1
|
Lv J, Liang S, Qin P, Liu X, Ge X, Guo Y, Xia S, Jing W, Lu Y, Zhang T, Li H. WWC1 mutation drives dopamine dysregulation and synaptic imbalance in Tourette's syndrome. SCIENCE ADVANCES 2025; 11:eadr4588. [PMID: 40153501 PMCID: PMC11952098 DOI: 10.1126/sciadv.adr4588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025]
Abstract
Tourette's syndrome (TS) is a major neurodevelopmental disorder characterized by childhood-onset motor and vocal tics. A W88C mutation in WWC1 gene is a notable risk factor for TS, but the underlying molecular mechanisms remain unclear due to the lack of suitable animal models. Here, we generate a mutant mouse line with human W88C mutation (W88CMut mice), which exhibits behavioral deficits similar to those observed in patients with TS, including repetitive motor behaviors and sensorimotor gating abnormalities. The W88C mutation leads to the degradation of kidney and brain (KIBRA) protein via a proteasomal pathway, evokes dopamine release in the dorsal striatum, and disrupts synaptic function through the dysregulation of Hippo pathway. Neuron-specific overexpression of wild-type WWC1 rescues synaptic and behavioral phenotypes in W88CMut mice. Together, this study not only provides a valuable mouse model for studying TS but also offers fresh insights into the molecular and synaptic mechanisms underlying neurodevelopmental abnormalities in TS.
Collapse
Affiliation(s)
- Junkai Lv
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiqi Liang
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengwei Qin
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinlu Liu
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangyu Ge
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiqing Guo
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shili Xia
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Jing
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youming Lu
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China
| | - Tongmei Zhang
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Histology and embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Li
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Wen Y, Yang X, Li S, Huang L, Chen J, Tan L, Ma X, Zhu Y, Li Z, Shan C, Zhang C, Zhang Q, Liang M, Zhang H, Liu T. Targeting CDK4/6 suppresses colorectal cancer by destabilizing YAP1. MedComm (Beijing) 2025; 6:e70103. [PMID: 39968498 PMCID: PMC11832431 DOI: 10.1002/mco2.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025] Open
Abstract
Colorectal cancer (CRC) is among the most prevalent and deadly cancers worldwide. The Yes-associated protein 1 (YAP1) is frequently dysregulated in cancers, contributing to cancer stemness, chemoresistance, and cancer-related death. However, strategies directly targeting YAP1 have not yet been successful because of the lack of active binding pockets and unregulated toxicity. In this study, our Food and Drug Administration (FDA)-approved drug screening reveals that abemaciclib, a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor, dramatically promotes the proteasome-dependent degradation of YAP1, thereby inhibiting tumor progression in CRC cells and patient-derived xenograft models. We further identify deubiquitinating enzyme 3 (DUB3) as the bona fide deubiquitinase of YAP1 in CRC. Mechanistically, CDK4/6 directly phosphorylates DUB3 at Ser41, activating DUB3 to deubiquitinate and stabilize YAP1. Conversely, loss of Ser41 phosphorylation by CDK4/6 inhibition or Ser41A mutation, promotes YAP1 degradation and suppresses YAP1-driven tumor progression. Histological analysis shows a positive correlation between DUB3 and YAP1 expression in CRC specimens. Collectively, our study uncovers a novel oncogenic role of the CDK4/6-DUB3 pathway, which promotes YAP1 stabilization and tumor-promoting function, highlighting that targeting CDK4/6 offers a potential therapeutic strategy for CRC with aberrantly upregulated DUB3 and YAP1.
Collapse
Affiliation(s)
- Yalei Wen
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of PharmacyJinan UniversityGuangzhouChina
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of PharmacyJinan UniversityGuangzhouChina
| | - Xiao Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of PharmacyJinan UniversityGuangzhouChina
| | - Shengrong Li
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of PharmacyJinan UniversityGuangzhouChina
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of PharmacyJinan UniversityGuangzhouChina
| | - Lei Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of PharmacyJinan UniversityGuangzhouChina
| | - Jiayi Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of PharmacyJinan UniversityGuangzhouChina
| | - Lirong Tan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of PharmacyJinan UniversityGuangzhouChina
| | - Xiuqing Ma
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of PharmacyJinan UniversityGuangzhouChina
| | - Yingjie Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of PharmacyJinan UniversityGuangzhouChina
| | - Zhengqiu Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of PharmacyJinan UniversityGuangzhouChina
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical CenterNankai UniversityTianjinChina
| | - Qiushi Zhang
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of PharmacyJinan UniversityGuangzhouChina
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General HospitalJinan UniversityGuangzhouChina
| | - Mingchao Liang
- The Affiliated Shunde Hospital of Jinan UniversityFoshanChina
| | - Haoxing Zhang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Tongzheng Liu
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of PharmacyJinan UniversityGuangzhouChina
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
3
|
Ajongbolo AO, Langhans SA. YAP/TAZ-associated cell signaling - at the crossroads of cancer and neurodevelopmental disorders. Front Cell Dev Biol 2025; 13:1522705. [PMID: 39936032 PMCID: PMC11810912 DOI: 10.3389/fcell.2025.1522705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
YAP/TAZ (Yes-associated protein/paralog transcriptional co-activator with PDZ-binding domain) are transcriptional cofactors that are the key and major downstream effectors of the Hippo signaling pathway. Both are known to play a crucial role in defining cellular outcomes, including cell differentiation, cell proliferation, and apoptosis. Aside from the canonical Hippo signaling cascade with the key components MST1/2 (mammalian STE20-like kinase 1/2), SAV1 (Salvador homologue 1), MOB1A/B (Mps one binder kinase activator 1A/B) and LATS1/2 (large tumor suppressor kinase 1/2) upstream of YAP/TAZ, YAP/TAZ activation is also influenced by numerous other signaling pathways. Such non-canonical regulation of YAP/TAZ includes well-known growth factor signaling pathways such as the epidermal growth factor receptor (EGFR)/ErbB family, Notch, and Wnt signaling as well as cell-cell adhesion, cell-matrix interactions and mechanical cues from a cell's microenvironment. This puts YAP/TAZ at the center of a complex signaling network capable of regulating developmental processes and tissue regeneration. On the other hand, dysregulation of YAP/TAZ signaling has been implicated in numerous diseases including various cancers and neurodevelopmental disorders. Indeed, in recent years, parallels between cancer development and neurodevelopmental disorders have become apparent with YAP/TAZ signaling being one of these pathways. This review discusses the role of YAP/TAZ in brain development, cancer and neurodevelopmental disorders with a special focus on the interconnection in the role of YAP/TAZ in these different conditions.
Collapse
Affiliation(s)
- Aderonke O. Ajongbolo
- Division of Neurology and Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE, United States
- Biological Sciences Graduate Program, University of Delaware, Newark, DE, United States
| | - Sigrid A. Langhans
- Division of Neurology and Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE, United States
| |
Collapse
|
4
|
Wang Y, Wang Y, Zhu Y, Yu P, Zhou F, Zhang A, Gu Y, Jin R, Li J, Zheng F, Yu A, Ye D, Xu Y, Liu YJ, Saw TB, Hu G, Lim CT, Yu FX. Angiomotin cleavage promotes leader formation and collective cell migration. Dev Cell 2025; 60:101-118.e7. [PMID: 39389053 DOI: 10.1016/j.devcel.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/22/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Collective cell migration (CCM) is involved in multiple biological processes, including embryonic morphogenesis, angiogenesis, and cancer invasion. However, the molecular mechanisms underlying CCM, especially leader cell formation, are poorly understood. Here, we show that a signaling pathway regulating angiomotin (AMOT) cleavage plays a role in CCM, using mammalian epithelial cells and mouse models. In a confluent epithelial monolayer, full-length AMOT localizes at cell-cell junctions and limits cell motility. After cleavage, the C-terminal fragment of AMOT (AMOT-CT) translocates to the cell-matrix interface to promote the maturation of focal adhesions (FAs), generate traction force, and induce leader cell formation. Meanwhile, decreased full-length AMOT at cell-cell junctions leads to tissue fluidization and coherent migration of cell collectives. Hence, the cleavage of AMOT serves as a molecular switch to generate polarized contraction, promoting leader cell formation and CCM.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yebin Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yuwen Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Pengcheng Yu
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Fanhui Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Anlan Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yuan Gu
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ruxin Jin
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jin Li
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Fengyun Zheng
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Aijuan Yu
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Dan Ye
- Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yan-Jun Liu
- Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Thuan Beng Saw
- Research Center for Industries of the Future and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China; Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Dunham TL, Wilkerson JR, Johnson RC, Huganir RL, Volk LJ. WWC2 modulates GABA A-receptor-mediated synaptic transmission, revealing class-specific mechanisms of synapse regulation by WWC family proteins. Cell Rep 2024; 43:114841. [PMID: 39388350 PMCID: PMC11913214 DOI: 10.1016/j.celrep.2024.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/22/2024] [Accepted: 09/21/2024] [Indexed: 10/12/2024] Open
Abstract
The WW and C2 domain-containing protein (WWC2) is implicated in several neurological disorders. Here, we demonstrate that WWC2 interacts with inhibitory, but not excitatory, postsynaptic scaffolds, consistent with prior proteomic identification of WWC2 as a putative component of the inhibitory postsynaptic density. Using mice lacking WWC2 expression in excitatory forebrain neurons, we show that WWC2 suppresses γ-aminobutyric acid type-A receptor (GABAAR) incorporation into the plasma membrane and regulates HAP1 and GRIP1, which form a complex promoting GABAAR recycling to the membrane. Inhibitory synaptic transmission is increased in CA1 pyramidal cells lacking WWC2. Furthermore, unlike the WWC2 homolog KIBRA (kidney/brain protein; WWC1), a key regulator of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking at excitatory synapses, the deletion of WWC2 does not affect synaptic AMPAR expression. In contrast, loss of KIBRA does not affect GABAAR membrane expression. These data reveal synapse class-selective functions for WWC proteins as regulators of ionotropic neurotransmitter receptors and provide insight into mechanisms regulating GABAAR membrane expression.
Collapse
Affiliation(s)
- Thomas L Dunham
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julia R Wilkerson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Richard C Johnson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lenora J Volk
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Psychiatry UT Southwestern Medical Center, Dallas, TX 75390, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
González-Fernández R, Martín-Ramírez R, Maeso MDC, Lázaro A, Ávila J, Martín-Vasallo P, Morales M. Changes in AmotL2 Expression in Cells of the Human Enteral Nervous System in Oxaliplatin-Induced Enteric Neuropathy. Biomedicines 2024; 12:1952. [PMID: 39335466 PMCID: PMC11429461 DOI: 10.3390/biomedicines12091952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Gastrointestinal (GI) toxicity is a common side effect in patients undergoing oxaliplatin (OxPt)-based chemotherapy for colorectal cancer (CRC). Frequently, this complication persists in the long term and could affect the efficacy of the treatment and the patient's life quality. This long-term GI toxicity is thought to be related to OxPt-induced enteral neuropathy. AmotL2 is a member of the Angiomotin family of proteins, which play a role in cell survival, neurite outgrowth, synaptic maturation, oxidative stress protection, and inflammation. In order to assess the role of AmotL2 in OxPt-induced enteral neuropathy, we studied the expression of AmotL2 in cells of the enteric nervous system (ENS) of untreated and OxPt-treated CRC patients and its relationship with inflammation, using immunofluorescence confocal microscopy. Our results in human samples show that the total number of neurons and glial cells decreased in OxPt-treated patients, and TNF-α and AmotL2 expression was increased and colocalized in both neurons and glia. AmotL2 differential expression between OxPt-treated and untreated CRC patients shows the involvement of this scaffold protein in the inflammatory component and toxicity by OxPt in the ENS.
Collapse
Affiliation(s)
- Rebeca González-Fernández
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, Av. Astrofísico Sánchez s/n, 38206 San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, C/Sta. María de la Soledad, Sección Medicina, 38071 San Cristóbal de La Laguna, Spain
| | - Rita Martín-Ramírez
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, Av. Astrofísico Sánchez s/n, 38206 San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, C/Sta. María de la Soledad, Sección Medicina, 38071 San Cristóbal de La Laguna, Spain
| | - María-Del-Carmen Maeso
- Servicio de Patología, Hospital Universitario Nuestra Señora de la Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Alberto Lázaro
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, Av. Astrofísico Sánchez s/n, 38206 San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, C/Sta. María de la Soledad, Sección Medicina, 38071 San Cristóbal de La Laguna, Spain
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, Av. Astrofísico Sánchez s/n, 38206 San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, C/Sta. María de la Soledad, Sección Medicina, 38071 San Cristóbal de La Laguna, Spain
| | - Manuel Morales
- Servicio de Oncología Médica, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| |
Collapse
|
7
|
Wang Y, Yu FX. Angiomotin family proteins in the Hippo signaling pathway. Bioessays 2024; 46:e2400076. [PMID: 38760875 DOI: 10.1002/bies.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The Motin family proteins (Motins) are a class of scaffolding proteins consisting of Angiomotin (AMOT), AMOT-like protein 1 (AMOTL1), and AMOT-like protein 2 (AMOTL2). Motins play a pivotal role in angiogenesis, tumorigenesis, and neurogenesis by modulating multiple cellular signaling pathways. Recent findings indicate that Motins are components of the Hippo pathway, a signaling cascade involved in development and cancer. This review discusses how Motins are integrated into the Hippo signaling network, as either upstream regulators or downstream effectors, to modulate cell proliferation and migration. The repression of YAP/TAZ by Motins contributes to growth inhibition, whereas subcellular localization of Motins and their interactions with actin fibers are critical in regulating cell migration. The net effect of Motins on cell proliferation and migration may contribute to their diverse biological functions.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Andrade P, Alves JM, Pereira P, Rubin CJ, Silva E, Sprehn CG, Enbody E, Afonso S, Faria R, Zhang Y, Bonino N, Duckworth JA, Garreau H, Letnic M, Strive T, Thulin CG, Queney G, Villafuerte R, Jiggins FM, Ferrand N, Andersson L, Carneiro M. Selection against domestication alleles in introduced rabbit populations. Nat Ecol Evol 2024; 8:1543-1555. [PMID: 38907020 DOI: 10.1038/s41559-024-02443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Humans have moved domestic animals around the globe for thousands of years. These have occasionally established feral populations in nature, often with devastating ecological consequences. To understand how natural selection shapes re-adaptation into the wild, we investigated one of the most successful colonizers in history, the European rabbit. By sequencing the genomes of 297 rabbits across three continents, we show that introduced populations exhibit a mixed wild-domestic ancestry. We show that alleles that increased in frequency during domestication were preferentially selected against in novel natural environments. Interestingly, causative mutations for common domestication traits sometimes segregate at considerable frequencies if associated with less drastic phenotypes (for example, coat colour dilution), whereas mutations that are probably strongly maladaptive in nature are absent. Whereas natural selection largely targeted different genomic regions in each introduced population, some of the strongest signals of parallelism overlap genes associated with neuronal or brain function. This limited parallelism is probably explained by extensive standing genetic variation resulting from domestication together with the complex mixed ancestry of introduced populations. Our findings shed light on the selective and molecular mechanisms that enable domestic animals to re-adapt to the wild and provide important insights for the mitigation and management of invasive populations.
Collapse
Affiliation(s)
- Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
| | - Joel M Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Palaeogenomics and Bio-Archaeology Research Network Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Paulo Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Institute of Marine Research, Bergen, Norway
| | - Eugénio Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - C Grace Sprehn
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Erik Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Yexin Zhang
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Never Bonino
- Estación Experimental Bariloche, Instituto Nacional de Tecnología Agropecuaria, Casilla de Correo Bariloche, Argentina
| | - Janine A Duckworth
- Wildlife Ecology and Management Group, Manaaki Whenua - Landcare Research, Lincoln, New Zealand
- Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Hervé Garreau
- GenPhySE, Université de Toulouse, Castanet-Tolosan, France
| | - Mike Letnic
- Centre for Ecosystem Science, School of BEES, University of New South Wales, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, School of BEES, University of New South Wales, Sydney, New South Wales, Australia
| | - Tanja Strive
- Centre for Invasive Species Solutions, University of Canberra, Bruce, Australian Capital Territory, Australia
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australian Capital Territory, Australia
| | - Carl-Gustaf Thulin
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Guillaume Queney
- ANTAGENE, Wildlife Genetics Laboratory, La Tour de Salvagny, France
| | | | | | - Nuno Ferrand
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Department of Zoology, Faculty of Sciences, University of Johannesburg, Auckland Park, South Africa
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
| |
Collapse
|
9
|
Wang H, Ye M, Jin X. Role of angiomotin family members in human diseases (Review). Exp Ther Med 2024; 27:258. [PMID: 38766307 PMCID: PMC11099588 DOI: 10.3892/etm.2024.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/23/2023] [Indexed: 05/22/2024] Open
Abstract
Angiomotin (Amot) family members, including Amot, Amot-like protein 1 (Amotl1) and Amot-like protein 2 (Amotl2), have been found to interact with angiostatins. In addition, Amot family members are involved in various physiological and pathological functions such as embryonic development, angiogenesis and tumorigenesis. Some studies have also demonstrated its regulation in signaling pathways such as the Hippo signaling pathway, AMPK signaling pathway and mTOR signaling pathways. Amot family members play an important role in neural stem cell differentiation, dendritic formation and synaptic maturation. In addition, an increasing number of studies have focused on their function in promoting and/or suppressing cancer, but the underlying mechanisms remain to be elucidated. The present review integrated relevant studies on upstream regulation and downstream signals of Amot family members, as well as the latest progress in physiological and pathological functions and clinical applications, hoping to offer important ideas for further research.
Collapse
Affiliation(s)
- Haoyun Wang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Radiotherapy, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Radiotherapy, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Radiotherapy, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
10
|
Zhong Z, Jiao Z, Yu FX. The Hippo signaling pathway in development and regeneration. Cell Rep 2024; 43:113926. [PMID: 38457338 DOI: 10.1016/j.celrep.2024.113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
The Hippo signaling pathway is a central growth control mechanism in multicellular organisms. By integrating diverse mechanical, biochemical, and stress cues, the Hippo pathway orchestrates proliferation, survival, differentiation, and mechanics of cells, which in turn regulate organ development, homeostasis, and regeneration. A deep understanding of the regulation and function of the Hippo pathway therefore holds great promise for developing novel therapeutics in regenerative medicine. Here, we provide updates on the molecular organization of the mammalian Hippo signaling network, review the regulatory signals and functional outputs of the pathway, and discuss the roles of Hippo signaling in development and regeneration.
Collapse
Affiliation(s)
- Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
11
|
Kalinowski D, Bogus-Nowakowska K, Kozłowska A, Równiak M. The Co-Expression Pattern of Calcium-Binding Proteins with γ-Aminobutyric Acid and Glutamate Transporters in the Amygdala of the Guinea Pig: Evidence for Glutamatergic Subpopulations. Int J Mol Sci 2023; 24:15025. [PMID: 37834473 PMCID: PMC10573686 DOI: 10.3390/ijms241915025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
The amygdala has large populations of neurons utilizing specific calcium-binding proteins such as parvalbumin (PV), calbindin (CB), or calretinin (CR). They are considered specialized subsets of γ-aminobutyric acid (GABA) interneurons; however, many of these cells are devoid of GABA or glutamate decarboxylase. The neurotransmitters used by GABA-immunonegative cells are still unknown, but it is suggested that a part may use glutamate. Thus, this study investigates in the amygdala of the guinea pig relationships between PV, CB, or CR-containing cells and GABA transporter (VGAT) or glutamate transporter type 2 (VGLUT2), markers of GABAergic and glutamatergic neurons, respectively. The results show that although most neurons using PV, CB, and CR co-expressed VGAT, each of these populations also had a fraction of VGLUT2 co-expressing cells. For almost all neurons using PV (~90%) co-expressed VGAT, while ~1.5% of them had VGLUT2. The proportion of neurons using CB and VGAT was smaller than that for PV (~80%), while the percentage of cells with VGLUT2 was larger (~4.5%). Finally, only half of the neurons using CR (~53%) co-expressed VGAT, while ~3.5% of them had VGLUT2. In conclusion, the populations of neurons co-expressing PV, CB, and CR are in the amygdala, primarily GABAergic. However, at least a fraction of neurons in each of them co-express VGLUT2, suggesting that these cells may use glutamate. Moreover, the number of PV-, CB-, and CR-containing neurons that may use glutamate is probably larger as they can utilize VGLUT1 or VGLUT3, which are also present in the amygdala.
Collapse
Affiliation(s)
- Daniel Kalinowski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland; (K.B.-N.); (M.R.)
| | - Krystyna Bogus-Nowakowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland; (K.B.-N.); (M.R.)
| | - Anna Kozłowska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland;
| | - Maciej Równiak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland; (K.B.-N.); (M.R.)
| |
Collapse
|
12
|
Cui W, Subramani A, Fonseca P, Zhang Y, Tong L, Zhang Y, Egevad L, Lundqvist A, Holmgren L. Deciphering the Role of p60AmotL2 in Epithelial Extrusion and Cell Detachment. Cells 2023; 12:2158. [PMID: 37681890 PMCID: PMC10486482 DOI: 10.3390/cells12172158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/09/2023] Open
Abstract
Preserving an accurate cell count is crucial for maintaining homeostasis. Apical extrusion, a process in which redundant cells are eliminated by neighboring cells, plays a key role in this regard. Recent studies have revealed that apical extrusion can also be triggered in cells transformed by oncogenes, suggesting it may be a mechanism through which tumor cells escape their microenvironment. In previous work, we demonstrated that p60AmotL2 modulates the E-cadherin function by inhibiting its connection to radial actin filaments. This isoform of AmotL2 is expressed in invasive breast and colon tumors and promotes invasion in vitro and in vivo. Transcriptionally regulated by c-Fos, p60AmotL2 is induced by local stress signals such as severe hypoxia. In this study, we investigated the normal role of p60AmotL2 in epithelial tissues. We found that this isoform is predominantly expressed in the gut, where cells experience rapid turnover. Through time-lapse imaging, we present evidence that cells expressing p60AmotL2 are extruded by their normal neighboring cells. Based on these findings, we hypothesize that tumor cells exploit this pathway to detach from normal epithelia and invade surrounding tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lars Holmgren
- Department of Oncology-Pathology, Bioclinicum J6:20, Solnavägen 30, Karolinska Institutet, 171 64 Stockholm, Sweden (L.E.)
| |
Collapse
|
13
|
Honda D, Okumura M, Chihara T. Crosstalk between the mTOR and Hippo pathways. Dev Growth Differ 2023; 65:337-347. [PMID: 37209252 DOI: 10.1111/dgd.12867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Cell behavior changes in response to multiple stimuli, such as growth factors, nutrients, and cell density. The mechanistic target of the rapamycin (mTOR) pathway is activated by growth factors and nutrient stimuli to regulate cell growth and autophagy, whereas the Hippo pathway has negative effects on cell proliferation and tissue growth in response to cell density, DNA damage, and hormonal signals. These two signaling pathways must be precisely regulated and integrated for proper cell behavior. This integrative mechanism is not completely understood; nevertheless, recent studies have suggested that components of the mTOR and Hippo pathways interact with each other. Herein, as per contemporary knowledge, we review the molecular mechanisms of the interaction between the mTOR and Hippo pathways in mammals and Drosophila. Moreover, we discuss the advantage of this interaction in terms of tissue growth and nutrient consumption.
Collapse
Affiliation(s)
- Daichi Honda
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
14
|
Cao R, Zhu R, Sha Z, Qi S, Zhong Z, Zheng F, Lei Y, Tan Y, Zhu Y, Wang Y, Wang Y, Yu FX. WWC1/2 regulate spinogenesis and cognition in mice by stabilizing AMOT. Cell Death Dis 2023; 14:491. [PMID: 37528078 PMCID: PMC10394084 DOI: 10.1038/s41419-023-06020-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
WWC1 regulates episodic learning and memory, and genetic nucleotide polymorphism of WWC1 is associated with neurodegenerative diseases such as Alzheimer's disease. However, the molecular mechanism through which WWC1 regulates neuronal function has not been fully elucidated. Here, we show that WWC1 and its paralogs (WWC2/3) bind directly to angiomotin (AMOT) family proteins (Motins), and recruit USP9X to deubiquitinate and stabilize Motins. Deletion of WWC genes in different cell types leads to reduced protein levels of Motins. In mice, neuron-specific deletion of Wwc1 and Wwc2 results in reduced expression of Motins and lower density of dendritic spines in the cortex and hippocampus, in association with impaired cognitive functions such as memory and learning. Interestingly, ectopic expression of AMOT partially rescues the neuronal phenotypes associated with Wwc1/2 deletion. Thus, WWC proteins modulate spinogenesis and cognition, at least in part, by regulating the protein stability of Motins.
Collapse
Affiliation(s)
- Runyi Cao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhao Sha
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Sixian Qi
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fengyun Zheng
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yubin Lei
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanfeng Tan
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuwen Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399 Wanyuan Road, Shanghai, 201102, China.
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
15
|
Wei X, Huang G, Liu J, Ge J, Zhang W, Mei Z. An update on the role of Hippo signaling pathway in ischemia-associated central nervous system diseases. Biomed Pharmacother 2023; 162:114619. [PMID: 37004330 DOI: 10.1016/j.biopha.2023.114619] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The most frequent reason of morbidity and mortality in the world, cerebral ischemia sets off a chain of molecular and cellular pathologies that associated with some central nervous system (CNS) disorders mainly including ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy and other CNS diseases. In recent times, despite significant advancements in the treatment of the pathological processes underlying various neurological illnesses, effective therapeutic approaches that are specifically targeted to minimizing the damage of such diseases remain absent. Hippo signaling pathway, characterized by enzyme linked reactions between MSTI/2, LAST1/2, and YAP or TAZ proteins, controls cell division, survival, and differentiation, as well as being engaged in a variety of biological activities, such as the development and transformation of the nervous system. Recently, accumulating studies demonstrated that Hippo pathway takes part in the processes of ischemic stroke, AD, PD, etc., including but not limited to oxidative stress, inflammatory response, blood-brain barrier damage, mitochondrial disorders, and neural cells death. Thus, it's crucial to understand the molecular basis of the Hippo signaling pathway for determining potential new therapeutic targets against ischemia-associated CNS diseases. Here, we discuss latest advances in the deciphering of the Hippo signaling pathway and highlight the therapeutic potential of targeting the pathway in treating ischemia-associated CNS diseases.
Collapse
|
16
|
Salah N, Eissa S, Mansour A, El Magd NMA, Hasanin AH, El Mahdy MM, Hassan MK, Matboli M. Evaluation of the role of kefir in management of non-alcoholic steatohepatitis rat model via modulation of NASH linked mRNA-miRNA panel. Sci Rep 2023; 13:236. [PMID: 36604518 PMCID: PMC9816104 DOI: 10.1038/s41598-022-27353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is the clinically aggressive variant of non-alcoholic fatty liver disease. Hippo pathway dysregulation can contribute to NASH development and progression. The use of probiotics is effective in NASH management. Our aim is to investigate the efficacy of kefir Milk in NASH management via modulation of hepatic mRNA-miRNA based panel linked to NAFLD/NASH Hippo signaling and gut microbita regulated genes which was identified using bioinformatics tools. Firstly, we analyzed mRNAs (SOX11, SMAD4 and AMOTL2), and their epigenetic regulator (miR-6807) followed by validation of target effector proteins (TGFB1, IL6 and HepPar1). Molecular, biochemical, and histopathological, analyses were used to evaluate the effects of kefir on high sucrose high fat (HSHF) diet -induced NASH in rats. We found that administration of Kefir proved to prevent steatosis and development of the inflammatory component of NASH. Moreover, Kefir improved liver function and lipid panel. At the molecular level, kefir down-regulated the expression of miR 6807-5p with subsequent increase in the expression of SOX 11, AMOTL2 associated with downregulated SMAD4, resulting in reduction in the expression of the inflammatory and fibrotic markers, IL6 and TGF-β1 in the treated and prophylactic groups compared to the untreated rats. In conclusion, Kefir suppressed NASH progression and improved both fibrosis and hepatic inflammation. The produced effect was correlated with modulation of SOX11, SMAD4 and AMOTL2 mRNAs) - (miR-6807-5p) - (TGFB, IL6 and, HepPar1) expression.
Collapse
Affiliation(s)
- Noha Salah
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box 11381, Cairo, Egypt
| | - Sanaa Eissa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box 11381, Cairo, Egypt.
- MASRI institute of research, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Amal Mansour
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box 11381, Cairo, Egypt
| | - Nagwa M Abo El Magd
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amany Helmy Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Manal M El Mahdy
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Kamel Hassan
- Department of Biology, Faculty of Science, Port Said University, Port Said, Egypt
- Center for Genomics, Helmy Institute for Medical Science, Zewail City for Science & Technology, Giza, Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box 11381, Cairo, Egypt.
| |
Collapse
|
17
|
Terry BK, Kim S. The Role of Hippo-YAP/TAZ Signaling in Brain Development. Dev Dyn 2022; 251:1644-1665. [PMID: 35651313 DOI: 10.1002/dvdy.504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 11/08/2022] Open
Abstract
In order for our complex nervous system to develop normally, both precise spatial and temporal regulation of a number of different signaling pathways is critical. During both early embryogenesis and in organ development, one pathway that has been repeatedly implicated is the Hippo-YAP/TAZ signaling pathway. The paralogs YAP and TAZ are transcriptional co-activators that play an important role in cell proliferation, cell differentiation, and organ growth. Regulation of these proteins by the Hippo kinase cascade is therefore important for normal development. In this article, we review the growing field of research surrounding the role of Hippo-YAP/TAZ signaling in normal and atypical brain development. Starting from the development of the neural tube to the development and refinement of the cerebral cortex, cerebellum, and ventricular system, we address the typical role of these transcriptional co-activators, the functional consequences that manipulation of YAP/TAZ and their upstream regulators have on brain development, and where further research may be of benefit. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bethany K Terry
- Shriners Hospitals Pediatrics Research Center, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA.,Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Seonhee Kim
- Shriners Hospitals Pediatrics Research Center, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| |
Collapse
|
18
|
Hippo signaling pathway and respiratory diseases. Cell Death Dis 2022; 8:213. [PMID: 35443749 PMCID: PMC9021242 DOI: 10.1038/s41420-022-01020-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022]
Abstract
The hippo signaling pathway is a highly conserved evolutionary signaling pathway that plays an important role in regulating cell proliferation, organ size, tissue development, and regeneration. Increasing evidences consider that the hippo signaling pathway is involved in the process of respiratory diseases. Hippo signaling pathway is mainly composed of mammalian STE20-like kinase 1/2 (MST1/2), large tumor suppressor 1/2 (LATS1/2), WW domain of the Sav family containing protein 1 (SAV1), MOB kinase activator 1 (MOB1), Yes-associated protein (YAP) or transcriptional coactivator with PDZ-binding motif (TAZ), and members of the TEA domain (TEAD) family. YAP is the cascade effector of the hippo signaling pathway. The activation of YAP promotes pulmonary arterial vascular smooth muscle cells (PAVSMCs) proliferation, which leads to pulmonary vascular remodeling; thereby the pulmonary arterial hypertension (PAH) is aggravated. While the loss of YAP leads to high expression of inflammatory genes and the accumulation of inflammatory cells, the pneumonia is consequently exacerbated. In addition, overexpressed YAP promotes the proliferation of lung fibroblasts and collagen deposition; thereby the idiopathic pulmonary fibrosis (IPF) is promoted. Moreover, YAP knockout reduces collagen deposition and the senescence of adult alveolar epithelial cells (AECs); hence the IPF is slowed. In addition, hippo signaling pathway may be involved in the repair of acute lung injury (ALI) by promoting the proliferation and differentiation of lung epithelial progenitor cells and intervening in the repair of pulmonary capillary endothelium. Moreover, the hippo signaling pathway is involved in asthma. In conclusion, the hippo signaling pathway is involved in respiratory diseases. More researches are needed to focus on the molecular mechanisms by which the hippo signaling pathway participates in respiratory diseases.
Collapse
|
19
|
Miller LR, Tarantini S, Nyúl-Tóth Á, Johnston MP, Martin T, Bullen EC, Bickel MA, Sonntag WE, Yabluchanskiy A, Csiszar A, Ungvari ZI, Elliott MH, Conley SM. Increased Susceptibility to Cerebral Microhemorrhages Is Associated With Imaging Signs of Microvascular Degeneration in the Retina in an Insulin-Like Growth Factor 1 Deficient Mouse Model of Accelerated Aging. Front Aging Neurosci 2022; 14:788296. [PMID: 35356301 PMCID: PMC8959924 DOI: 10.3389/fnagi.2022.788296] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/31/2022] [Indexed: 01/21/2023] Open
Abstract
Age-related cerebrovascular defects contribute to vascular cognitive impairment and dementia (VCID) as well as other forms of dementia. There has been great interest in developing biomarkers and other tools for studying cerebrovascular disease using more easily accessible tissues outside the brain such as the retina. Decreased circulating insulin-like growth factor 1 (IGF-1) levels in aging are thought to contribute to the development of cerebrovascular impairment, a hypothesis that has been supported by the use of IGF-1 deficient animal models. Here we evaluate vascular and other retinal phenotypes in animals with circulating IGF-1 deficiency and ask whether the retina mimics common age-related vascular changes in the brain such as the development of microhemorrhages. Using a hypertension-induced model, we confirm that IGF-1 deficient mice exhibited worsened microhemorrhages than controls. The retinas of IGF-1 deficient animals do not exhibit microhemorrhages but do exhibit signs of vascular damage and retinal stress such as patterns of vascular constriction and Müller cell activation. These signs of retinal stress are not accompanied by retinal degeneration or impaired neuronal function. These data suggest that the role of IGF-1 in the retina is complex, and while IGF-1 deficiency leads to vascular defects in both the brain and the retina, not all brain pathologies are evident in the retina.
Collapse
Affiliation(s)
- Lauren R. Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Morgan P. Johnston
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Teryn Martin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Elizabeth C. Bullen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - William E. Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan I. Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Michael H. Elliott
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
20
|
Terry BK, Park R, Cho SH, Crino PB, Kim S. Abnormal activation of Yap/Taz contributes to the pathogenesis of tuberous sclerosis complex. Hum Mol Genet 2022; 31:1979-1996. [PMID: 34999833 PMCID: PMC9239747 DOI: 10.1093/hmg/ddab374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/31/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023] Open
Abstract
The multi-systemic genetic disorder tuberous sclerosis complex (TSC) impacts multiple neurodevelopmental processes including neuronal morphogenesis, neuronal migration, myelination and gliogenesis. These alterations contribute to the development of cerebral cortex abnormalities and malformations. Although TSC is caused by mTORC1 hyperactivation, cognitive and behavioral impairments are not improved through mTORC1 targeting, making the study of the downstream effectors of this complex important for understanding the mechanisms underlying TSC. As mTORC1 has been shown to promote the activity of the transcriptional co-activator Yap, we hypothesized that altered Yap/Taz signaling contributes to the pathogenesis of TSC. We first observed that the levels of Yap/Taz are increased in human cortical tuber samples and in embryonic cortices of Tsc2 conditional knockout (cKO) mice. Next, to determine how abnormal upregulation of Yap/Taz impacts the neuropathology of TSC, we deleted Yap/Taz in Tsc2 cKO mice. Importantly, Yap/Taz/Tsc2 triple conditional knockout (tcKO) animals show reduced cortical thickness and cortical neuron cell size, despite the persistence of high mTORC1 activity, suggesting that Yap/Taz play a downstream role in cytomegaly. Furthermore, Yap/Taz/Tsc2 tcKO significantly restored cortical and hippocampal lamination defects and reduced hippocampal heterotopia formation. Finally, the loss of Yap/Taz increased the distribution of myelin basic protein in Tsc2 cKO animals, consistent with an improvement in myelination. Overall, our results indicate that targeting Yap/Taz lessens the severity of neuropathology in a TSC animal model. This study is the first to implicate Yap/Taz as contributors to cortical pathogenesis in TSC and therefore as potential novel targets in the treatment of this disorder.
Collapse
Affiliation(s)
- Bethany K Terry
- Department of Neural Sciences, Lewis Katz School of Medicine, Shriners Hospitals Pediatrics Research Center, Temple University, Philadelphia, PA 19140, USA,Biomedical Sciences Graduate Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Raehee Park
- Department of Neural Sciences, Lewis Katz School of Medicine, Shriners Hospitals Pediatrics Research Center, Temple University, Philadelphia, PA 19140, USA
| | - Seo-Hee Cho
- Department of Medicine, Sidney Kimmel Medical College, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Seonhee Kim
- To whom correspondence should be addressed. Tel: 215-926-9360; Fax: 215-926-9325;
| |
Collapse
|
21
|
Wu S, Yang M, Kim P, Zhou X. ADeditome provides the genomic landscape of A-to-I RNA editing in Alzheimer's disease. Brief Bioinform 2021; 22:bbaa384. [PMID: 33401309 PMCID: PMC8424397 DOI: 10.1093/bib/bbaa384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/08/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
A-to-I RNA editing, contributing to nearly 90% of all editing events in human, has been reported to involve in the pathogenesis of Alzheimer's disease (AD) due to its roles in brain development and immune regulation, such as the deficient editing of GluA2 Q/R related to cell death and memory loss. Currently, there are urgent needs for the systematic annotations of A-to-I RNA editing events in AD. Here, we built ADeditome, the annotation database of A-to-I RNA editing in AD available at https://ccsm.uth.edu/ADeditome, aiming to provide a resource and reference for functional annotation of A-to-I RNA editing in AD to identify therapeutically targetable genes in an individual. We detected 1676 363 editing sites in 1524 samples across nine brain regions from ROSMAP, MayoRNAseq and MSBB. For these editing events, we performed multiple functional annotations including identification of specific and disease stage associated editing events and the influence of editing events on gene expression, protein recoding, alternative splicing and miRNA regulation for all the genes, especially for AD-related genes in order to explore the pathology of AD. Combing all the analysis results, we found 108 010 and 26 168 editing events which may promote or inhibit AD progression, respectively. We also found 5582 brain region-specific editing events with potentially dual roles in AD across different brain regions. ADeditome will be a unique resource for AD and drug research communities to identify therapeutically targetable editing events. Significance: ADeditome is the first comprehensive resource of the functional genomics of individual A-to-I RNA editing events in AD, which will be useful for many researchers in the fields of AD pathology, precision medicine, and therapeutic researches.
Collapse
Affiliation(s)
- Sijia Wu
- School of Life Science and Technology, Xidian University, Xi'an, China
| | | | | | | |
Collapse
|
22
|
Yang M, Ke Y, Kim P, Zhou X. ExonSkipAD provides the functional genomic landscape of exon skipping events in Alzheimer's disease. Brief Bioinform 2021; 22:bbaa438. [PMID: 33497435 PMCID: PMC8425305 DOI: 10.1093/bib/bbaa438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Exon skipping (ES), the most common alternative splicing event, has been reported to contribute to diverse human diseases due to the loss of functional domains/sites or frameshifting of the open reading frame (ORF) and noticed as therapeutic targets. Accumulating transcriptomic studies of aging brains show the splicing disruption is a widespread hallmark of neurodegenerative diseases such as Alzheimer's disease (AD). Here, we built ExonSkipAD, the ES annotation database aiming to provide a resource/reference for functional annotation of ES events in AD and identify therapeutic targets in exon units. We identified 16 414 genes that have ~156 K, ~ 69 K, ~ 231 K ES events from the three representative AD cohorts of ROSMAP, MSBB and Mayo, respectively. For these ES events, we performed multiple functional annotations relating to ES mechanisms or downstream. Specifically, through the functional feature retention studies followed by the open reading frames (ORFs), we identified 275 important cellular regulators that might lose their cellular regulator roles due to exon skipping in AD. ExonSkipAD provides twelve categories of annotations: gene summary, gene structures and expression levels, exon skipping events with PSIs, ORF annotation, exon skipping events in the canonical protein sequence, 3'-UTR located exon skipping events lost miRNA-binding sites, SNversus in the skipped exons with a depth of coverage, AD stage-associated exon skipping events, splicing quantitative trait loci (sQTLs) in the skipped exons, correlation with RNA-binding proteins, and related drugs & diseases. ExonSkipAD will be a unique resource of transcriptomic diversity research for understanding the mechanisms of neurodegenerative disease development and identifying potential therapeutic targets in AD. Significance AS the first comprehensive resource of the functional genomics of the alternative splicing events in AD, ExonSkipAD will be useful for many researchers in the fields of pathology, AD genomics and precision medicine, and pharmaceutical and therapeutic researches.
Collapse
|
23
|
Zhang Y, Zhang Y, Kameishi S, Barutello G, Zheng Y, Tobin NP, Nicosia J, Hennig K, Chiu DKC, Balland M, Barker TH, Cavallo F, Holmgren L. The Amot/integrin protein complex transmits mechanical forces required for vascular expansion. Cell Rep 2021; 36:109616. [PMID: 34433061 DOI: 10.1016/j.celrep.2021.109616] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Vascular development is a complex multistep process involving the coordination of cellular functions such as migration, proliferation, and differentiation. How mechanical forces generated by cells and transmission of these physical forces control vascular development is poorly understood. Using an endothelial-specific genetic model in mice, we show that deletion of the scaffold protein Angiomotin (Amot) inhibits migration and expansion of the physiological and pathological vascular network. We further show that Amot is required for tip cell migration and the extension of cellular filopodia. Exploiting in vivo and in vitro molecular approaches, we show that Amot binds Talin and is essential for relaying forces between fibronectin and the cytoskeleton. Finally, we provide evidence that Amot is an important component of the endothelial integrin adhesome and propose that Amot integrates spatial cues from the extracellular matrix to form a functional vascular network.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Yumeng Zhang
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Sumako Kameishi
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Yujuan Zheng
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Nicholas P Tobin
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - John Nicosia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katharina Hennig
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Saint Martin d'Hères Cedex, 38402, France
| | - David Kung-Chun Chiu
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Saint Martin d'Hères Cedex, 38402, France
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Lars Holmgren
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden.
| |
Collapse
|
24
|
Li X, Li K, Chen Y, Fang F. The Role of Hippo Signaling Pathway in the Development of the Nervous System. Dev Neurosci 2021; 43:263-270. [PMID: 34350875 DOI: 10.1159/000515633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/26/2021] [Indexed: 11/19/2022] Open
Abstract
Hippo signaling pathway is a highly conserved and crucial signaling pathway that controls the size of tissues and organs by regulating the proliferation, differentiation, and apoptosis of cells. The nervous system is a complicated system that participates in information collection, integration, and procession. The balance of various aspects of the nervous system is vital for the normal regulation of physiological conditions of the body, like the population and distribution of nerve cells, nerve connections, and so on. Defects in these aspects may lead to cognitive, behavioral, and neurological dysfunction, resulting in various nervous system diseases. Recently, accumulating evidence proposes that Hippo pathway maintains numerous biological functions in the nervous system development, including modulating the proliferation and differentiation of nerve cells and promoting the development of synapse, corpus callosum, and cortex. In this review, we will summarize recent findings of Hippo pathway in the nervous system to improve our understanding on its function and to provide potential therapeutic strategies of nervous system diseases in the future.
Collapse
Affiliation(s)
- Xifan Li
- Department of Human Anatomy, School of Basic Medicine Sciences, Guilin Medical University, Guilin, China
| | - Kaixuan Li
- Department of Human Anatomy, School of Basic Medicine Sciences, Guilin Medical University, Guilin, China
| | - Yu Chen
- Department of Human Anatomy, School of Basic Medicine Sciences, Guilin Medical University, Guilin, China
| | - Fang Fang
- Department of Human Anatomy, School of Basic Medicine Sciences, Guilin Medical University, Guilin, China
| |
Collapse
|
25
|
Panizzutti B, Bortolasci CC, Spolding B, Kidnapillai S, Connor T, Richardson MF, Truong TTT, Liu ZSJ, Morris G, Gray L, Hyun Kim J, Dean OM, Berk M, Walder K. Transcriptional Modulation of the Hippo Signaling Pathway by Drugs Used to Treat Bipolar Disorder and Schizophrenia. Int J Mol Sci 2021; 22:7164. [PMID: 34281223 PMCID: PMC8268913 DOI: 10.3390/ijms22137164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Recent reports suggest a link between positive regulation of the Hippo pathway with bipolar disorder (BD), and the Hippo pathway is known to interact with multiple other signaling pathways previously associated with BD and other psychiatric disorders. In this study, neuronal-like NT2 cells were treated with amisulpride (10 µM), aripiprazole (0.1 µM), clozapine (10 µM), lamotrigine (50 µM), lithium (2.5 mM), quetiapine (50 µM), risperidone (0.1 µM), valproate (0.5 mM), or vehicle control for 24 h. Genome-wide mRNA expression was quantified and analyzed using gene set enrichment analysis (GSEA), with genes belonging to Hippo, Wnt, Notch, TGF- β, and Hedgehog retrieved from the KEGG database. Five of the eight drugs downregulated the genes of the Hippo pathway and modulated several genes involved in the interacting pathways. We speculate that the regulation of these genes, especially by aripiprazole, clozapine, and quetiapine, results in a reduction of MAPK and NFκB pro-inflammatory signaling through modulation of Hippo, Wnt, and TGF-β pathways. We also employed connectivity map analysis to identify compounds that act on these pathways in a similar manner to the known psychiatric drugs. Thirty-six compounds were identified. The presence of antidepressants and antipsychotics validates our approach and reveals possible new targets for drug repurposing.
Collapse
Affiliation(s)
- Bruna Panizzutti
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Chiara C. Bortolasci
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Briana Spolding
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Srisaiyini Kidnapillai
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Timothy Connor
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Mark F. Richardson
- Genomics Centre, School of Life and Environmental Sciences, Deakin University, Burwood 3125, Australia;
| | - Trang T. T. Truong
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Zoe S. J. Liu
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Gerwyn Morris
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Laura Gray
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
| | - Jee Hyun Kim
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Olivia M. Dean
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
| | - Michael Berk
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville 3052, Australia
- Centre of Youth Mental Health, University of Melbourne, Parkville 3052, Australia
- Orygen Youth Health Research Centre, Parkville 3052, Australia
| | - Ken Walder
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| |
Collapse
|
26
|
Pérez-Martín E, Muñoz-Castañeda R, Moutin MJ, Ávila-Zarza CA, Muñoz-Castañeda JM, Del Pilar C, Alonso JR, Andrieux A, Díaz D, Weruaga E. Oleoylethanolamide Delays the Dysfunction and Death of Purkinje Cells and Ameliorates Behavioral Defects in a Mouse Model of Cerebellar Neurodegeneration. Neurotherapeutics 2021; 18:1748-1767. [PMID: 33829414 PMCID: PMC8609004 DOI: 10.1007/s13311-021-01044-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/04/2023] Open
Abstract
Oleoylethanolamide (OEA) is an endocannabinoid that has been proposed to prevent neuronal damage and neuroinflammation. In this study, we evaluated the effects of OEA on the disruption of both cerebellar structure and physiology and on the behavior of Purkinje cell degeneration (PCD) mutant mice. These mice exhibit cerebellar degeneration, displaying microtubule alterations that trigger the selective loss of Purkinje cells and consequent behavioral impairments. The effects of different doses (1, 5, and 10 mg/kg, i.p.) and administration schedules (chronic and acute) of OEA were assessed at the behavioral, histological, cellular, and molecular levels to determine the most effective OEA treatment regimen. Our in vivo results demonstrated that OEA treatment prior to the onset of the preneurodegenerative phase prevented morphological alterations in Purkinje neurons (the somata and dendritic arbors) and decreased Purkinje cell death. This effect followed an inverted U-shaped time-response curve, with acute administration on postnatal day 12 (10 mg/kg, i.p.) being the most effective treatment regimen tested. Indeed, PCD mice that received this specific OEA treatment regimen showed improvements in motor, cognitive and social functions, which were impaired in these mice. Moreover, these in vivo neuroprotective effects of OEA were mediated by the PPARα receptor, as pretreatment with the PPARα antagonist GW6471 (2.5 mg/kg, i.p.) abolished them. Finally, our in vitro results suggested that the molecular effect of OEA was related to microtubule stability and structure since OEA administration normalized some alterations in microtubule features in PCD-like cells. These findings provide strong evidence supporting the use of OEA as a pharmacological agent to limit severe cerebellar neurodegenerative processes.
Collapse
Affiliation(s)
- Ester Pérez-Martín
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Rodrigo Muñoz-Castañeda
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Marie-Jo Moutin
- GIN, Univ. Grenoble Alpes, CNRS, CEA, Grenoble Institute Neurosciences, Inserm, U121638000, Grenoble, France
| | - Carmelo A Ávila-Zarza
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
- Department of Statistics, University of Salamanca, 37007, Salamanca, Spain
| | - José M Muñoz-Castañeda
- Department of Theoretical, Atomic and Optical Physics, University of Valladolid, 47071, Valladolid, Spain
| | - Carlos Del Pilar
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - José R Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
- Universidad de Tarapacá, Arica, Chile
| | - Annie Andrieux
- GIN, Univ. Grenoble Alpes, CNRS, CEA, Grenoble Institute Neurosciences, Inserm, U121638000, Grenoble, France
| | - David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
27
|
Akhshi T, Trimble WS. A non-canonical Hedgehog pathway initiates ciliogenesis and autophagy. J Cell Biol 2021; 220:211568. [PMID: 33258871 PMCID: PMC7714386 DOI: 10.1083/jcb.202004179] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/19/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Primary cilia function as critical signaling hubs whose absence leads to severe disorders collectively known as ciliopathies; our knowledge of ciliogenesis remains limited. We show that Smo induces ciliogenesis through two distinct yet essential noncanonical Hh pathways in several cell types, including neurons. Surprisingly, ligand activation of Smo induces autophagy via an LKB1-AMPK axis to remove the satellite pool of OFD1. This is required, but not sufficient, for ciliogenesis. Additionally, Smo activates the Gαi-LGN-NuMA-dynein axis, causing accumulation of a portion of OFD1 at centrioles in early ciliogenesis. Both pathways are critical for redistribution of BBS4 from satellites to centrioles, which is also mediated by OFD1 centriolar translocation. Notably, different Smo agonists, which activate Smo distinctly, activate one or the other of these pathways; only in combination they recapitulate the activity of Hh ligand. These studies provide new insight into physiological stimuli (Hh) that activate autophagy and promote ciliogenesis and introduce a novel role for the Gαi-LGN-NuMA-dynein complex in this process.
Collapse
Affiliation(s)
- Tara Akhshi
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - William S Trimble
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
28
|
Zeng W, Zhang C, Long Q, Li Y. Dexmedetomidine Alleviates LPS-Induced Neuronal Dysfunction by Modulating the AKT/GSK-3β/CRMP-2 Pathway in Hippocampal Neurons. Neuropsychiatr Dis Treat 2021; 17:671-680. [PMID: 33727816 PMCID: PMC7955869 DOI: 10.2147/ndt.s297365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Dexmedetomidine, an α2-adrenergic receptor agonist, mitigates cognitive dysfunction in elderly patients after surgery with general anesthesia. However, the underlying mechanism by which dexmedetomidine reduces cognitive dysfunction remains to be fully elucidated. The aim of this study was to investigate the effects of dexmedetomidine on lipopolysaccharide (LPS)-induced neuronal dysfunction in cultured hippocampal neurons. METHODS LPS, in the presence and absence of dexmedetomidine, was applied to cultured hippocampal neurons to mimic post-surgical inflammation. Neuronal morphology, including neurite outgrowth and synaptic transmission, was observed, and miniature excitatory postsynaptic currents were recorded by electrophysiological patch-clamp. RESULTS LPS significantly impaired neurite outgrowth in hippocampal neurons in a concentration- and time-dependent manner, which was reversed by dexmedetomidine treatment. Electrophysiological patch-clamp results showed that LPS induced synaptic transmission dysfunction, which was restored after dexmedetomidine addition. Furthermore, Western blotting assays showed that LPS suppressed the AKT/GSK-3β/CRMP-2 signaling pathway and dexmedetomidine countered the inhibitory effect of LPS by re-activating this pathway. CONCLUSION In general, dexmedetomidine protected against the effects of LPS-induced hippocampal neuron damage, including neurite outgrowth and synaptic transmission. Overall, dexmedetomidine modulated the AKT/GSK-3β/CRMP-2 signaling pathway to alleviate LPS-induced neurological dysfunction.
Collapse
Affiliation(s)
- Wei Zeng
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China.,Department of Anesthesiology, Affiliated Boai Hospital of Zhongshan, Southern Medical University, Zhongshan, 528400, Guangdong, People's Republic of China
| | - Chunyuan Zhang
- Department of Anesthesiology, Affiliated Boai Hospital of Zhongshan, Southern Medical University, Zhongshan, 528400, Guangdong, People's Republic of China
| | - Qingshan Long
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, People's Republic of China
| | - Yalan Li
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| |
Collapse
|
29
|
Sahu MR, Mondal AC. Neuronal Hippo signaling: From development to diseases. Dev Neurobiol 2020; 81:92-109. [PMID: 33275833 DOI: 10.1002/dneu.22796] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/18/2020] [Accepted: 11/27/2020] [Indexed: 01/12/2023]
Abstract
Hippo signaling pathway is a highly conserved and familiar tissue growth regulator, primarily dealing with cell survival, cell proliferation, and apoptosis. The Yes-associated protein (YAP) is the key transcriptional effector molecule, which is under negative regulation of the Hippo pathway. Wealth of studies have identified crucial roles of Hippo/YAP signaling pathway during the process of development, including the development of neuronal system. We provide here, an overview of the contributions of this signaling pathway at multiple stages of neuronal development including, proliferation of neural stem cells (NSCs), migration of NSCs toward their destined niche, maintaining NSCs in the quiescent state, differentiation of NSCs into neurons, neuritogenesis, synaptogenesis, brain development, and in neuronal apoptosis. Hyperactivation of the neuronal Hippo pathway can also lead to a variety of devastating neurodegenerative diseases. Instances of aberrant Hippo pathway leading to neurodegenerative diseases along with the approaches utilizing this pathway as molecular targets for therapeutics has been highlighted in this review. Recent evidences suggesting neuronal repair and regenerative potential of this pathway has also been pointed out, that will shed light on a novel aspect of Hippo pathway in regenerative medicine. Our review provides a better understanding of the significance of Hippo pathway in the journey of neuronal system from development to diseases as a whole.
Collapse
Affiliation(s)
- Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
30
|
Wigerius M, Quinn D, Fawcett JP. Emerging roles for angiomotin in the nervous system. Sci Signal 2020; 13:13/655/eabc0635. [PMID: 33109746 DOI: 10.1126/scisignal.abc0635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Angiomotins are a family of molecular scaffolding proteins that function to organize contact points (called tight junctions in vertebrates) between adjacent cells. Some angiomotin isoforms bind to the actin cytoskeleton and are part of signaling pathways that influence cell morphology and migration. Others cooperate with components of the Hippo signaling pathway and the associated networks to control organ growth. The 130-kDa isoform, AMOT-p130, has critical roles in neural stem cell differentiation, dendritic patterning, and synaptic maturation-attributes that are essential for normal brain development and are consistent with its association with autism. Here, we review and discuss the evidence that supports a role for AMOT-p130 in neuronal development in the central nervous system.
Collapse
Affiliation(s)
- Michael Wigerius
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Dylan Quinn
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - James P Fawcett
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada. .,Department of Surgery, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
31
|
Jin J, Zhao X, Fu H, Gao Y. The Effects of YAP and Its Related Mechanisms in Central Nervous System Diseases. Front Neurosci 2020; 14:595. [PMID: 32676008 PMCID: PMC7333666 DOI: 10.3389/fnins.2020.00595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Yes-associated protein (YAP) is a key effector downstream of the Hippo signaling pathway and plays an important role in the development of the physiology and pathology of the central nervous system (CNS), especially regulating cell proliferation, differentiation, migration, and apoptosis. However, the roles and underlying mechanisms of YAP in CNS diseases are still puzzling. Here, this review will systematically and comprehensively summarize the biological feature, pathological role, and underlying mechanisms of YAP in normal and pathologic CNS, which aims to provide insights into the potential molecular targets and new therapeutic strategies for CNS diseases.
Collapse
Affiliation(s)
- Jiayan Jin
- Department of Forensic Science, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China.,School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoxuan Zhao
- Department of Forensic Science, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China.,School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huifang Fu
- Department of Forensic Science, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China.,Department of Pathology, Traditional Chinese Medicine Hospital of Jiangning District, Nanjing, China
| | - Yuan Gao
- Department of Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China.,Department of Forensic Science, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China.,Forensic Center, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
32
|
Hall CM, Moeendarbary E, Sheridan GK. Mechanobiology of the brain in ageing and Alzheimer's disease. Eur J Neurosci 2020; 53:3851-3878. [DOI: 10.1111/ejn.14766] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Chloe M. Hall
- Department of Mechanical Engineering University College London London UK
- School of Pharmacy and Biomolecular Sciences University of Brighton Brighton UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering University College London London UK
- Department of Biological Engineering Massachusetts Institute of Technology Cambridge MA USA
| | - Graham K. Sheridan
- School of Life Sciences Queens Medical Centre University of Nottingham Nottingham UK
| |
Collapse
|
33
|
Ouyang T, Meng W, Li M, Hong T, Zhang N. Recent Advances of the Hippo/YAP Signaling Pathway in Brain Development and Glioma. Cell Mol Neurobiol 2020; 40:495-510. [PMID: 31768921 PMCID: PMC11448948 DOI: 10.1007/s10571-019-00762-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway is highly conserved from Drosophila melanogaster to mammals and plays a crucial role in organ size control, tissue regeneration, and tumor suppression. The Yes-associated protein (YAP) is an important transcriptional co-activator that is negatively regulated by the Hippo signaling pathway. The Hippo signaling pathway is also regulated by various upstream regulators, such as cell polarity, adhesion proteins, and other signaling pathways (the Wnt/β-catenin, Notch, and MAPK pathways). Recently, accumulated evidence suggests that the Hippo/YAP signaling pathway plays important roles in central nervous system development and brain tumor, including glioma. In this review, we summarize the results of recent studies on the physiological effect of the Hippo/YAP signaling pathway in neural stem cells, neural progenitor cells, and glial cells. In particular, we also focus on the expression of MST1/2, LATS1/2, and the downstream effector YAP, in glioma, and offer a review of the latest research of the Hippo/YAP signaling pathway in glioma pathogenesis. Finally, we also present future research directions and potential therapeutic strategies for targeting the Hippo/YAP signaling in glioma.
Collapse
Affiliation(s)
- Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi Province, No.17, Yongwai Street, Nanchang, 336000, China.
| |
Collapse
|
34
|
Kang PH, Schaffer DV, Kumar S. Angiomotin links ROCK and YAP signaling in mechanosensitive differentiation of neural stem cells. Mol Biol Cell 2020; 31:386-396. [PMID: 31940260 PMCID: PMC7183791 DOI: 10.1091/mbc.e19-11-0602] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechanical cues regulate the function of a broad range of stem cells in culture and in tissue. For example, soft substrates promote the neuronal differentiation of neural stem cells (NSCs) by suppressing cytoskeletal contractility. However, the mechanisms that link cytoskeletal signaling to the transcriptional regulatory processes that ultimately govern stiffness-dependent NSC fate commitment are not fully understood. Here, we show that Angiomotin (AMOT), which can bind both F-actin and the neurosuppressive transcriptional coactivator Yes-associated protein (YAP), is critical for mechanotransduction in NSCs. On soft substrates, loss of AMOT substantially reduces neurogenesis, whereas on stiff substrates, loss of AMOT negates the rescue of neurogenesis normally induced by pharmacologic inhibition of myosin activity. Furthermore, overexpression of a phospho-mimetic S175E AMOT mutant, which has been established to enhance AMOT–YAP binding, increases β-catenin activity and rescues neurogenesis on stiff substrates. Together, our data identify AMOT as an important intermediate signal transducer that allows NSCs to sense and respond to extracellular stiffness cues.
Collapse
Affiliation(s)
- Phillip H Kang
- Graduate Program in Bioengineering, University of California, Berkeley-University of California, San Francisco.,Department of Bioengineering, and
| | - David V Schaffer
- Graduate Program in Bioengineering, University of California, Berkeley-University of California, San Francisco.,Department of Bioengineering, and.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720.,Molecular Biophysics and Integrated Bioimaging Division and.,Helen Wills Neuroscience Institute, Berkeley, CA 94720
| | - Sanjay Kumar
- Graduate Program in Bioengineering, University of California, Berkeley-University of California, San Francisco.,Department of Bioengineering, and.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
35
|
Poon K. Behavioral Feeding Circuit: Dietary Fat-Induced Effects of Inflammatory Mediators in the Hypothalamus. Front Endocrinol (Lausanne) 2020; 11:591559. [PMID: 33324346 PMCID: PMC7726204 DOI: 10.3389/fendo.2020.591559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
Excessive dietary fat intake has extensive impacts on several physiological systems and can lead to metabolic and nonmetabolic disease. In animal models of ingestion, exposure to a high fat diet during pregnancy predisposes offspring to increase intake of dietary fat and causes increase in weight gain that can lead to obesity, and without intervention, these physiological and behavioral consequences can persist for several generations. The hypothalamus is a region of the brain that responds to physiological hunger and fullness and contains orexigenic neuropeptide systems that have long been associated with dietary fat intake. The past fifteen years of research show that prenatal exposure to a high fat diet increases neurogenesis of these neuropeptide systems in offspring brain and are correlated to behavioral changes that induce a pro-consummatory and obesogenic phenotype. Current research has uncovered several potential molecular mechanisms by which excessive dietary fat alters the hypothalamus and involve dietary fatty acids, the immune system, gut microbiota, and transcriptional and epigenetic changes. This review will examine the current knowledge of dietary fat-associated changes in the hypothalamus and the potential pathways involved in modifying the development of orexigenic peptide neurons that lead to changes in ingestive behavior, with a special emphasis on inflammation by chemokines.
Collapse
|