocular growth and myopia development. Taiwan J Ophthalmol 2024; 14:143-150. [PMID: 39027063 PMCID: PMC11253990 DOI: 10.4103/tjo.tjo-d-24-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 07/20/2024] Open
Abstract
The objective of this article is to comprehensively review the effect of environmental lighting on ocular growth and refractive status in both animal and clinical studies, with an emphasis on the underlying mechanisms. This review was performed by searching research articles and reviews utilizing the terms "myopia," "light therapy," "axial length," "refractive error," and "emmetropization" in PubMed datasets. The review was finalized in December 2023. In the animal studies, high lighting brightness, illumination periods aligning with circadian rhythm, and color contrast signals including multiple wavelengths all help regulate ocular growth against myopia. Long wavelengths have been found to induce myopia in chicks, mice, fish, and guinea pigs, whereas shorter wavelengths lead to hyperopia. In contrast, red light has been observed to have a protective effect against myopia in tree shrews and rhesus monkeys. Apart from wavelength, flicker status also showed inconsistent effects on ocular growth, which could be attributed to differences in ocular refractive status, evolutionary disparities in retinal cone cells across species, and the selection of myopia induction models in experiments. In the clinical studies, current evidence suggests a control effect with red light therapy. Although the lighting conditions diverge from those in animal experiments, further reports are needed to assess the long-term effects. In conclusion, this review encompasses research related to the impact of light exposure on myopia and further explores the retinoscleral signaling pathway in refractive development. The aim is to establish a theoretical foundation for optimizing environmental factors in lighting design to address the epidemic of childhood myopia.
Collapse
Affiliation(s)
- Ying-Yi Chen
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Tzu-Hsun Tsai
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Lin Liu
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hui-Ju Lin
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Ablordeppey RK, Lin CR, Song B, Benavente-Perez A. Choroidal Morphology and Photoreceptor Activity Are Related and Affected by Myopia Development. Invest Ophthalmol Vis Sci 2024; 65:3. [PMID: 38300557 PMCID: PMC10846344 DOI: 10.1167/iovs.65.2.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Purpose The choroid is critical for the regulation of eye growth and is involved in the pathogenesis of myopia-associated ocular complications. This study explores the relationship among choroidal biometry, photoreceptor activity, and myopic growth in marmosets (Callithrix jacchus) with lens-induced myopia. Methods A total of 34 common marmosets aged 92 to 273 days old were included in this study. Axial myopia was induced in 17 marmosets using negative soft contact lenses and 17 marmosets served as untreated controls. Cycloplegic refraction (RE) and vitreous chamber depth (VCD) were measured using autorefraction and A-scan ultrasonography, respectively. Choroidal scans were obtained using spectral-domain optical coherence tomography and binarized to calculate subfoveal choroidal thickness (ChT), total choroidal area (TCA), luminal area (LA), stromal area (SA), choroidal vascularity index (CVI), and LA/SA. To assess photoreceptor activity, the a-wave of the full-field electroretinogram was measured. Regression models were used to investigate the relationship between outcome measures. Results Eyes induced with axial myopia (RE = -7.14 ± 4.03 diopters [D], VCD = 6.86 ± 0.39 mm) showed significant reductions (4.92-21.24%) in all choroidal parameters (ChT, TCA, LA, SA, CVI, and LA/SA) compared to controls (RE = -1.25 ± 0.60 D, VCD = 6.58 ± 0.26 mm, all P < 0.05), which changed as a function of refraction and vitreous elongation, and were associated with a decrease in the a-wave amplitude. Further, multiple regression showed that a combination of ChT and CVI could well predict RE and VCD. Conclusions This study reports the existence of significant alterations in choroidal morphology in non-human primate eyes induced with myopia. The changes in choroidal anatomy were associated with reduced light-adapted a-wave amplitude. These findings may represent early markers for reduced visual performance and chorioretinal complications known to occur in eyes with large degrees of myopia.
Collapse
Affiliation(s)
- Reynolds Kwame Ablordeppey
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Carol Ren Lin
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Brian Song
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Alexandra Benavente-Perez
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| |
Collapse
|
12
|
Peng X, Huang Y, Wang Y, Shang J, Shen Y, Chen Z, Zhou X, Han T. Early regional changes in retina and choroid of chicks following monocular hemifield form deprivation. Exp Eye Res 2024; 239:109786. [PMID: 38211681 DOI: 10.1016/j.exer.2024.109786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
To investigate regional changes in the chick retina and choroid after hemifield form deprivation (HFD). Ten chicks were randomly and equally divided into a temporal retinal deprivation (TRD) and nasal retinal deprivation (NRD) group. HFD was induced with half-lateral translucent plastic goggles in the right eye; the left eye was kept untreated. Swept-source optical coherence tomography (SS-OCT) images obtained at 0, 3, and 72 hours (h) were analyzed using customized software. After 72 h of TRD, the retinal thickness (RT) of the treated eyes was significantly less than that of the fellow eyes in the temporal (P = 0.034) rather than the nasal (P = 0.083) region. In the NRD group, the RT of the treated eyes was thinner in both the nasal and temporal regions than that of the fellow eyes (P < 0.01). The RT alterations were more pronounced in the temporal (Δ = -16.86 ± 7.14 μm) than in the nasal (Δ = -13.44 ± 4.83 μm) region after 72-h TRD (P = 0.036), whereas the opposite was observed in the NRD group (P = 0.008). The choroidal thickness (ChT) of the treated eyes was less in both the nasal and temporal regions than that of the fellow eyes in both groups after 72-h treatment (P < 0.01). The ChT alterations were more pronounced in the temporal (Δ = -2.48 ± 8.95 μm) than in the nasal (Δ = 23.65 ± 13.58 μm) region after 72-h TRD (P = 0.021), whereas the NRD group showed the opposite effect (P = 0.019). HFD in chicks can lead to retinal and choroidal thinning in the corresponding regions.
Collapse
Affiliation(s)
- Xiaoliao Peng
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, China
| | - Yangyi Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, China
| | - Yuliang Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, China
| | - Jianmin Shang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, China
| | - Yang Shen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, China
| | - Zhi Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, China
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, China.
| | - Tian Han
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, China.
| |
Collapse
|
13
|
Stone RA, Tobias JW, Wei W, Schug J, Wang X, Zhang L, Iuvone PM, Nickla DL. Diurnal retinal and choroidal gene expression patterns support a role for circadian biology in myopia pathogenesis. Sci Rep 2024; 14:533. [PMID: 38177383 PMCID: PMC10767138 DOI: 10.1038/s41598-023-50684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
The prevalence of myopia (nearsightedness) is increasing to alarming levels, but its etiology remains poorly understood. Because both laboratory and clinical findings suggest an etiologic role for circadian rhythms in myopia development, we assayed gene expression by RNA-Seq in retina and choroid at the onset of unilateral experimental myopia in chick, isolating tissues every 4 h during a single 24-h period from myopic and contralateral control eyes. Occluded versus open eye gene expression differences varied considerably over the 24-h sampling period, with some occurring at multiple times of day but with others showing differences at only a single investigated timepoint. Some of the genes identified in retina or choroid of chick myopia were previously identified as candidate genes for common human myopia. Like differentially expressed genes, pathways identified by Gene Set Enrichment Analysis also varied dramatically by sampling time. Considered with other laboratory data, human genetic and epidemiology data, these findings further implicate circadian events in myopia pathogenesis. The present results emphasize a need to include time of day in mechanistic studies of myopia and to assess circadian biology directly in trying to understand better the origin of myopia and to develop more effective therapies.
Collapse
Affiliation(s)
- Richard A Stone
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - John W Tobias
- Penn Genomics and Sequencing Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenjie Wei
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Schug
- Penn Genomics and Sequencing Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xia Wang
- Department of Biomedical Sciences and Disease, New England College of Optometry, Boston, MA, USA
| | - Lixin Zhang
- Department of Biomedical Sciences and Disease, New England College of Optometry, Boston, MA, USA
| | - P Michael Iuvone
- Department of Ophthalmology and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Debora L Nickla
- Department of Biomedical Sciences and Disease, New England College of Optometry, Boston, MA, USA
| |
Collapse
|
14
|
Ji S, Ye L, Yuan J, Feng Q, Dai J. Integrative Transcriptome and Proteome Analyses Elucidate the Mechanism of Lens-Induced Myopia in Mice. Invest Ophthalmol Vis Sci 2023; 64:15. [PMID: 37819745 PMCID: PMC10584019 DOI: 10.1167/iovs.64.13.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/16/2023] [Indexed: 10/13/2023] Open
Abstract
Purpose The purpose of this study was to investigate the underlying molecular mechanism of lens-induced myopia (LIM) through transcriptome and proteome analyses with a modified mouse myopia model. Methods Four-week-old C57BL/6J mice were treated with a homemade newly designed -25 diopter (D) lens mounting by a 3D printing pen before right eyes for 4 weeks. Refraction (RE) and axial dimensions were measured every 2 weeks. Retinas were analyzed by RNA-sequencing and data-independent acquisition liquid chromatography tandem mass spectrometry. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation, and STRING databases were used to identify significantly affected pathways in transcriptomic and proteomic data sets. Western blot was used to detect the expression of specific proteins. Results The modified model was accessible and efficient. Mice displayed a significant myopic shift (approximately 8 D) following 4 weeks' of lens treatment. Through transcriptomics and proteomics analysis, we elucidated 175 differently expressed genes (DEGs) and 646 differentially expressed proteins (DEPs) between binoculus. The transcriptomic and proteomic data showed a low correlation. Going over the mRNA protein matches, insulin like growth factor 2 mRNA binding protein 1 (Igf2bp1) was found to be a convincing biomarker of LIM, which was confirmed by Western blot. RNA-seq and proteome profiling confirmed that these two "omics" data sets complemented one another in KEGG pathways annovation. Among these, metabolic and human diseases pathways were considered to be correlated with the LIM forming process. Conclusions The newly constructed LIM model provides a useful tool for future myopia research. Combining transcriptomic and proteomic analysis may potentially brighten the prospects of novel therapeutic targets for patients with myopia.
Collapse
Affiliation(s)
- Shunmei Ji
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Lin Ye
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
- Department of Ophthalomolgy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayue Yuan
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qianhong Feng
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
15
|
Yang S, Huang L, Liang H, Guo J, Liu L, Chen S, Cao M. Loss of flrt2 gene leads to microphthalmia in zebrafish. Biol Open 2023; 12:bio059784. [PMID: 37259881 PMCID: PMC10281255 DOI: 10.1242/bio.059784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
As a member of the fibronectin leucine-rich transmembrane (flrt) gene family, fibronectin leucine-rich transmembrane 2 (flrt2) is strongly expressed in a subset of sclerotome cells, and the resultant protein interacts with FGFR1 in the FGF signaling pathway during development. Studies on flrt2 have focused mainly on its roles in the brain, heart and chondrogenesis. However, reports on its expression and function in the zebrafish retina are lacking. Here, we detected the high expression of flrt2 in zebrafish retina using in situ hybridization technique and developed an flrt2-knockout (KO) zebrafish line using CRISPR/Cas9 genome editing. Quantitative real-time PCR was used to measure the expression levels of flrt2, which results in an approximately 60% mRNA reduction. The flrt2-KO zebrafish eyes' altered morphological, cellular, and molecular events were identified using BrdU labeling, TUNEL assay, immunofluorescent staining, fluorescent dye injection and RNA sequencing. Abnormal eye development, known as microphthalmia, was found in flrt2-KO larvae, and the retinal progenitor cells exhibited increased apoptosis, perhaps owing to the combined effects of crx, neurod4, atoh7, and pcdh8 downregulation and Casp3a and Caspbl upregulation. In contrast, the retinal neural development, as well as retinal progenitor cell differentiation and proliferation, were not affected by the flrt2 deletion. Thus, flrt2 appears to play important roles in retinal development and function, which may provide the basis for further investigations into the molecular mechanisms of retinal development and evolution.
Collapse
Affiliation(s)
- Siyu Yang
- Department of Ophthalmology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Lianggui Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Huiling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jingyi Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Liyue Liu
- China Zebrafish Resource Center, National Aquatic Biological Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Mingzhe Cao
- Department of Ophthalmology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| |
Collapse
|
16
|
Jiang C, Melles RB, Yin J, Fan Q, Guo X, Cheng CY, He M, Mackey DA, Guggenheim JA, Klaver C, Nair KS, Jorgenson E, Choquet H. A multiethnic genome-wide analysis of 19,420 individuals identifies novel loci associated with axial length and shared genetic influences with refractive error and myopia. Front Genet 2023; 14:1113058. [PMID: 37351342 PMCID: PMC10282939 DOI: 10.3389/fgene.2023.1113058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction: Long axial length (AL) is a risk factor for myopia. Although family studies indicate that AL has an important genetic component with heritability estimates up to 0.94, there have been few reports of AL-associated loci. Methods: Here, we conducted a multiethnic genome-wide association study (GWAS) of AL in 19,420 adults of European, Latino, Asian, and African ancestry from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort, with replication in a subset of the Consortium for Refractive Error and Myopia (CREAM) cohorts of European or Asian ancestry. We further examined the effect of the identified loci on the mean spherical equivalent (MSE) within the GERA cohort. We also performed genome-wide genetic correlation analyses to quantify the genetic overlap between AL and MSE or myopia risk in the GERA European ancestry sample. Results: Our multiethnic GWA analysis of AL identified a total of 16 genomic loci, of which 5 are novel. We found that all AL-associated loci were significantly associated with MSE after Bonferroni correction. We also found that AL was genetically correlated with MSE (rg = -0.83; SE, 0.04; p = 1.95 × 10-89) and myopia (rg = 0.80; SE, 0.05; p = 2.84 × 10-55). Finally, we estimated the array heritability for AL in the GERA European ancestry sample using LD score regression, and found an overall heritability estimate of 0.37 (s.e. = 0.04). Discussion: In this large and multiethnic study, we identified novel loci, associated with AL at a genome-wide significance level, increasing substantially our understanding of the etiology of AL variation. Our results also demonstrate an association between AL-associated loci and MSE and a shared genetic basis between AL and myopia risk.
Collapse
Affiliation(s)
- Chen Jiang
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, United States
| | - Ronald B. Melles
- KPNC, Department of Ophthalmology, Redwood City, CA, United States
| | - Jie Yin
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, United States
| | - Qiao Fan
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Xiaobo Guo
- Department of Statistical Science, School of Mathematics, Sun Yat-Sen University, Guangzhou, China
- Southern China Center for Statistical Science, Sun Yat-Sen University, Guangzhou, China
| | - Ching-Yu Cheng
- Ocular Epidemiology Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Centre for Eye Research Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, WA, Australia
| | - David A. Mackey
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA, Australia
| | - Jeremy A. Guggenheim
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Caroline Klaver
- Department Ophthalmology, Department Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - K. Saidas Nair
- Department of Ophthalmology and Department of Anatomy, School of Medicine, University of California, San Francisco, CA, United States
| | | | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, United States
| |
Collapse
|
17
|
Benavente-Perez A. Evidence of vascular involvement in myopia: a review. Front Med (Lausanne) 2023; 10:1112996. [PMID: 37275358 PMCID: PMC10232763 DOI: 10.3389/fmed.2023.1112996] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
The benign public perception of myopia (nearsightedness) as a visual inconvenience masks the severity of its sight-threatening consequences. Myopia is a significant risk factor for posterior pole conditions such as maculopathy, choroidal neovascularization and glaucoma, all of which have a vascular component. These associations strongly suggest that myopic eyes might experience vascular alterations prior to the development of complications. Myopic eyes are out of focus because they are larger in size, which in turn affects their overall structure and function, including those of the vascular beds. By reviewing the vascular changes that characterize myopia, this review aims to provide an understanding of the gross, cellular and molecular alterations identified at the structural and functional levels with the goal to provide an understanding of the latest evidence in the field of experimental and clinical myopia vascular research. From the evidence presented, we hypothesize that the interaction between excessive myopic eye growth and vascular alterations are tipping-points for the development of sight-threatening changes.
Collapse
|
18
|
Poudel S, Rahimi-Nasrabadi H, Jin J, Najafian S, Alonso JM. Differences in visual stimulation between reading and walking and implications for myopia development. J Vis 2023; 23:3. [PMID: 37014657 PMCID: PMC10080958 DOI: 10.1167/jov.23.4.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 02/11/2023] [Indexed: 04/05/2023] Open
Abstract
Visual input plays an important role in the development of myopia (nearsightedness), a visual disorder that blurs vision at far distances. The risk of myopia progression increases with the time spent reading and decreases with outdoor activity for reasons that remain poorly understood. To investigate the stimulus parameters driving this disorder, we compared the visual input to the retina of humans performing two tasks associated with different risks of myopia progression, reading and walking. Human subjects performed the two tasks while wearing glasses with cameras and sensors that recorded visual scenes and visuomotor activity. When compared with walking, reading black text in white background reduced spatiotemporal contrast in central vision and increased it in peripheral vision, leading to a pronounced reduction in the ratio of central/peripheral strength of visual stimulation. It also made the luminance distribution heavily skewed toward negative dark contrast in central vision and positive light contrast in peripheral vision, decreasing the central/peripheral stimulation ratio of ON visual pathways. It also decreased fixation distance, blink rate, pupil size, and head-eye coordination reflexes dominated by ON pathways. Taken together with previous work, these results support the hypothesis that reading drives myopia progression by understimulating ON visual pathways.
Collapse
Affiliation(s)
- Sabina Poudel
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Hamed Rahimi-Nasrabadi
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Jianzhong Jin
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Sohrab Najafian
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Jose-Manuel Alonso
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| |
Collapse
|
19
|
Axial Shortening in Myopic Children after Repeated Low-Level Red-Light Therapy: Post Hoc Analysis of a Randomized Trial. Ophthalmol Ther 2023; 12:1223-1237. [PMID: 36790672 PMCID: PMC10011250 DOI: 10.1007/s40123-023-00671-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
INTRODUCTION Axial length (AL) elongation in myopia is considered irreversible. We aimed to systemically report unexpected AL shortening observed in a randomized clinical trial (RCT) after repeated low-level red-light (RLRL) therapy. METHODS This is a post hoc analysis of a multicenter, single-masked RCT. Two hundred sixty-four myopic children aged 8-13 years allocated to RLRL treatment (intervention group) or a single vision spectacle (SVS, control group) were included. AL was measured using an IOL-master 500 at baseline, 1-, 3-, 6-, and 12-month follow-up visits. AL shortening was defined as AL reduction from baseline to follow-up visits at three cutoffs: > 0.05 mm, > 0.10 mm, and > 0.20 mm. Frequency of AL shortening at different cutoffs was calculated. Analysis was done with intent to treat (ITT). RESULTS At 12-months follow up, frequency of AL shortening > 0.05 mm was 26/119 (21.85%) and 2/145 (1.38%) for the RLRL group versus the control group, respectively. The frequency was 18/119 (15.13%) versus 0/145 (0%) for AL shortening > 0.10 mm, and 7/119 (5.88%) versus 0/145 (0%), for AL shortening > 0.20 mm, respectively (p < 0.001). Mean AL shortening after 12 months (SD) was -0.156 (0.086) mm in the RLRL group and -0.06 mm in the control group. Age was significantly associated with AL shortening in the multivariable analysis. For the RLRL group that exhibited AL shortening (n = 56), choroidal thickness (ChT) thickening (0.056 mm) could only explain 28.3% of AL shortening (-0.20 mm). CONCLUSION Nearly a quarter of children had > 0.05 mm AL shortening following 12 months of RLRL therapy, whereas AL shortening rarely occurred among controls. TRIAL REGISTRATION ClinicalTrials.gov (NCT04073238).
Collapse
|
20
|
Applications of Genomics and Transcriptomics in Precision Medicine for Myopia Control or Prevention. Biomolecules 2023; 13:biom13030494. [PMID: 36979429 PMCID: PMC10046175 DOI: 10.3390/biom13030494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Myopia is a globally emerging concern accompanied by multiple medical and socio-economic burdens with no well-established causal treatment to control thus far. The study of the genomics and transcriptomics of myopia treatment is crucial to delineate disease pathways and provide valuable insights for the design of precise and effective therapeutics. A strong understanding of altered biochemical pathways and underlying pathogenesis leading to myopia may facilitate early diagnosis and treatment of myopia, ultimately leading to the development of more effective preventive and therapeutic measures. In this review, we summarize current data about the genomics and transcriptomics of myopia in human and animal models. We also discuss the potential applicability of these findings to precision medicine for myopia treatment.
Collapse
|
21
|
Zeitz C, Roger JE, Audo I, Michiels C, Sánchez-Farías N, Varin J, Frederiksen H, Wilmet B, Callebert J, Gimenez ML, Bouzidi N, Blond F, Guilllonneau X, Fouquet S, Léveillard T, Smirnov V, Vincent A, Héon E, Sahel JA, Kloeckener-Gruissem B, Sennlaub F, Morgans CW, Duvoisin RM, Tkatchenko AV, Picaud S. Shedding light on myopia by studying complete congenital stationary night blindness. Prog Retin Eye Res 2023; 93:101155. [PMID: 36669906 DOI: 10.1016/j.preteyeres.2022.101155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling. Differentially expressed genes (DEGs) identified in animal models mimicking myopia are helpful in suggesting candidate genes implicated in human myopia. Complete congenital stationary night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal transmission defect and is also associated with high myopia. Thus, it represents also an interesting model to identify myopia-related genes, as well as disease mechanisms. While the origin of night blindness is molecularly well established, further research is needed to elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole transcriptome analysis on three different mouse models of cCSNB (in Gpr179-/-, Lrit3-/- and Grm6-/-), we identified novel actors of the retinal signaling cascade, which are also novel candidate genes for myopia. Meta-analysis of our transcriptomic data with published transcriptomic databases and genome-wide association studies from myopia cases led us to propose new biological/cellular processes/mechanisms potentially at the origin of myopia in cCSNB subjects. The results provide a foundation to guide the development of pharmacological myopia therapies.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| | - Jérome E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Saclay, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | | | | | - Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, APHP, Paris, France
| | | | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Frederic Blond
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Stéphane Fouquet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vasily Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Robert M Duvoisin
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Andrei V Tkatchenko
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, China; Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
22
|
Zhou Y, Zhu Y, Huang XB, Xiong YJ, Guo YL, Cai Q, Wang M, Gong YX, Cao X, Li JJ, Cai JR, Song Y, Sun ZM. Changes of Choroidal Thickness in Children after Short-Term Application of 1% Atropine Gel. Ophthalmic Res 2022; 66:421-430. [PMID: 36412621 DOI: 10.1159/000526448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/19/2022] [Indexed: 12/23/2023]
Abstract
INTRODUCTION The aim of the study was to assess changes in choroidal thickness (ChT) after administration of 1% atropine for 1 week in myopic, emmetropic, and hyperopic children. METHODS A total of 235 children aged 4-8 years, which included 46 myopia, 34 emmetropia, and 155 hyperopia patients, were recruited and divided into three groups according to the spherical equivalent with the use of 1% atropine twice a day for 1 week. The ChT was measured at baseline and 1 week. RESULTS In the myopia and emmetropia groups, following administration of 1% atropine gel, the ChT thickened significantly under the fovea (i.e., from 278.29 ± 53.01 μm to 308.24 ± 57.3 μm, p < 0.05; from 336.10 ± 78.60 μm to 353.46 ± 70.22 μm, p < 0.05, respectively), and at all intervals from the fovea, while in the hyperopia group, there was no significant difference in the ChT except the nasal side (p < 0.05). CONCLUSION Topical administration of 1% atropine gel for 1 week significantly increased the subfoveal and parafoveal ChT in children with myopia and emmetropia. Atropine did not increase the ChT in hyperopic children, except on the nasal side.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Zhu
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xiao Bo Huang
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yao Jia Xiong
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Ya Li Guo
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Qi Cai
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Min Wang
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Ye Xun Gong
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Cao
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jun Jie Li
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jian Ru Cai
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Song
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhi Min Sun
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
23
|
Jiang L, Liu X, Zhou L, Busoy JMF, Khine MT, Dan YS, Ke M, Brennan NA, Catbagan KJV, Schmetterer L, Barathi VA, Hoang QV. Choroidal Thickness in Early Postnatal Guinea Pigs Predicts Subsequent Naturally Occurring and Form-Deprivation Myopia. Invest Ophthalmol Vis Sci 2022; 63:10. [PMID: 36239975 PMCID: PMC9586133 DOI: 10.1167/iovs.63.11.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To identify choroidal characteristics associated with susceptibility to development of naturally occurring and experimentally induced myopia. Methods We compared choroidal properties between pigmented and albino guinea pig (GP) strains. Biometry, cycloplegic refractive error (RE), and eye wall sublayer thickness were measured from 171 GPs at postnatal day (P)6, 14, and 28. Forty-three P14 GPs underwent two-week monocular form-deprivation myopia (FDM). En face images of choroidal vasculature were obtained with a customized swept-source optical coherence tomography. Multivariate regression analyses were performed, with P28 RE as the outcome and P14 choroidal thickness (ChT) as the main predictor variable. Proteomic analysis was performed on choroidal tissue from P14 albino and pigmented GPs. Results At P14, RE was correlated with thickness of the choroid (β = 0.06), sclera (β = 0.12), and retina (β = 0.27; all P < 0.001). P14 ChT was correlated with P28 RE both with (β = 0.06, P = 0.0007) and without FDM (β = 0.05, P = 0.008). Multivariate regression analysis, taking into account FDM (versus physiological growth) and strain, revealed that for every 10-µm greater ChT at P14, P28 RE was 0.50D more positive (P = 0.005, n = 70). En face images of choroidal sublayers showed that albino choroids were relatively underdeveloped, with frequent avascular regions. Consistent with this finding, proteomic analysis suggested abnormalities of the nitric oxide system in the albino GP choroid. Conclusions Current results are consistent with the notion that greater ChT could protect from or delay the onset of myopia, while lower ChT is associated with greater susceptibility to myopia development. The underlying mechanism could be related to dysfunction of the choroidal vascular system.
Collapse
Affiliation(s)
- Liqin Jiang
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore
| | - Xinyu Liu
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore
| | - Lei Zhou
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Joanna M Fianza Busoy
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore
| | - Myo Thu Khine
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore
| | - Yee Shan Dan
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore
| | - Mengyuan Ke
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore
| | - Noel A Brennan
- Johnson & Johnson Vision, Jacksonville, Florida, United States
| | - Karen J V Catbagan
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Veluchamy A Barathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Quan V Hoang
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Ophthalmology, Columbia University, New York, New York, United States
| |
Collapse
|
24
|
Ji S, Ye L, Zhang L, Xu D, Dai J. Retinal neurodegeneration in a mouse model of green-light-induced myopia. Exp Eye Res 2022; 223:109208. [DOI: 10.1016/j.exer.2022.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 11/15/2022]
|
25
|
Wen Y, Dai B, Zhang X, Zhu H, Xie C, Xia J, Sun Y, Zhu M, Tong J, Shen Y. Retinal Transcriptomics Analysis Reveals the Underlying Mechanism of Disturbed Emmetropization Induced by Wavelength Defocus. Curr Eye Res 2022; 47:908-917. [PMID: 35225751 DOI: 10.1080/02713683.2022.2048395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/24/2022] [Indexed: 12/28/2022]
Abstract
PURPOSE Wavelength signals play a vital role in refractive development. This study aimed to explore the retinal transcriptome signature in these processes. METHODS Guinea pigs were randomly divided into three groups exposed to white, blue, or green environmental light for eight weeks. Refraction and axial length were evaluated every 4 weeks, and the retinal transcriptome was profiled at 8 weeks. RESULTS Compared with the white group, ocular refraction significantly decreased and ocular axial length significantly extended in the green group whereas these parameters showed opposite trends in the blue group. RNA-sequencing showed that, compared with the white group, 184 and 171 differentially expressed genes (DEGs) were found in the blue and green groups, respectively. Among these DEGs, only 31 overlapped. These two sets of DEGs were enriched in distinct biological processes and pathways. There were 268 DEGs between the blue and green groups, which were primarily enriched in the extracellular matrix, and metabolism, receptor activity, and ion binding processes. In addition, nine human genes, including ECEL1, CHRND, SHBG, PRSS56, OVOL1, RDH5, WNT7B, PEBP4, CA12, were identified to be related to myopia development and wavelength response, indicating the potential role of these genes in human wavelength-induced myopia. CONCLUSIONS In this study, we identified retinal targets and pathways involved in the response to wavelength signals in emmetropization.
Collapse
Affiliation(s)
- Yingying Wen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Binbin Dai
- Department of Ophthalmology, Taizhou Hospital, Taizhou, Zhejiang, China
| | - Xuhong Zhang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Zhu
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Xie
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhua Xia
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Sun
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Miaomiao Zhu
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Tong
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ye Shen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Brown DM, Mazade R, Clarkson-Townsend D, Hogan K, Datta Roy PM, Pardue MT. Candidate pathways for retina to scleral signaling in refractive eye growth. Exp Eye Res 2022; 219:109071. [PMID: 35447101 PMCID: PMC9701099 DOI: 10.1016/j.exer.2022.109071] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The global prevalence of myopia, or nearsightedness, has increased at an alarming rate over the last few decades. An eye is myopic if incoming light focuses prior to reaching the retinal photoreceptors, which indicates a mismatch in its shape and optical power. This mismatch commonly results from excessive axial elongation. Important drivers of the myopia epidemic include environmental factors, genetic factors, and their interactions, e.g., genetic factors influencing the effects of environmental factors. One factor often hypothesized to be a driver of the myopia epidemic is environmental light, which has changed drastically and rapidly on a global scale. In support of this, it is well established that eye size is regulated by a homeostatic process that incorporates visual cues (emmetropization). This process allows the eye to detect and minimize refractive errors quite accurately and locally over time by modulating the rate of elongation of the eye via remodeling its outermost coat, the sclera. Critically, emmetropization is not dependent on post-retinal processing. Thus, visual cues appear to influence axial elongation through a retina-to-sclera, or retinoscleral, signaling cascade, capable of transmitting information from the innermost layer of the eye to the outermost layer. Despite significant global research interest, the specifics of retinoscleral signaling pathways remain elusive. While a few pharmacological treatments have proven to be effective in slowing axial elongation (most notably topical atropine), the mechanisms behind these treatments are still not fully understood. Additionally, several retinal neuromodulators, neurotransmitters, and other small molecules have been found to influence axial length and/or refractive error or be influenced by myopigenic cues, yet little progress has been made explaining how the signal that originates in the retina crosses the highly vascular choroid to affect the sclera. Here, we compile and synthesize the evidence surrounding three of the major candidate pathways receiving significant research attention - dopamine, retinoic acid, and adenosine. All three candidates have both correlational and causal evidence backing their involvement in axial elongation and have been implicated by multiple independent research groups across diverse species. Two hypothesized mechanisms are presented for how a retina-originating signal crosses the choroid - via 1) all-trans retinoic acid or 2) choroidal blood flow influencing scleral oxygenation. Evidence of crosstalk between the pathways is discussed in the context of these two mechanisms.
Collapse
Affiliation(s)
- Dillon M Brown
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Reece Mazade
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Danielle Clarkson-Townsend
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA; Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Gangarosa Department of Environmental Health, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Kelleigh Hogan
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Pooja M Datta Roy
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Machelle T Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA.
| |
Collapse
|
27
|
Platzl C, Kaser-Eichberger A, Benavente-Perez A, Schroedl F. The choroid-sclera interface: An ultrastructural study. Heliyon 2022; 8:e09408. [PMID: 35586330 PMCID: PMC9108890 DOI: 10.1016/j.heliyon.2022.e09408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/29/2021] [Accepted: 05/05/2022] [Indexed: 11/27/2022] Open
Abstract
Emmetropization is an active and visually guided process that involves the retina, choroid and sclera, and results in compensatory changes in eye growth. This guided growth is the result of visual cues and possibly mechanical interactions being translated into growth signals via molecular events from the retina into the choroid and sclera, through the choroidal scleral transition zone. If mechanical interactions were a part of the choroid-sclera signaling transduction cascade, specific morphological arrangements should be detectable in this region at the ultrastructural level. The goal of this study was to investigate the ultrastructural features of the choroidal scleral transition zone by comparing avian, non-human primate and human eyes, with the goal to confirm whether specific mechanical structures are present. Choroidal and scleral tissue from chicken, marmoset, and human eyes were imaged using transmission electron microscopy to document the choroid-sclera transition zone. In chicken eyes, fibroblast lamellae bordered the scleral matrix and formed thin end elongated processes that were undercut by scleral collagen fibrils. These processes back-looped into the scleral matrix, and displayed small club-like membrane protrusions. Differences in these arrangements in mature vs young chickens were not detected. The club-like membrane protrusions identified in chickens were rare in marmoset eyes, which instead exhibited two types of collagen fibrils discriminated by size, and were absent in the human eyes investigated. In marmoset and human eyes, elastic components were detected in the transition zone that were absent in chickens. In summary, cellular/membrane specializations indicating a mechanical interaction at the choroid-sclera transition zone were not detected in chicken, non-human primate or human eyes. If mechanotransduction is necessary for scleral growth, matrix integrity or development, alternative structural arrangements might be required.
Collapse
Affiliation(s)
- C. Platzl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - A. Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | | | - F. Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
- Corresponding author.
| |
Collapse
|
28
|
Swiatczak B, Schaeffel F. Transient Eye Shortening During Reading Text With Inverted Contrast: Effects of Refractive Error and Letter Size. Transl Vis Sci Technol 2022; 11:17. [PMID: 35438720 PMCID: PMC9034723 DOI: 10.1167/tvst.11.4.17] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose Myopes have a reduced ability to elicit transient axial eye shortening after imposed positive defocus, which may be due to changes in the biochemical signaling cascade controlling choroidal thickness. We have investigated whether reading with inverted text contrast can still elicit transient axial eye shortening in myopes, like it has been shown in emmetropes. Methods Changes in axial length before and after reading were measured with the Lenstar LS-900. Text with inverted contrast was read from a large screen at 2 m distance (angular subtense 35.9°, screen luminance matched in all conditions to 86 ± 7 cd/m²) for 30 minutes. Moreover, we investigated the effects of letter sizes. Two text sizes were tested: “small” text (letter height 13.75 arcmin) and “large” text (letter height 34.39 arcmin). Results Reading text with inverted contrast induced eye shortening (–10.2 ± 9.5 µm) in myopic eyes (n = 11; refraction –3.5 ± 1.9 diopters [D]), showing that an inhibitory signal was still generated by the retina as in emmetropes. In 15 subjects (refraction +1.7 to –4.2 D) we found that small text does not elicit significant differences in axial length (P = 0.09). However, with large text, changes in axial length were clearly different for the both contrast polarities (standard contrast, +1.7 ± 9.0 µm; inverted contrast, –9.7 ± 8.9 µm; P = 0.0017). Conclusions Although positive defocus may not be an effective intervention to inhibit further eye growth in myopes, other visual stimuli can still trigger choroidal thickening and possibly generate signals to decrease myopia progression. Translational Relevance Our results have shown the optimized text features, which may have a positive impact on myopia control.
Collapse
Affiliation(s)
- Barbara Swiatczak
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Frank Schaeffel
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany.,Zeiss Vision Lab, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
29
|
Zhu X, Kang P, Troilo D, Benavente-Perez A. Temporal properties of positive and negative defocus on emmetropization. Sci Rep 2022; 12:3582. [PMID: 35246571 PMCID: PMC8897502 DOI: 10.1038/s41598-022-07621-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
Studying the temporal integration of visual signals is crucial to understand how time spent on different visual tasks can affect emmetropization and refractive error development. In this study we assessed the effect of interrupting positive and negative lens-imposed defocus with brief periods of unrestricted vision or darkness. A total of forty-six marmosets were treated monocularly with soft contact lenses for 4 weeks from 10 weeks of age (OD: + 5D or − 5D; OS: plano). Two control groups wore + 5D (n = 5) or − 5D (n = 13) lenses continuously for 9 h/day. Two experimental groups had lens-wear interrupted for 30 min twice/day at noon and mid-afternoon by removing lenses and monitoring vision while marmosets sat at the center of a viewing cylinder (normal vision interruption, + 5D: n = 7; − 5D: n = 8) or while they were in the dark (dark interruption, + 5D: n = 7; − 5D: n = 6). The interruption period (30 min/day) represented approx. 10% of the total stimulation time (9 h/day). On-axis refractive error (RE) and vitreous chamber depth (VCD) were measured using an autorefractor and high frequency A-scan ultrasound at baseline and after treatment. Wearing + 5D lenses continuously 9 h/day for 4 weeks induced slowed eye growth and hyperopic shifts in RE in treated relative to contralateral control eyes (relative change, VCD: − 25 ± 11 μm, p > 0.05; RE: + 1.24 ± 0.58 D, p > 0.05), whereas − 5D lens wear resulted in larger and myopic eyes (relative change, VCD: + 109 ± 24 μm, p < 0.001; RE: − 2.03 ± 0.56 D, p < 0.05), significantly different from those in the + 5D lens-treated animals (p < 0.01 for both). Interrupting lens induced defocus with periods of normal vision or darkness for approx. 10% of the treatment time affected the resulting compensation differently for myopic and hyperopic defocus. Interrupting defocus with unrestricted vision reduced − 5D defocus compensation but enhanced + 5D defocus compensation (− 5D, VCD: + 18 ± 33 μm; RE: − 0.93 ± 0.50 D, both p > 0.05; + 5D, VCD: − 86 ± 30 μm; RE: + 1.93 ± 0.50 D, both p < 0.05). Interrupting defocus with darkness also decreased − 5D defocus compensation, but had little effect on + 5D defocus compensation (− 5D, VCD: + 73 ± 34 μm, RE: − 1.13 ± 0.77 D, p > 0.05 for both; + 5D, VCD: − 10 ± 28 μm, RE: + 1.22 ± 0.50 D, p > 0.05 for both). These findings in a non-human primate model of emmetropization are similar to those described in other species and confirm a non-linear model of visual signal integration over time. This suggests a mechanism that is conserved across species and may have clinical implications for myopia management in school-aged children.
Collapse
Affiliation(s)
- Xiaoying Zhu
- College of Optometry, State University of New York, 33 West 42nd Street, New York, NY, 10036, USA
| | - Pauline Kang
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | - David Troilo
- College of Optometry, State University of New York, 33 West 42nd Street, New York, NY, 10036, USA
| | | |
Collapse
|
30
|
Li Q, Zhu H, Fan M, Sun J, Reinach PS, Wang Y, Qu J, Zhou X, Zhao F. Form-deprivation myopia downregulates calcium levels in retinal horizontal cells in mice. Exp Eye Res 2022; 218:109018. [PMID: 35240197 DOI: 10.1016/j.exer.2022.109018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/25/2022]
Abstract
The process of eye axis lengthening in myopic eyes is regulated by multiple mechanisms in the retina, and horizontal cells (HCs) are an essential interneuron in the visual regulatory system. Wherein intracellular Ca2+ plays an important role in the events involved in the regulatory role of HCs in the retinal neural network. It is unknown if intracellular Ca2+ regulation in HCs mediates changes in the retinal neural network during myopia progression. We describe here a novel calcium fluorescence indicator system that monitors HCs' intracellular Ca2+ levels during form-deprivation myopia (FDM) in mice. AAV injection of GCaMP6s, as a protein calcium sensor, into a Gja10-Cre mouse monitored the changes in Ca2+signaling in HC that accompany FDM progression in mice. An alternative Gja10-Cre/Ai96-GCaMP6s mouse model was created by cross mating Gja10-Cre with Ai96 mice. Immunofluorescence imaging and live imaging of the retinal cells verified the identity of these animal models. Changes in retinal horizontal cellular Ca2+ levels were resolved during FDM development. The numbers of GCaMP6s and the proportion of HCs were tracked based on profiling changes in GCaMP6s+calbindin+/calbindin+ coimmunostaining patterns. They significantly decreased more after either two days (P < 0.01) or two weeks (P < 0.001) in form deprived eyes than in the untreated fellow eyes. These decreases in their proportion reached significance only in the retinal central region rather than also in the retinal periphery. A novel approach employing a GCaMP6s mouse model was developed that may ultimately clarify if HCs mediate Ca2+ signals that contribute to controlling FDM progression in mice. The results indicate so far that FDM progression is associated with declines in HC Ca2+ signaling activity.
Collapse
Affiliation(s)
- Qihang Li
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - He Zhu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Miaomiao Fan
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jing Sun
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Peter S Reinach
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Yuhan Wang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China; Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China; Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China.
| | - Fuxin Zhao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China.
| |
Collapse
|
31
|
Affiliation(s)
- Roy Quinlan
- Biomedical Sciences, Department of Biosciences, The University of Durham, Upper Mountjoy Science Site, Durham, DH1 3LE, UK.
| | - Frank Giblin
- Biomedical Sciences Emeritus, Eye Research Institute, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
32
|
On the Fourier transform of a quantitative trait: Implications for compressive sensing. J Theor Biol 2021; 540:110985. [PMID: 34953868 DOI: 10.1016/j.jtbi.2021.110985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022]
Abstract
This paper explores the genotype-phenotype relationship. It outlines conditions under which the dependence of a quantitative trait on the genome might be predictable, based on measurement of a limited subset of genotypes. It uses the theory of real-valued Boolean functions in a systematic way to translate trait data into the Fourier domain. Important trait features, such as the roughness of the trait landscape or the modularity of a trait have a simple Fourier interpretation. Roughness at a gene location corresponds to high sensitivity to mutation, while a modular organization of gene activity reduces such sensitivity. Traits where rugged loci are rare will naturally compress gene data in the Fourier domain, leading to a sparse representation of trait data, concentrated in identifiable, low-level coefficients. This Fourier representation of a trait organizes epistasis in a form which is isometric to the trait data. As Fourier matrices are known to be maximally incoherent with the standard basis, this permits employing compressive sensing techniques to work from data sets that are relatively small-sometimes even of polynomial size-compared to the exponentially large sets of possible genomes. This theory provides a theoretical underpinning for systematic use of Boolean function machinery to dissect the dependency of a trait on the genome and environment.
Collapse
|
33
|
Karouta C, Kucharski R, Hardy K, Thomson K, Maleszka R, Morgan I, Ashby R. Transcriptome-based insights into gene networks controlling myopia prevention. FASEB J 2021; 35:e21846. [PMID: 34405458 DOI: 10.1096/fj.202100350rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022]
Abstract
Myopia (short-sightedness), usually caused by excessive elongation of the eye during development, has reached epidemic proportions worldwide. In animal systems including the chicken model, several treatments have been shown to inhibit ocular elongation and experimental myopia. Although diverse in their apparent mechanism of action, each one leads to a reduction in the rate of ocular growth. We hypothesize that a defined set of retinal molecular changes may underlie growth inhibition, irrespective of the treatment agent used. Accordingly, across five well-established but diverse methods of inhibiting myopia, significant overlap is seen in the retinal transcriptome profile (transcript levels and alternative splicing events) in chicks when analyzed by RNA-seq. Within the two major pathway networks enriched during growth inhibition, that of cell signaling and circadian entrainment, transcription factors form the largest functional grouping. Importantly, a large percentage of those genes forming the defined retinal response are downstream targets of the transcription factor EGR1 which itself shows a universal response to all five growth-inhibitory treatments. This supports EGR1's previously implicated role in ocular growth regulation. Finally, by contrasting our data with human linkage and GWAS studies on refractive error, we confirm the applicability of our study to the human condition. Together, these findings suggest that a universal set of transcriptome changes, which sit within a well-defined retinal network that cannot be bypassed, is fundamental to growth regulation, thus paving a way for designing novel targets for myopia therapies.
Collapse
Affiliation(s)
- Cindy Karouta
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Robert Kucharski
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia.,Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Kristine Hardy
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Kate Thomson
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Ryszard Maleszka
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Ian Morgan
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Regan Ashby
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia.,Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
34
|
Summers JA, Schaeffel F, Marcos S, Wu H, Tkatchenko AV. Functional integration of eye tissues and refractive eye development: Mechanisms and pathways. Exp Eye Res 2021; 209:108693. [PMID: 34228967 PMCID: PMC11697408 DOI: 10.1016/j.exer.2021.108693] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022]
Abstract
Refractive eye development is a tightly coordinated developmental process. The general layout of the eye and its various components are established during embryonic development, which involves a complex cross-tissue signaling. The eye then undergoes a refinement process during the postnatal emmetropization process, which relies heavily on the integration of environmental and genetic factors and is controlled by an elaborate genetic network. This genetic network encodes a multilayered signaling cascade, which converts visual stimuli into molecular signals that guide the postnatal growth of the eye. The signaling cascade underlying refractive eye development spans across all ocular tissues and comprises multiple signaling pathways. Notably, tissue-tissue interaction plays a key role in both embryonic eye development and postnatal eye emmetropization. Recent advances in eye biometry, physiological optics and systems genetics of refractive error have significantly advanced our understanding of the biological processes involved in refractive eye development and provided a framework for the development of new treatment options for myopia. In this review, we summarize the recent data on the mechanisms and signaling pathways underlying refractive eye development and discuss new evidence suggesting a wide-spread signal integration across different tissues and ocular components involved in visually guided eye growth.
Collapse
Affiliation(s)
- Jody A Summers
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Frank Schaeffel
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany; Myopia Research Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Susana Marcos
- Instituto de Óptica "Daza de Valdés", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Hao Wu
- Department of Ophthalmology, Columbia University, New York, USA
| | - Andrei V Tkatchenko
- Department of Ophthalmology, Columbia University, New York, USA; Department of Pathology and Cell Biology, Columbia University, New York, USA.
| |
Collapse
|
35
|
Tkatchenko TV, Tkatchenko AV. Genetic network regulating visual acuity makes limited contribution to visually guided eye emmetropization. Genomics 2021; 113:2780-2792. [PMID: 34147636 DOI: 10.1016/j.ygeno.2021.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
During postnatal development, the eye undergoes a refinement process whereby optical defocus guides eye growth towards sharp vision in a process of emmetropization. Optical defocus activates a signaling cascade originating in the retina and propagating across the back of the eye to the sclera. Several observations suggest that visual acuity might be important for optical defocus detection and processing in the retina; however, direct experimental evidence supporting or refuting the role of visual acuity in refractive eye development is lacking. Here, we used genome-wide transcriptomics to determine the relative contribution of the retinal genetic network regulating visual acuity to the signaling cascade underlying visually guided eye emmetropization. Our results provide evidence that visual acuity is regulated at the level of molecular signaling in the retina by an extensive genetic network. The genetic network regulating visual acuity makes relatively small contribution to the signaling cascade underlying refractive eye development. This genetic network primarily affects baseline refractive eye development and this influence is primarily facilitated by the biological processes related to melatonin signaling, nitric oxide signaling, phototransduction, synaptic transmission, and dopamine signaling. We also observed that the visual-acuity-related genes associated with the development of human myopia are chiefly involved in light perception and phototransduction. Our results suggest that the visual-acuity-related genetic network primarily contributes to the signaling underlying baseline refractive eye development, whereas its impact on visually guided eye emmetropization is modest.
Collapse
Affiliation(s)
| | - Andrei V Tkatchenko
- Department of Ophthalmology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
36
|
Tkatchenko TV, Tkatchenko AV. Genome-wide analysis of retinal transcriptome reveals common genetic network underlying perception of contrast and optical defocus detection. BMC Med Genomics 2021; 14:153. [PMID: 34107987 PMCID: PMC8190860 DOI: 10.1186/s12920-021-01005-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Refractive eye development is regulated by optical defocus in a process of emmetropization. Excessive exposure to negative optical defocus often leads to the development of myopia. However, it is still largely unknown how optical defocus is detected by the retina. METHODS Here, we used genome-wide RNA-sequencing to conduct analysis of the retinal gene expression network underlying contrast perception and refractive eye development. RESULTS We report that the genetic network subserving contrast perception plays an important role in optical defocus detection and emmetropization. Our results demonstrate an interaction between contrast perception, the retinal circadian clock pathway and the signaling pathway underlying optical defocus detection. We also observe that the relative majority of genes causing human myopia are involved in the processing of optical defocus. CONCLUSIONS Together, our results support the hypothesis that optical defocus is perceived by the retina using contrast as a proxy and provide new insights into molecular signaling underlying refractive eye development.
Collapse
Affiliation(s)
| | - Andrei V. Tkatchenko
- Department of Ophthalmology, Columbia University, New York, NY USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY USA
- Edward S. Harkness Eye Institute, Research Annex Room 415, 635 W. 165th Street, New York, NY 10032 USA
| |
Collapse
|
37
|
Wen Y, Jin L, Zhang D, Zhang L, Xie C, Guo D, Wang Y, Wang L, Zhu M, Tong J, Shen Y. Quantitative proteomic analysis of scleras in guinea pig exposed to wavelength defocus. J Proteomics 2021; 243:104248. [PMID: 33964483 DOI: 10.1016/j.jprot.2021.104248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022]
Abstract
Myopia is the most common optical disorder in the world, and wavelength defocus induced ametropia and myopia have attracted great attention. The objective was to identify and quantify scleral proteins involved in the response to the wavelength defocus. Guinea pigs were randomly divided into 3 groups that received different lighting conditions for 8 weeks: white light, short wavelength light, and long wavelength light. Refraction and axial length were measured, Hematoxylin-Eosin staining and transmission electron microscope were adopted to observe the scleral structure, and scleral proteome was also detected to analyze protein abundance by employing TMT labeling method. After light stimulation, the long- and short -wavelength light induced myopic and hyperopic effect on the guinea pig's eye and induced distinct protein signature, respectively. 186 dyregulated proteins between the short- and long-wavelength group were identified, which were mainly located in extracellular region and involved in metabolic process. We also found that 5 proteins in the guinea pigs scleras in response to wavelength defocus were also human myopic candidate targets, suggesting functional overlap between dyregulated proteins in scleral upon exposure to wavelength defocus and genes causing myopia in humans. SIGNIFICANCE: Wavelength defocus induces refractive errors and leads to myopia or hyperopia. However, sclera proteomics respond to wavelength defocus is lacking, which is crucial to understanding how wavelength defocus influences refractive development and induces myopia. In this proteome analysis, we identified unique protein signatures response to wavelength defocus in sclera of guinea pigs, identified potential mechanisms contributing to myopia formation, and found that several human myopia-related genes may involve in response to wavelength defocus. The results of this study provide a foundation to understand the mechanisms of myopia and wavelength defocus induced ametropia.
Collapse
Affiliation(s)
- Yingying Wen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Le Jin
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Dongyan Zhang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Liyue Zhang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Chen Xie
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Dongyu Guo
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yang Wang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Liyin Wang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Miaomiao Zhu
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jianping Tong
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| | - Ye Shen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
38
|
Myelin regulatory factor deficiency is associated with the retinal photoreceptor defects in mice. Vis Neurosci 2021; 38:E005. [PMID: 33934732 DOI: 10.1017/s0952523821000043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previously, we reported the myelin regulatory factor (MYRF) as a candidate gene for nanophthalmos. We have also produced Myrf knockdown (Myrf+/-) mouse strain to investigate the cellular and molecular phenotypes of reduced MYRF expression in the retina. Myrf+/- mouse strain was generated using the CRISPR/Cas9 system. Optomotor response system, electroretinogram (ERG), spectral-domain optical coherence tomography (SD-OCT), histology, and immunohistochemistry were performed to evaluate retinal spatial vision, electrophysiological function, retinal thickness, and pathological changes in cone or rod photoreceptors, respectively. RNA sequencing (RNA-seq) was performed to investigate the underlying molecular mechanism linking Myrf deficiency with photoreceptor defects. The genotype and phenotype of CRISPR/Cas9-induced Myrf+/- mice and their offspring were comprehensively investigated. Photoreceptor defects were detected in the retinas of Myrf+/- mice. Visual acuity and ERG responses were decreased in Myrf+/- mice compared with the control mice (Myrf+/+). The loss of cone and rod neurons was proportional to the decreased outer nuclear layer (ONL) thickness. Moreover, RNA-seq revealed that phototransduction and estrogen signaling pathways played important roles in the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Myrf+/- mouse strain provides a good model to investigate the function of the MYRF gene. Photoreceptor defects with impaired functions of spatial vision and retinal electrophysiology indicate an important role played by MYRF in retinal development. Alterations in phototransduction and estrogen signaling pathways play important roles in linking Myrf deficiency with retinal photoreceptor defects.
Collapse
|
39
|
Bian J, Sze YH, Tse DYY, To CH, McFadden SA, Lam CSY, Li KK, Lam TC. SWATH Based Quantitative Proteomics Reveals Significant Lipid Metabolism in Early Myopic Guinea Pig Retina. Int J Mol Sci 2021; 22:4721. [PMID: 33946922 PMCID: PMC8124159 DOI: 10.3390/ijms22094721] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/14/2022] Open
Abstract
Most of the previous myopic animal studies employed a single-candidate approach and lower resolution proteomics approaches that were difficult to detect minor changes, and generated limited systems-wide biological information. Hence, a complete picture of molecular events in the retina involving myopic development is lacking. Here, to investigate comprehensive retinal protein alternations and underlying molecular events in the early myopic stage, we performed a data-independent Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH) based proteomic analysis coupled with different bioinformatics tools in pigmented guinea pigs after 4-day lens-induced myopia (LIM). Myopic eyes compared to untreated contralateral control eyes caused significant changes in refractive error and choroid thickness (p < 0.05, n = 5). Relative elongation of axial length and the vitreous chamber depth were also observed. Using pooled samples from all individuals (n = 10) to build a species-specific retinal ion library for SWATH analysis, 3202 non-redundant proteins (with 24,616 peptides) were identified at 1% global FDR. For quantitative analysis, the 10 individual retinal samples (5 pairs) were analyzed using a high resolution Triple-TOF 6600 mass spectrometry (MS) with technical replicates. In total, 37 up-regulated and 21 down-regulated proteins were found significantly changed after LIM treatment (log2 ratio (T/C) > 0.26 or < -0.26; p ≤ 0.05). Data are accepted via ProteomeXchange with identifier PXD025003. Through Ingenuity Pathways Analysis (IPA), "lipid metabolism" was found as the top function associated with the differentially expressed proteins. Based on the protein abundance and peptide sequences, expression patterns of two regulated proteins (SLC6A6 and PTGES2) identified in this pathway were further successfully validated with high confidence (p < 0.05) using a novel Multiple Reaction Monitoring (MRM) assay on a QTRAP 6500+ MS. In summary, through an integrated discovery and targeted proteomic approach, this study serves as the first report to detect and confirm novel retinal protein changes and significant biological functions in the early LIM mammalian guinea pigs. The study provides new workflow and insights for further research to myopia control.
Collapse
Affiliation(s)
- Jingfang Bian
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (J.B.); (Y.-H.S.); (D.Y.-Y.T.); (C.-H.T.); (C.S.-Y.L.); (K.-K.L.)
| | - Ying-Hon Sze
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (J.B.); (Y.-H.S.); (D.Y.-Y.T.); (C.-H.T.); (C.S.-Y.L.); (K.-K.L.)
| | - Dennis Yan-Yin Tse
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (J.B.); (Y.-H.S.); (D.Y.-Y.T.); (C.-H.T.); (C.S.-Y.L.); (K.-K.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Chi-Ho To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (J.B.); (Y.-H.S.); (D.Y.-Y.T.); (C.-H.T.); (C.S.-Y.L.); (K.-K.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Sally A. McFadden
- School of Psychology, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Carly Siu-Yin Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (J.B.); (Y.-H.S.); (D.Y.-Y.T.); (C.-H.T.); (C.S.-Y.L.); (K.-K.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - King-Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (J.B.); (Y.-H.S.); (D.Y.-Y.T.); (C.-H.T.); (C.S.-Y.L.); (K.-K.L.)
| | - Thomas Chuen Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (J.B.); (Y.-H.S.); (D.Y.-Y.T.); (C.-H.T.); (C.S.-Y.L.); (K.-K.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518052, China
| |
Collapse
|
40
|
Zhang XD, Wang CX, Jiang HH, Jing SL, Zhao JY, Yu ZY. Trends in research related to high myopia from 2010 to 2019: a bibliometric and knowledge mapping analysis. Int J Ophthalmol 2021; 14:589-599. [PMID: 33875953 DOI: 10.18240/ijo.2021.04.17] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
AIM To evaluate the global trends in and explore hotspots of high myopia (HM) research. METHODS This bibliometric analysis was used to reveal the publication trends in HM research field based on the Web of Science Core Collection (WoSCC). VOSviewer version 1.6.13 software was used to analyze the data and construct a knowledge map including the yearly publication number, journals, countries, international collaborations, authors, research hotspots, and intellectual base in HM. RESULTS The search engine found 3544 peer-reviewed publications on HM between 2010 and 2019, and the yearly research output substantially elevated over the past decade. China is the top publishing country, and Sun Yat-sen University was the most active academic institution. Jonas JB is the top publishing scientist, and Investigative Ophthalmology and Visual Science (IOVS) was the most productive journal. The highest cited references mainly focused on epidemiology and management. The keywords formed 6 clusters: 1) refractive surgery; 2) etiology and clinical characteristics; 3) the mechanism of eye growth; 4) management for myopic maculopathy; 5) vitrectomy surgical treatment; 6) myopia-associated glaucoma-like optic neuropathy. CONCLUSION The evaluation of development trends based on the data extracted from WoSCC can provide valuable information and guidance for ophthalmologists and public health researchers to improve management procedures in HM field.
Collapse
Affiliation(s)
- Xiao-Dan Zhang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University; Eye Hospital of China Medical University; Key Lens Research Laboratory of Liaoning Province, Shenyang 110005, Liaoning Province, China
| | - Chun-Xia Wang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University; Eye Hospital of China Medical University; Key Lens Research Laboratory of Liaoning Province, Shenyang 110005, Liaoning Province, China
| | - Hong-Hu Jiang
- China Medical University, Shenyang 110122, Liaoning Province, China
| | - Shuo-Lan Jing
- China Medical University, Shenyang 110122, Liaoning Province, China
| | - Jiang-Yue Zhao
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University; Eye Hospital of China Medical University; Key Lens Research Laboratory of Liaoning Province, Shenyang 110005, Liaoning Province, China
| | - Zi-Yan Yu
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University; Eye Hospital of China Medical University; Key Lens Research Laboratory of Liaoning Province, Shenyang 110005, Liaoning Province, China
| |
Collapse
|
41
|
Koli S, Labelle-Dumais C, Zhao Y, Paylakhi S, Nair KS. Identification of MFRP and the secreted serine proteases PRSS56 and ADAMTS19 as part of a molecular network involved in ocular growth regulation. PLoS Genet 2021; 17:e1009458. [PMID: 33755662 PMCID: PMC8018652 DOI: 10.1371/journal.pgen.1009458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 04/02/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Precise regulation of ocular size is a critical determinant of normal visual acuity. Although it is generally accepted that ocular growth relies on a cascade of signaling events transmitted from the retina to the sclera, the factors and mechanism(s) involved are poorly understood. Recent studies have highlighted the importance of the retinal secreted serine protease PRSS56 and transmembrane glycoprotein MFRP, a factor predominantly expressed in the retinal pigment epithelium (RPE), in ocular size determination. Mutations in PRSS56 and MFRP constitute a major cause of nanophthalmos, a condition characterized by severe reduction in ocular axial length/extreme hyperopia. Interestingly, common variants of these genes have been implicated in myopia, a condition associated with ocular elongation. Consistent with these findings, mice with loss of function mutation in PRSS56 or MFRP exhibit a reduction in ocular axial length. However, the molecular network and cellular processes involved in PRSS56- and MFRP-mediated ocular axial growth remain elusive. Here, we show that Adamts19 expression is significantly upregulated in the retina of mice lacking either Prss56 or Mfrp. Importantly, using genetic mouse models, we demonstrate that while ADAMTS19 is not required for ocular growth during normal development, its inactivation exacerbates ocular axial length reduction in Prss56 and Mfrp mutant mice. These results suggest that the upregulation of retinal Adamts19 is part of an adaptive molecular response to counteract impaired ocular growth. Using a complementary genetic approach, we show that loss of PRSS56 or MFRP function prevents excessive ocular axial growth in a mouse model of early-onset myopia caused by a null mutation in Irbp, thus, demonstrating that PRSS56 and MFRP are also required for pathological ocular elongation. Collectively, our findings provide new insights into the molecular network involved in ocular axial growth and support a role for molecular crosstalk between the retina and RPE involved in refractive development. During ocular refractive development, the eye’s growth is modulated, such that the ocular axial length matches the optical power enabling the eyes to achieve optimal focus. Alterations in ocular growth mainly contribute to refractive errors. Mutations in human PRSS56 and MFRP are responsible for nanophthalmos that exhibit a severe reduction in ocular axial length, and high hyperopia. Importantly, mutant mouse models lacking either Müller glia expressed PRSS56, or retinal pigment epithelium (RPE) localized MFRP exhibit ocular axial length reduction. Here, we have identified Adamts19 as a factor whose levels were significantly upregulated in the retina of mice lacking either Prss56 or Mfrp. Importantly, utilizing Adamts19 knockout mice we demonstrate that upregulation of retinal Adamts19 expression constitutes a compensatory mechanism that provides partial protection against ocular axial reduction due to mutation in Prss56 and Mfrp. Next, utilizing a mouse model of early-onset myopia, we demonstrate that the mutant Irbp induced ocular axial elongation is completely dependent on Prss56 as well as Mfrp, suggesting an interplay between Müller glia and RPE in the regulation of ocular axial growth. Collectively, these findings suggest that ocular refractive development relies on complex interactions occurring between genetic factors in the retina and RPE.
Collapse
Affiliation(s)
- Swanand Koli
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Cassandre Labelle-Dumais
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Yin Zhao
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Seyyedhassan Paylakhi
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - K. Saidas Nair
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
- Department of Anatomy, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
RNA-seq and GSEA identifies suppression of ligand-gated chloride efflux channels as the major gene pathway contributing to form deprivation myopia. Sci Rep 2021; 11:5280. [PMID: 33674625 PMCID: PMC7935918 DOI: 10.1038/s41598-021-84338-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
Currently there is no consensus regarding the aetiology of the excessive ocular volume that characterizes high myopia. Thus, we aimed to test whether the gene pathways identified by gene set enrichment analysis of RNA-seq transcriptomics refutes the predictions of the Retinal Ion Driven Efflux (RIDE) hypothesis when applied to the induction of form-deprivation myopia (FDM) and subsequent recovery (post-occluder removal). We found that the induction of profound FDM led to significant suppression in the ligand-gated chloride ion channel transport pathway via suppression of glycine, GABAA and GABAC ionotropic receptors. Post-occluder removal for short term recovery from FDM of 6 h and 24 h, induced significant upregulation of the gene families linked to cone receptor phototransduction, mitochondrial energy, and complement pathways. These findings support a model of form deprivation myopia as a Cl− ion driven adaptive fluid response to the modulation of the visual signal cascade by form deprivation that in turn affects the resultant ionic environment of the outer and inner retinal tissues, axial and vitreal elongation as predicted by the RIDE model. Occluder removal and return to normal light conditions led to return to more normal upregulation of phototransduction, slowed growth rate, refractive recovery and apparent return towards physiological homeostasis.
Collapse
|
43
|
Smith EL, Hung LF, She Z, Beach K, Ostrin LA, Jong M. Topically instilled caffeine selectively alters emmetropizing responses in infant rhesus monkeys. Exp Eye Res 2021; 203:108438. [PMID: 33428866 DOI: 10.1016/j.exer.2021.108438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 11/30/2022]
Abstract
Oral administration of the adenosine receptor (ADOR) antagonist, 7-methylxanthine (7-MX), reduces both form-deprivation and lens-induced myopia in mammalian animal models. We investigated whether topically instilled caffeine, another non-selective ADOR antagonist, retards vision-induced axial elongation in monkeys. Beginning at 24 days of age, a 1.4% caffeine solution was instilled in both eyes of 14 rhesus monkeys twice each day until the age of 135 days. Concurrent with the caffeine regimen, the monkeys were fitted with helmets that held either -3 D (-3D/pl caffeine, n = 8) or +3 D spectacle lenses (+3D/pl caffeine, n = 6) in front of their lens-treated eyes and zero-powered lenses in front of their fellow-control eyes. Refractive errors and ocular dimensions were measured at baseline and periodically throughout the lens-rearing period. Control data were obtained from 8 vehicle-treated animals also reared with monocular -3 D spectacles (-3D/pl vehicle). In addition, historical comparison data were available for otherwise untreated lens-reared controls (-3D/pl controls, n = 20; +3D/pl controls, n = 9) and 41 normal monkeys. The vehicle controls and the untreated lens-reared controls consistently developed compensating axial anisometropias (-3D/pl vehicle = -1.44 ± 1.04 D; -3D/pl controls = -1.85 ± 1.20 D; +3D/pl controls = +1.92 ± 0.56 D). The caffeine regime did not interfere with hyperopic compensation in response to +3 D of anisometropia (+1.93 ± 0.82 D), however, it reduced the likelihood that animals would compensate for -3 D of anisometropia (+0.58 ± 1.82 D). The caffeine regimen also promoted hyperopic shifts in both the lens-treated and fellow-control eyes; 26 of the 28 caffeine-treated eyes became more hyperopic than the median normal monkey (mean (±SD) relative hyperopia = +2.27 ± 1.65 D; range = +0.31 to +6.37 D). The effects of topical caffeine on refractive development, which were qualitatively similar to those produced by oral administration of 7-MX, indicate that ADOR antagonists have potential in treatment strategies for preventing and/or reducing myopia progression.
Collapse
Affiliation(s)
- Earl L Smith
- College of Optometry, University of Houston, Houston, TX, United States; Brien Holden Vision Institute, Sydney, Australia.
| | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX, United States; Brien Holden Vision Institute, Sydney, Australia
| | - Zhihui She
- College of Optometry, University of Houston, Houston, TX, United States
| | - Krista Beach
- College of Optometry, University of Houston, Houston, TX, United States
| | - Lisa A Ostrin
- College of Optometry, University of Houston, Houston, TX, United States
| | - Monica Jong
- Brien Holden Vision Institute, Sydney, Australia; Discipline of Optometry and Vision Science, University of Canberra, Canberra, Australia
| |
Collapse
|
44
|
Wang WY, Chen C, Chang J, Chien L, Shih YF, Lin LLK, Pang CP, Wang IJ. Pharmacotherapeutic candidates for myopia: A review. Biomed Pharmacother 2021; 133:111092. [PMID: 33378986 DOI: 10.1016/j.biopha.2020.111092] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 01/11/2023] Open
Abstract
This review provides insights into the mechanism underlying the pathogenesis of myopia and potential targets for clinical intervention. Although the etiology of myopia involves both environmental and genetic factors, recent evidence has suggested that the prevalence and severity of myopia appears to be affected more by environmental factors. Current pharmacotherapeutics are aimed at inhibiting environmentally induced changes in visual input and subsequent changes in signaling pathways during myopia pathogenesis and progression. Recent studies on animal models of myopia have revealed specific molecules potentially involved in the regulation of eye development. Among them, the dopamine receptor plays a critical role in controlling myopia. Subsequent studies have reported pharmacotherapeutic treatments to control myopia progression. In particular, atropine treatment yielded favorable outcomes and has been extensively used; however, current studies are aimed at optimizing its efficacy and confirming its safety. Furthermore, future studies are required to assess the efficacy of combinatorial use of low-dose atropine and contact lenses or orthokeratology.
Collapse
Affiliation(s)
- Wen-Yi Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Camille Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Justine Chang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Lillian Chien
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Feng Shih
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Luke L K Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, KLN, Hong Kong, China.
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
45
|
Abstract
Myopia, also known as short-sightedness or near-sightedness, is a very common condition that typically starts in childhood. Severe forms of myopia (pathologic myopia) are associated with a risk of other associated ophthalmic problems. This disorder affects all populations and is reaching epidemic proportions in East Asia, although there are differences in prevalence between countries. Myopia is caused by both environmental and genetic risk factors. A range of myopia management and control strategies are available that can treat this condition, but it is clear that understanding the factors involved in delaying myopia onset and slowing its progression will be key to reducing the rapid rise in its global prevalence. To achieve this goal, improved data collection using wearable technology, in combination with collection and assessment of data on demographic, genetic and environmental risk factors and with artificial intelligence are needed. Improved public health strategies focusing on early detection or prevention combined with additional effective therapeutic interventions to limit myopia progression are also needed.
Collapse
|
46
|
Watts NS, Taylor C, Rucker FJ. Temporal color contrast guides emmetropization in chick. Exp Eye Res 2020; 202:108331. [PMID: 33152390 DOI: 10.1016/j.exer.2020.108331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022]
Abstract
As a result of longitudinal chromatic aberration (LCA), longer wavelengths are blurred when shorter wavelengths are in focus, and vice versa. As a result, LCA affects the color and temporal aspects of the retinal image with hyperopic defocus. In this experiment, we investigated how the sensitivity to temporal color contrast affects emmetropization. Ten-day-old chicks were exposed for three days to sinusoidal color modulation. The modulation was either blue/yellow flicker (BY) (n = 57) or red/green flicker (RG) (n = 60) simulating hyperopic defocus with and without a blue light component. The color contrasts tested were 0.1, 0.2, 0.3, 0.4, 0.6, and 0.8 Michelson contrast. The mean illuminance of all stimuli was 680 lux. Temporal modulation was either of a high (10 Hz) or low (0.2 Hz) temporal frequency. To test the role of short- and double-cone stimulation, an additional condition silenced these cones in RG_0.4 (D-) and was compared with RG_0.4 (D+) (n = 14). Changes in ocular components and refractive error were measured using Lenstar and a photorefractometer. With high temporal frequency BY representing an in-focus condition for shorter-wavelengths, we found that high temporal frequency BY contrast was positively correlated with vitreous expansion (R2 = 0.87, p < 0.01), expanding the vitreous to compensate for hyperopic defocus. This expansion was offset by low temporal frequency RG, which represented blurred longer wavelengths. The reduction in vitreous expansion in RG_0.4, was enhanced in D+ compared to D- (p < 0.001), indicating a role for short- and/or double-cones. With high temporal frequency RG representing an in-focus condition for longer-wavelengths, we found that high temporal frequency RG contrast was also positively correlated with a linear increase in vitreous chamber depth (R2 = 0.84, p < 0.01) and eye length (R2 = 0.30, p ≤ 0.05), required to compensate for hyperopic defocus, but also with RG sensitive choroidal thickening (R2 = 0.18: p < 0.0001). These increases in the vitreous and eye length were enhanced with D+ compared to D- (p = 0.003) showing the role of short- and double-cones in finessing the vitreous response to hyperopic defocus. Overall, the increase in vitreous chamber depth in RG was offset by reduced expansion in BY, indicating sensitivity to the shorter focal length of blue light and wavelength defocus. Predictable changes in cone contrast and temporal frequency of the retinal image that occur with LCA and defocus result in homeostatic control of emmetropization.
Collapse
Affiliation(s)
- Nathaniel S Watts
- New England College of Optometry, 424 Beacon Street, Boston, MA, 02115, USA
| | - Christopher Taylor
- New England College of Optometry, 424 Beacon Street, Boston, MA, 02115, USA
| | - Frances J Rucker
- New England College of Optometry, 424 Beacon Street, Boston, MA, 02115, USA.
| |
Collapse
|
47
|
Sánchez-González JM, De-Hita-Cantalejo C, Baustita-Llamas MJ, Sánchez-González MC, Capote-Puente R. The Combined Effect of Low-dose Atropine with Orthokeratology in Pediatric Myopia Control: Review of the Current Treatment Status for Myopia. J Clin Med 2020; 9:E2371. [PMID: 32722266 PMCID: PMC7465046 DOI: 10.3390/jcm9082371] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/30/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Pediatric myopia has become a major international public health concern. The prevalence of myopia has undergone a significant increase worldwide. The purpose of this review of the current literature was to evaluate the peer-reviewed scientific literature on the efficacy and safety of low-dose atropine treatment combined with overnight orthokeratology for myopia control. A search was conducted in Pubmed and Web of Science with the following search strategy: (atropine OR low-dose atropine OR 0.01% atropine) AND (orthokeratology OR ortho-k) AND (myopia control OR myopia progression). All included studies improved myopia control by the synergistic effect of orthokeratology with low-dose atropine, compared with orthokeratology treatment alone. All studies included a short or medium follow-up period; therefore longer-term studies are necessary to validate these results.
Collapse
Affiliation(s)
- José-María Sánchez-González
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41012 Seville, Spain; (C.D.-H.-C.); (M.-J.B.-L.); (M.C.S.-G.); (R.C.-P.)
- Department of Ophthalmology & Optometry, Tecnolaser Clinic Vision, 41018 Seville, Spain
| | - Concepción De-Hita-Cantalejo
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41012 Seville, Spain; (C.D.-H.-C.); (M.-J.B.-L.); (M.C.S.-G.); (R.C.-P.)
| | - María-José Baustita-Llamas
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41012 Seville, Spain; (C.D.-H.-C.); (M.-J.B.-L.); (M.C.S.-G.); (R.C.-P.)
| | - María Carmen Sánchez-González
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41012 Seville, Spain; (C.D.-H.-C.); (M.-J.B.-L.); (M.C.S.-G.); (R.C.-P.)
| | - Raúl Capote-Puente
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41012 Seville, Spain; (C.D.-H.-C.); (M.-J.B.-L.); (M.C.S.-G.); (R.C.-P.)
| |
Collapse
|
48
|
Zhang Y, Azmoun S, Hang A, Zeng J, Eng E, Wildsoet CF. Retinal defocus and form-deprivation induced regional differential gene expression of bone morphogenetic proteins in chick retinal pigment epithelium. J Comp Neurol 2020; 528:2864-2873. [PMID: 32452548 DOI: 10.1002/cne.24957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
We previously reported bidirectional gene expression regulation of the Bone Morphogenetic Proteins (BMP2, 4, and 7) in chick retinal pigment epithelium (RPE) in response to imposed optical defocus and form-deprivation (FD). This study investigated whether there are local (regional) differences in these effects. 19-day old White-Leghorn chicks wore monocular +10 or - 10 D lenses, or diffusers (FD) for 2 or 48 hr, after which RPE samples were collected from both eyes, from a central circular zone (3 mm radius), and 3 mm wide annular mid-peripheral and peripheral zones in all cases. BMP2, 4, and 7 gene expression levels in RPE from treated and fellow control eyes were compared as well as differences across zones. With the +10 D lens, increased expression of both BMP2 and BMP4 genes was observed in central and mid-peripheral zones but not the peripheral zone after 2 and 48 hr. In contrast, with the -10 D lens BMP2 gene expression was significantly decreased in all three zones after 2 and 48 hr. Similar patterns of BMP2 gene expression were observed in all three zones after 48 hr of FD. Smaller changes were recorded for BMP4 and BMP7 gene expression for both myopia-inducing treatments. That optical defocus- and FD-induced changes in BMP gene expression in chick RPE show treatment-dependent local (regional) differences suggest important differences in the nature and contributions of local retinal and underlying RPE regions to eye growth regulation.
Collapse
Affiliation(s)
- Yan Zhang
- School of Optometry, University of California, Berkeley, California, USA
| | - Sara Azmoun
- School of Optometry, University of California, Berkeley, California, USA
| | - Abraham Hang
- School of Optometry, University of California, Berkeley, California, USA
| | - Jiexi Zeng
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Emily Eng
- School of Optometry, University of California, Berkeley, California, USA
| | | |
Collapse
|
49
|
Stone RA, Wei W, Sarfare S, McGeehan B, Engelhart KC, Khurana TS, Maguire MG, Iuvone PM, Nickla DL. Visual Image Quality Impacts Circadian Rhythm-Related Gene Expression in Retina and in Choroid: A Potential Mechanism for Ametropias. Invest Ophthalmol Vis Sci 2020; 61:13. [PMID: 32396635 PMCID: PMC7405616 DOI: 10.1167/iovs.61.5.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Stimulated by evidence implicating diurnal/circadian rhythms and light in refractive development, we studied the expression over 24 hours of selected clock and circadian rhythm-related genes in retina/retinal pigment epithelium (RPE) and choroid of experimental ametropias in chicks. Methods Newly hatched chicks, entrained to a 12-hour light/dark cycle for 12 to 14 days, either experienced nonrestricted vision OU (i.e., in both eyes) or received an image-blurring diffuser or a minus 10-diopter (D) or a plus 10-D defocusing lens over one eye. Starting 1 day later and at 4-hour intervals for 24 hours, the retina/RPE and choroid were separately dissected. Without pooling, total RNA was extracted, converted to cDNA, and assayed by quantitative PCR for the expression of the following genes: Opn4m, Clock, Npas2, Per3, Cry1, Arntl, and Mtnr1a. Results The expression of each gene in retina/RPE and in choroid of eyes with nonrestricted vision OU varied over 24 hours, with equal levels OU for most genes and times. Altered visual input influenced gene expression in complex patterns that varied by gene, visual input, time, and eye, affecting experimental eyes with altered vision and also contralateral eyes with nonrestricted vision. Discussion Altering visual input in ways known to induce ametropias alters the retinal/RPE and choroidal expression of circadian rhythm-related genes, further linking circadian biology with eye growth regulation. While further investigations are needed, studying circadian processes may help understand refractive mechanisms and the increasing myopia prevalence in contemporary societies where lighting patterns can desynchronize endogenous rhythms from the natural environmental light/dark cycle.
Collapse
Affiliation(s)
- Richard A. Stone
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Wenjie Wei
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Shanta Sarfare
- Department of Bioscience, New England College of Optometry, Boston, Massachusetts, United States
| | - Brendan McGeehan
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - K. Cameron Engelhart
- Department of Bioscience, New England College of Optometry, Boston, Massachusetts, United States
| | - Tejvir S. Khurana
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Maureen G. Maguire
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - P. Michael Iuvone
- Departments of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Debora L. Nickla
- Department of Bioscience, New England College of Optometry, Boston, Massachusetts, United States
| |
Collapse
|
50
|
Cristaldi M, Olivieri M, Pezzino S, Spampinato G, Lupo G, Anfuso CD, Rusciano D. Atropine Differentially Modulates ECM Production by Ocular Fibroblasts, and Its Ocular Surface Toxicity Is Blunted by Colostrum. Biomedicines 2020; 8:biomedicines8040078. [PMID: 32260532 PMCID: PMC7236597 DOI: 10.3390/biomedicines8040078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/15/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
Background: The etiology and the mechanism behind atropine treatment of progressive myopia are still poorly understood. Our study addressed the role of scleral and choroidal fibroblasts in myopia development and atropine function. Methods: Fibroblasts treated in vitro with atropine or 7-methylxanthine were tested for ECM production by Western blotting. Corneal epithelial cells were treated with atropine in the presence or absence of colostrum or fucosyl-lactose, and cell survival was evaluated by the MTT metabolic test. Results: Atropine and 7-methyl-xanthine stimulated collagen I and fibronectin production in scleral fibroblasts, while they inhibited their production in choroidal fibroblasts. Four days of treatment with atropine of corneal epithelial cells significantly decreased cell viability, which could be prevented by the presence of colostrum or fucosyl-lactose. Conclusions: Our results show that atropine may function in different ways in different eye districts, strengthening the scleral ECM and increasing permeability in the choroid. The finding that colostrum or fucosyl-lactose attenuate the corneal epithelial toxicity after long-term atropine treatment suggests the possibility that both compounds can efficiently blunt its toxicity in children subjected to chronic atropine treatment.
Collapse
Affiliation(s)
- Martina Cristaldi
- Research Center, Sooft Italia SpA c/o Biologic Tower, University of Catania, 95123 Catania, Italy; (M.C.); (M.O.); (S.P.); (G.S.)
| | - Melania Olivieri
- Research Center, Sooft Italia SpA c/o Biologic Tower, University of Catania, 95123 Catania, Italy; (M.C.); (M.O.); (S.P.); (G.S.)
| | - Salvatore Pezzino
- Research Center, Sooft Italia SpA c/o Biologic Tower, University of Catania, 95123 Catania, Italy; (M.C.); (M.O.); (S.P.); (G.S.)
| | - Giorgia Spampinato
- Research Center, Sooft Italia SpA c/o Biologic Tower, University of Catania, 95123 Catania, Italy; (M.C.); (M.O.); (S.P.); (G.S.)
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, Biologic Tower, University of Catania, 95123 Catania, Italy;
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, Biologic Tower, University of Catania, 95123 Catania, Italy;
- Correspondence: (C.D.A.); (D.R.)
| | - Dario Rusciano
- Research Center, Sooft Italia SpA c/o Biologic Tower, University of Catania, 95123 Catania, Italy; (M.C.); (M.O.); (S.P.); (G.S.)
- Correspondence: (C.D.A.); (D.R.)
| |
Collapse
|