1
|
Stine W, Akiyama T, Weiss D, Kim M. Lineage-dependent variations in single-cell antibiotic susceptibility reveal the selective inheritance of phenotypic resistance in bacteria. Nat Commun 2025; 16:4655. [PMID: 40389422 DOI: 10.1038/s41467-025-59807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/06/2025] [Indexed: 05/21/2025] Open
Abstract
Genetically identical bacterial cells often exhibit heterogeneous responses to antibiotics - some survive, others die. Here, we show that this heterogeneity propagates across generations to give rise to phenotypic resistance. Using real-time single-cell tracking, we exposed Escherichia coli to the β-lactam cefsulodin at its clinical breakpoint concentration and analyzed cell fate within genealogical trees statistically. Cell survival was strongly correlated among family members, driving the selective enrichment of robust lineages within an otherwise susceptible population. Our genealogical population model identified heritable phenotypic resistance as a key factor underlying this enrichment, which was validated experimentally. Comparing enrichment dynamics between the wild-type and a tolC knock-out strain, deficient in multidrug efflux, uncovered nuanced changes that increased the intergenerational memory of phenotypic resistance. Our findings provide evidence for heritable phenotypic resistance and demonstrate how its propagation through cell-to-cell heterogeneity enables the survival of minority cells within isogenic populations.
Collapse
Affiliation(s)
- Wesley Stine
- Department of Physics, Emory University, Atlanta, GA, USA
| | - Tatsuya Akiyama
- Department of Physics, Emory University, Atlanta, GA, USA
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | - David Weiss
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
- Antibiotic Research Center, Emory University, Atlanta, GA, USA
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, GA, USA.
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA.
- Antibiotic Research Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Proenca AM, Rang CU, Chao L. A link between aging and persistence. Antimicrob Agents Chemother 2025; 69:e0131324. [PMID: 39982072 PMCID: PMC11963536 DOI: 10.1128/aac.01313-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Despite the various strategies that microorganisms have evolved to resist antibiotics, survival to drug treatments can be driven by subpopulations of susceptible bacteria in a transient state of dormancy. This phenotype, known as bacterial persistence, arises due to a natural and ubiquitous heterogeneity of growth states in bacterial populations. Nonetheless, the unifying mechanism of persistence remains unknown, with several pathways being able to trigger the phenotype. Here, we show that asymmetric damage partitioning, a form of cellular aging, produces the underlying phenotypic heterogeneity upon which persistence is triggered. Using single-cell microscopy and microfluidic devices, we demonstrate that deterministic asymmetry in exponential phase populations leads to a state of growth stability, which prevents the spontaneous formation of persisters. However, as populations approach stationary phase, aging bacteria-those inheriting more damage upon division-exhibit a sharper growth rate decline, increased probability of growth arrest, and higher persistence rates. These results indicate that persistence triggers are biased by bacterial asymmetry, thus acting upon the deterministic heterogeneity produced by cellular aging. This work suggests unifying mechanisms for persistence and offers new perspectives on the treatment of recalcitrant infections.
Collapse
Affiliation(s)
- A. M. Proenca
- Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - C. U. Rang
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - L. Chao
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Park J, Polizzi KM, Kim J, Kim J. Manipulating subcellular protein localization to enhance target protein accumulation in minicells. J Biol Eng 2025; 19:27. [PMID: 40158151 PMCID: PMC11955136 DOI: 10.1186/s13036-025-00495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Minicells are chromosome-free derivatives of bacteria formed through irregular cell division. Unlike simplified structures, minicells retain all cellular components of the parent cell except for the chromosome. This feature reduces immunogenic responses, making them advantageous for various biotechnological applications, including chemical production and drug delivery. To effectively utilize minicells, it is essential to ensure the accumulation of target proteins within them, enhancing their efficiency as delivery vehicles. RESULTS In this study, we engineered Escherichia coli by deleting the minCD genes, generating minicell-producing strains, and investigated strategies to enhance protein accumulation within the minicells. Comparative proteomic analysis revealed that minicells retain most parent-cell proteins but exhibit an asymmetric proteome distribution, leading to selective protein enrichment. We demonstrated that heterologous proteins, such as GFP and RFP, accumulate more abundantly in minicells than in parent cells, regardless of expression levels. To further enhance this accumulation, we manipulated protein localization by fusing target proteins to polar localization signals. While proteins fused with PtsI and Tsr exhibited 2.6-fold and 2.8-fold increases in accumulation, respectively, fusion with the heterologous PopZ protein resulted in a remarkable 15-fold increase in protein concentration under low induction conditions. CONCLUSIONS These findings highlight the critical role of spatial protein organization in enhancing the cargo-loading capabilities of minicells. By leveraging polar localization signals, this work provides a robust framework for optimizing minicells as efficient carriers for diverse applications, from therapeutic delivery to industrial biomanufacturing.
Collapse
Grants
- 2022R1A2C1006157, 2022R1A4A1025913, RS-2024-00439872 Ministry of Science and ICT, South Korea
- 2022R1A2C1006157, 2022R1A4A1025913, RS-2024-00439872 Ministry of Science and ICT, South Korea
- RS-2023-00304637 Ministry of Health and Welfare, Republic of Korea
- RS-2023-00304637 Ministry of Health and Welfare, Republic of Korea
- RS-2023-00304637 Ministry of Health and Welfare, Republic of Korea
- EP/T005297/1, EP/W00979X/1 EPSRC Adventurous Manufacturing
Collapse
Affiliation(s)
- Junhyeon Park
- School of Life Sciences and Biotechnology, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Karen M Polizzi
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Juhyun Kim
- School of Life Sciences and Biotechnology, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Papagiannakis A, Yu Q, Govers SK, Lin WH, Wingreen NS, Jacobs-Wagner C. Nonequilibrium polysome dynamics promote chromosome segregation and its coupling to cell growth in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.08.617237. [PMID: 40161845 PMCID: PMC11952301 DOI: 10.1101/2024.10.08.617237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chromosome segregation is essential for cellular proliferation. Unlike eukaryotes, bacteria lack cytoskeleton-based machinery to segregate their chromosomal DNA (nucleoid). The bacterial ParABS system segregates the duplicated chromosomal regions near the origin of replication. However, this function does not explain how bacterial cells partition the rest (bulk) of the chromosomal material. Furthermore, some bacteria, including Escherichia coli, lack a ParABS system. Yet, E. coli faithfully segregates nucleoids across various growth rates. Here, we provide theoretical and experimental evidence that polysome production during chromosomal gene expression helps compact, split, segregate, and position nucleoids in E. coli through out-of-equilibrium dynamics and polysome exclusion from the DNA meshwork, inherently coupling these processes to biomass growth across nutritional conditions. Halting chromosomal gene expression and thus polysome production immediately stops sister nucleoid migration while ensuing polysome depletion gradually reverses nucleoid segregation. Redirecting gene expression away from the chromosome and toward plasmids causes ectopic polysome accumulations that are sufficient to drive aberrant nucleoid dynamics. Cell width enlargement suggest that the proximity of the DNA to the membrane along the radial axis is important to limit the exchange of polysomes across DNA-free regions, ensuring nucleoid segregation along the cell length. Our findings suggest a self-organizing mechanism for coupling nucleoid segregation to cell growth.
Collapse
Affiliation(s)
- Alexandros Papagiannakis
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Qiwei Yu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ 08544, USA
| | - Sander K Govers
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Wei-Hsiang Lin
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305, USA
| | - Ned S Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton NJ 08544, USA
| | - Christine Jacobs-Wagner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Chao L, Chan CK, Shi C, Rang UC. Spatial and temporal distribution of ribosomes in single cells reveals aging differences between old and new daughters of Escherichia coli. eLife 2024; 12:RP89543. [PMID: 39565213 DOI: 10.7554/elife.89543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Lineages of rod-shaped bacteria such as Escherichia coli exhibit a temporal decline in elongation rate in a manner comparable to cellular or biological aging. The effect results from the production of asymmetrical daughters, one with a lower elongation rate, by the division of a mother cell. The slower daughter compared to the faster daughter, denoted respectively as the old and new daughters, has more aggregates of damaged proteins and fewer expressed gene products. We have examined further the degree of asymmetry by measuring the density of ribosomes between old and new daughters and between their poles. We found that ribosomes were denser in the new daughter and also in the new pole of the daughters. These ribosome patterns match the ones we previously found for expressed gene products. This outcome suggests that the asymmetry is not likely to result from properties unique to the gene expressed in our previous study, but rather from a more fundamental upstream process affecting the distribution of ribosomal abundance. Because damage aggregates and ribosomes are both more abundant at the poles of E. coli cells, we suggest that competition for space between the two could explain the reduced ribosomal density in old daughters. Using published values for aggregate sizes and the relationship between ribosomal number and elongation rates, we show that the aggregate volumes could in principle displace quantitatively the amount of ribosomes needed to reduce the elongation rate of the old daughters.
Collapse
Affiliation(s)
- Lin Chao
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Chun Kuen Chan
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Chao Shi
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Ulla Camilla Rang
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, United States
| |
Collapse
|
6
|
Proenca AM, Tuğrul M, Nath A, Steiner UK. Progressive decline in old pole gene expression signal enhances phenotypic heterogeneity in bacteria. SCIENCE ADVANCES 2024; 10:eadp8784. [PMID: 39514668 PMCID: PMC11546803 DOI: 10.1126/sciadv.adp8784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Cell growth and gene expression are heterogeneous processes at the single-cell level, leading to the emergence of multiple physiological states within bacterial populations. Aging is a known deterministic driver of growth asymmetry; however, its role in gene expression heterogeneity remains elusive. Here, we show that aging mother cells undergo a progressive decline in old pole activity, generating asymmetry in protein partitioning, gene expression, and cell morphology. We demonstrate that mother cells, when compared to their daughters, exhibit lower product inheritance and gene expression rates independently of promoter dynamics. The declining activity of maternal old poles generates gene expression gradients that manifest as mother-daughter asymmetry upon division, showing that asymmetry is progressively built over time within the maternal intracellular environment. Moreover, old pole aging correlates with a gradual increase in cell length, leading to morphological asymmetry. These findings provide further evidence for aging as a mechanism to enhance phenotypic heterogeneity in bacterial populations, with possible consequences for stress response and survival.
Collapse
Affiliation(s)
- Audrey M. Proenca
- Institute of Biology, Evolutionary Demography Group, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - Murat Tuğrul
- Institute of Biology, Evolutionary Demography Group, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - Arpita Nath
- Institute of Biology, Evolutionary Demography Group, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - Ulrich K. Steiner
- Institute of Biology, Evolutionary Demography Group, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| |
Collapse
|
7
|
Mortier J, Cambré A, Schack S, Christie G, Aertsen A. Impact of Protein Aggregates on Sporulation and Germination of Bacillus subtilis. Microorganisms 2023; 11:2365. [PMID: 37764209 PMCID: PMC10536567 DOI: 10.3390/microorganisms11092365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
In order to improve our general understanding of protein aggregate (PA) management and impact in bacteria, different model systems and processes need to be investigated. As such, we developed an inducible synthetic PA model system to investigate PA dynamics in the Gram-positive model organism Bacillus subtilis. This confirmed previous observations that PA segregation in this organism seems to follow the Escherichia coli paradigm of nucleoid occlusion governing polar localization and asymmetric segregation during vegetative growth. However, our findings also revealed that PAs can readily persist throughout the entire sporulation process after encapsulation in the forespore during sporulation. Moreover, no deleterious effects of PA presence on sporulation, germination and spore survival against heat or UV stress could be observed. Our findings therefore indicate that the sporulation process is remarkably robust against perturbations by PAs and misfolded proteins.
Collapse
Affiliation(s)
- Julien Mortier
- Department of Microbial and Molecular Systems, KU Leuven, B-3000 Leuven, Belgium; (J.M.); (A.C.)
| | - Alexander Cambré
- Department of Microbial and Molecular Systems, KU Leuven, B-3000 Leuven, Belgium; (J.M.); (A.C.)
| | - Sina Schack
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; (S.S.); (G.C.)
| | - Graham Christie
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; (S.S.); (G.C.)
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, B-3000 Leuven, Belgium; (J.M.); (A.C.)
| |
Collapse
|
8
|
Endres K, Friedland K. Talk to Me-Interplay between Mitochondria and Microbiota in Aging. Int J Mol Sci 2023; 24:10818. [PMID: 37445995 DOI: 10.3390/ijms241310818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The existence of mitochondria in eukaryotic host cells as a remnant of former microbial organisms has been widely accepted, as has their fundamental role in several diseases and physiological aging. In recent years, it has become clear that the health, aging, and life span of multicellular hosts are also highly dependent on the still-residing microbiota, e.g., those within the intestinal system. Due to the common evolutionary origin of mitochondria and these microbial commensals, it is intriguing to investigate if there might be a crosstalk based on preserved common properties. In the light of rising knowledge on the gut-brain axis, such crosstalk might severely affect brain homeostasis in aging, as neuronal tissue has a high energy demand and low tolerance for according functional decline. In this review, we summarize what is known about the impact of both mitochondria and the microbiome on the host's aging process and what is known about the aging of both entities. For a long time, bacteria were assumed to be immortal; however, recent evidence indicates their aging and similar observations have been made for mitochondria. Finally, we present pathways by which mitochondria are affected by microbiota and give information about therapeutic anti-aging approaches that are based on current knowledge.
Collapse
Affiliation(s)
- Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Kristina Friedland
- Department of Pharmacology and Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128 Mainz, Germany
| |
Collapse
|
9
|
Yang Y, Karin O, Mayo A, Song X, Chen P, Santos AL, Lindner AB, Alon U. Damage dynamics and the role of chance in the timing of E. coli cell death. Nat Commun 2023; 14:2209. [PMID: 37072447 PMCID: PMC10113371 DOI: 10.1038/s41467-023-37930-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 04/01/2023] [Indexed: 04/20/2023] Open
Abstract
Genetically identical cells in the same stressful condition die at different times. The origin of this stochasticity is unclear; it may arise from different initial conditions that affect the time of demise, or from a stochastic damage accumulation mechanism that erases the initial conditions and instead amplifies noise to generate different lifespans. To address this requires measuring damage dynamics in individual cells over the lifespan, but this has rarely been achieved. Here, we used a microfluidic device to measure membrane damage in 635 carbon-starved Escherichia coli cells at high temporal resolution. We find that initial conditions of damage, size or cell-cycle phase do not explain most of the lifespan variation. Instead, the data points to a stochastic mechanism in which noise is amplified by a rising production of damage that saturates its own removal. Surprisingly, the relative variation in damage drops with age: cells become more similar to each other in terms of relative damage, indicating increasing determinism with age. Thus, chance erases initial conditions and then gives way to increasingly deterministic dynamics that dominate the lifespan distribution.
Collapse
Affiliation(s)
- Yifan Yang
- Department of molecular Cell biology, Weizmann Institute of Science, 71600, Rehovot, Israel.
- Université de Paris - INSERM Unit 1284, Center for Research and Interdisciplinarity (CRI), Paris, F-75004, France.
| | - Omer Karin
- Department of molecular Cell biology, Weizmann Institute of Science, 71600, Rehovot, Israel
| | - Avi Mayo
- Department of molecular Cell biology, Weizmann Institute of Science, 71600, Rehovot, Israel
| | - Xiaohu Song
- Université de Paris - INSERM Unit 1284, Center for Research and Interdisciplinarity (CRI), Paris, F-75004, France
| | - Peipei Chen
- Université de Paris - INSERM Unit 1284, Center for Research and Interdisciplinarity (CRI), Paris, F-75004, France
- National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Ana L Santos
- Université de Paris - INSERM Unit 1284, Center for Research and Interdisciplinarity (CRI), Paris, F-75004, France
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Ariel B Lindner
- Université de Paris - INSERM Unit 1284, Center for Research and Interdisciplinarity (CRI), Paris, F-75004, France
| | - Uri Alon
- Department of molecular Cell biology, Weizmann Institute of Science, 71600, Rehovot, Israel.
| |
Collapse
|
10
|
Pikovsky A, Tsimring LS. Statistical theory of asymmetric damage segregation in clonal cell populations. Math Biosci 2023; 358:108980. [PMID: 36804386 DOI: 10.1016/j.mbs.2023.108980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/07/2022] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Asymmetric damage segregation (ADS) is ubiquitous among unicellular organisms: After a mother cell divides, its two daughter cells receive sometimes slightly, sometimes strongly different fractions of damaged proteins accumulated in the mother cell. Previous studies demonstrated that ADS provides a selective advantage over symmetrically dividing cells by rejuvenating and perpetuating the population as a whole. In this work we focus on the statistical properties of damage in individual lineages and the overall damage distributions in growing populations for a variety of ADS models with different rules governing damage accumulation, segregation, and the lifetime dependence on damage. We show that for a large class of deterministic ADS rules the trajectories of damage along the lineages are chaotic, and the distributions of damage in cells born at a given time asymptotically becomes fractal. By exploiting the analogy of linear ADS models with the Iterated Function Systems known in chaos theory, we derive the Frobenius-Perron equation for the stationary damage density distribution and analytically compute the damage distribution moments and fractal dimensions. We also investigate nonlinear and stochastic variants of ADS models and show the robustness of the salient features of the damage distributions.
Collapse
Affiliation(s)
- Arkady Pikovsky
- Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24/25, 14476, Potsdam-Golm, Germany.
| | - Lev S Tsimring
- Synthetic Biology Institute, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0328, USA.
| |
Collapse
|
11
|
Pikovsky A, Tsimring LS. Statistical Theory of Asymmetric Damage Segregation in Clonal Cell Populations. ARXIV 2023:arXiv:2302.08071v1. [PMID: 36824426 PMCID: PMC9949173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Asymmetric damage segregation (ADS) is ubiquitous among unicellular organisms: After a mother cell divides, its two daughter cells receive sometimes slightly, sometimes strongly different fractions of damaged proteins accumulated in the mother cell. Previous studies demonstrated that ADS provides a selective advantage over symmetrically dividing cells by rejuvenating and perpetuating the population as a whole. In this work we focus on the statistical properties of damage in individual lineages and the overall damage distributions in growing populations for a variety of ADS models with different rules governing damage accumulation, segregation, and the lifetime dependence on damage. We show that for a large class of deterministic ADS rules the trajectories of damage along the lineages are chaotic, and the distributions of damage in cells born at a given time asymptotically becomes fractal. By exploiting the analogy of linear ADS models with the Iterated Function Systems known in chaos theory, we derive the Frobenius-Perron equation for the stationary damage density distribution and analytically compute the damage distribution moments and fractal dimensions. We also investigate nonlinear and stochastic variants of ADS models and show the robustness of the salient features of the damage distributions.
Collapse
Affiliation(s)
- Arkady Pikovsky
- Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24/25, 14476, Potsdam-Golm, Germany
| | - Lev S. Tsimring
- BioCircuits Institute, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0328, USA
| |
Collapse
|
12
|
Nakatani RJ, Itabashi M, Yamada TG, Hiroi NF, Funahashi A. Intercellular interaction mechanisms promote diversity in intracellular ATP concentration in Escherichia coli populations. Sci Rep 2022; 12:17946. [PMID: 36289258 PMCID: PMC9605964 DOI: 10.1038/s41598-022-22189-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
In fluctuating environments, many microorganisms acquire phenotypic heterogeneity as a survival tactic to increase the likelihood of survival of the overall population. One example of this interindividual heterogeneity is the diversity of ATP concentration among members of Escherichia coli populations under glucose deprivation. Despite the importance of such environmentally driven phenotypic heterogeneity, how the differences in intracellular ATP concentration emerge among individual E. coli organisms is unknown. In this study, we focused on the mechanism through which individual E. coli achieve high intracellular ATP concentrations. First, we measured the ATP retained by E. coli over time when cultured at low (0.1 mM) and control (22.2 mM) concentrations of glucose and obtained the chronological change in ATP concentrations. Then, by comparing these chronological change of ATP concentrations and analyzing whether stochastic state transitions, periodic oscillations, cellular age, and intercellular communication-which have been reported as molecular biological mechanisms for generating interindividual heterogeneity-are involved, we showed that the appearance of high ATP-holding individuals observed among E. coli can be explained only by intercellular transmission. By performing metabolomic analysis of post-culture medium, we revealed a significant increase in the ATP, especially at low glucose, and that the number of E. coli that retain significantly higher ATP can be controlled by adding large amounts of ATP to the medium, even in populations cultured under control glucose concentrations. These results reveal for the first time that ATP-mediated intercellular transmission enables some individuals in E. coli populations grown at low glucose to retain large amounts of ATP.
Collapse
Affiliation(s)
- Ryo J. Nakatani
- grid.26091.3c0000 0004 1936 9959Graduate School of Fundamental Science and Technology, Center for Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522 Japan
| | - Masahiro Itabashi
- grid.26091.3c0000 0004 1936 9959Graduate School of Fundamental Science and Technology, Center for Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522 Japan
| | - Takahiro G. Yamada
- grid.26091.3c0000 0004 1936 9959Graduate School of Fundamental Science and Technology, Center for Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522 Japan ,grid.26091.3c0000 0004 1936 9959Present Address: Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522 Japan
| | - Noriko F. Hiroi
- grid.26091.3c0000 0004 1936 9959School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582 Japan ,grid.419709.20000 0004 0371 3508Faculty of Creative Engineering, Kanagawa Institute of Technology, Atsugi, Kanagawa 243-0292 Japan
| | - Akira Funahashi
- grid.26091.3c0000 0004 1936 9959Graduate School of Fundamental Science and Technology, Center for Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522 Japan ,grid.26091.3c0000 0004 1936 9959Present Address: Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522 Japan
| |
Collapse
|
13
|
Allard P, Papazotos F, Potvin-Trottier L. Microfluidics for long-term single-cell time-lapse microscopy: Advances and applications. Front Bioeng Biotechnol 2022; 10:968342. [PMID: 36312536 PMCID: PMC9597311 DOI: 10.3389/fbioe.2022.968342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Cells are inherently dynamic, whether they are responding to environmental conditions or simply at equilibrium, with biomolecules constantly being made and destroyed. Due to their small volumes, the chemical reactions inside cells are stochastic, such that genetically identical cells display heterogeneous behaviors and gene expression profiles. Studying these dynamic processes is challenging, but the development of microfluidic methods enabling the tracking of individual prokaryotic cells with microscopy over long time periods under controlled growth conditions has led to many discoveries. This review focuses on the recent developments of one such microfluidic device nicknamed the mother machine. We overview the original device design, experimental setup, and challenges associated with this platform. We then describe recent methods for analyzing experiments using automated image segmentation and tracking. We further discuss modifications to the experimental setup that allow for time-varying environmental control, replicating batch culture conditions, cell screening based on their dynamic behaviors, and to accommodate a variety of microbial species. Finally, this review highlights the discoveries enabled by this technology in diverse fields, such as cell-size control, genetic mutations, cellular aging, and synthetic biology.
Collapse
Affiliation(s)
- Paige Allard
- Department of Biology, Concordia University, Montréal, QC, Canada
| | - Fotini Papazotos
- Department of Biology, Concordia University, Montréal, QC, Canada
| | - Laurent Potvin-Trottier
- Department of Biology, Concordia University, Montréal, QC, Canada
- Department of Physics, Concordia University, Montréal, QC, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, Canada
- *Correspondence: Laurent Potvin-Trottier,
| |
Collapse
|
14
|
Abstract
Ageing, death, and potential immortality lie at the heart of biology, but two seemingly incompatible paradigms coexist in different research communities and have done since the nineteenth century. The universal senescence paradigm sees senescence as inevitable in all cells. Damage accumulates. The potential immortality paradigm sees some cells as potentially immortal, especially unicellular organisms, germ cells and cancerous cells. Recent research with animal cells, yeasts and bacteria show that damaged cell constituents do in fact build up, but can be diluted by growth and cell division, especially by asymmetric cell division. By contrast, mammalian embryonic stem cells and many cancerous and 'immortalized' cell lines divide symmetrically, and yet replicate indefinitely. How do they acquire their potential immortality? I suggest they are rejuvenated by excreting damaged cell constituents in extracellular vesicles. If so, our understanding of cellular senescence, rejuvenation and potential immortality could be brought together in a new synthesis, which I call the cellular rejuvenation hypothesis: damaged cell constituents build up in all cells, but cells can be rejuvenated either by growth and cell division or, in 'immortal' cell lines, by excreting damaged cell constituents. In electronic supplementary material, appendix, I outline nine ways in which this hypothesis could be tested.
Collapse
|
15
|
Cesar S, Willis L, Huang KC. Bacterial respiration during stationary phase induces intracellular damage that leads to delayed regrowth. iScience 2022; 25:103765. [PMID: 35243217 PMCID: PMC8858994 DOI: 10.1016/j.isci.2022.103765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/23/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Spencer Cesar
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lisa Willis
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Corresponding author
| |
Collapse
|
16
|
Akiyama T, Kim M. Stochastic response of bacterial cells to antibiotics: its mechanisms and implications for population and evolutionary dynamics. Curr Opin Microbiol 2021; 63:104-108. [PMID: 34325154 DOI: 10.1016/j.mib.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 11/20/2022]
Abstract
The effectiveness of antibiotics against bacterial infections has been declining due to the emergence of resistance. Precisely understanding the response of bacteria to antibiotics is critical to maximizing antibiotic-induced bacterial eradication while minimizing the emergence of antibiotic resistance. Cell-to-cell heterogeneity in antibiotic susceptibility is observed across various bacterial species for a wide range of antibiotics. Heterogeneity in antibiotic susceptibility is not always due to the genetic differences. Rather, it can be caused by non-genetic mechanisms such as stochastic gene expression and biased partitioning upon cell division. Heterogeneous susceptibility leads to the stochastic growth and death of individual cells and stochastic fluctuations in population size. These fluctuations have important implications for the eradication of bacterial populations and the emergence of genotypic resistance.
Collapse
Affiliation(s)
- Tatsuya Akiyama
- Department of Physics, Emory University, Atlanta, GA, 30322, USA; Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, GA, 30322, USA; Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA; Emory Antibiotic Resistance Center, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
17
|
Vijg J. From DNA damage to mutations: All roads lead to aging. Ageing Res Rev 2021; 68:101316. [PMID: 33711511 PMCID: PMC10018438 DOI: 10.1016/j.arr.2021.101316] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/20/2022]
Abstract
Damage to the repository of genetic information in cells has plagued life since its very beginning 3-4 billion years ago. Initially, in the absence of an ozone layer, especially damage from solar UV radiation must have been frequent, with other sources, most notably endogenous sources related to cell metabolism, gaining in importance over time. To cope with this high frequency of damage to the increasingly long DNA molecules that came to encode the growing complexity of cellular functions in cells, DNA repair evolved as one of the earliest genetic traits. Then as now, errors during the repair of DNA damage generated mutations, which provide the substrate for evolution by natural selection. With the emergence of multicellular organisms also the soma became a target of DNA damage and mutations. In somatic cells selection against the adverse effects of DNA damage is greatly diminished, especially in postmitotic cells after the age of first reproduction. Based on an abundance of evidence, DNA damage is now considered as the single most important driver of the degenerative processes that collectively cause aging. Here I will first briefly review the evidence for DNA damage as a cause of aging since the beginning of life. Then, after discussing the possible direct adverse effects of DNA damage and its cellular responses, I will provide an overview of the considerable progress that has recently been made in analyzing a major consequence of DNA damage in humans and other complex organisms: somatic mutations and the resulting genome mosaicism. Recent advances in studying somatic mutagenesis and genome mosaicism in different human and animal tissues will be discussed with a focus on the possible mechanisms through which loss of DNA sequence integrity could cause age-related functional decline and disease.
Collapse
Affiliation(s)
- Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Steiner UK. Senescence in Bacteria and Its Underlying Mechanisms. Front Cell Dev Biol 2021; 9:668915. [PMID: 34222238 PMCID: PMC8249858 DOI: 10.3389/fcell.2021.668915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Bacteria have been thought to flee senescence by dividing into two identical daughter cells, but this notion of immortality has changed over the last two decades. Asymmetry between the resulting daughter cells after binary fission is revealed in physiological function, cell growth, and survival probabilities and is expected from theoretical understanding. Since the discovery of senescence in morphologically identical but physiologically asymmetric dividing bacteria, the mechanisms of bacteria aging have been explored across levels of biological organization. Quantitative investigations are heavily biased toward Escherichia coli and on the role of inclusion bodies—clusters of misfolded proteins. Despite intensive efforts to date, it is not evident if and how inclusion bodies, a phenotype linked to the loss of proteostasis and one of the consequences of a chain of reactions triggered by reactive oxygen species, contribute to senescence in bacteria. Recent findings in bacteria question that inclusion bodies are only deleterious, illustrated by fitness advantages of cells holding inclusion bodies under varying environmental conditions. The contributions of other hallmarks of aging, identified for metazoans, remain elusive. For instance, genomic instability appears to be age independent, epigenetic alterations might be little age specific, and other hallmarks do not play a major role in bacteria systems. What is surprising is that, on the one hand, classical senescence patterns, such as an early exponential increase in mortality followed by late age mortality plateaus, are found, but, on the other hand, identifying mechanisms that link to these patterns is challenging. Senescence patterns are sensitive to environmental conditions and to genetic background, even within species, which suggests diverse evolutionary selective forces on senescence that go beyond generalized expectations of classical evolutionary theories of aging. Given the molecular tool kits available in bacteria, the high control of experimental conditions, the high-throughput data collection using microfluidic systems, and the ease of life cell imaging of fluorescently marked transcription, translation, and proteomic dynamics, in combination with the simple demographics of growth, division, and mortality of bacteria, make the challenges surprising. The diversity of mechanisms and patterns revealed and their environmental dependencies not only present challenges but also open exciting opportunities for the discovery and deeper understanding of aging and its mechanisms, maybe beyond bacteria and aging.
Collapse
Affiliation(s)
- Ulrich Karl Steiner
- Evolutionary Demography Group, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
19
|
Pen I, Flatt T. Asymmetry, division of labour and the evolution of ageing in multicellular organisms. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190729. [PMID: 33678014 PMCID: PMC7938170 DOI: 10.1098/rstb.2019.0729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 01/14/2023] Open
Abstract
Between the 1930s and 1960s, evolutionary geneticists worked out the basic principles of why organisms age. Despite much progress in the evolutionary biology of ageing since that time, however, many puzzles remain. The perhaps most fundamental of these is the question of which organisms should exhibit senescence and which should not (or which should age rapidly and which should not). The evolutionary origin of ageing from a non-senescent state has been conceptually framed, for example, in terms of the separation between germ-line and soma, the distinction between parents and their offspring, and-in unicellular organisms-the unequal distribution of cellular damage at cell division. These ideas seem to be closely related to the concept of 'division of labour' between reproduction and somatic maintenance. Here, we review these concepts and develop a toy model to explore the importance of such asymmetries for the evolution of senescence. We apply our model to the simplest case of a multicellular system: an organism consisting of two totipotent cells. Notably, we find that in organisms which reproduce symmetrically and partition damage equally, senescence is still able to evolve, contrary to previous claims. Our results might have some bearing on understanding the origin of the germ-line-soma separation and the evolution of senescence in multicellular organisms and in colonial species consisting of multiple types of individuals, such as, for example, eusocial insects with their different castes. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Ido Pen
- Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| |
Collapse
|
20
|
Hardo G, Bakshi S. Challenges of analysing stochastic gene expression in bacteria using single-cell time-lapse experiments. Essays Biochem 2021; 65:67-79. [PMID: 33835126 PMCID: PMC8056041 DOI: 10.1042/ebc20200015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Stochastic gene expression causes phenotypic heterogeneity in a population of genetically identical bacterial cells. Such non-genetic heterogeneity can have important consequences for the population fitness, and therefore cells implement regulation strategies to either suppress or exploit such heterogeneity to adapt to their circumstances. By employing time-lapse microscopy of single cells, the fluctuation dynamics of gene expression may be analysed, and their regulatory mechanisms thus deciphered. However, a careful consideration of the experimental design and data-analysis is needed to produce useful data for deriving meaningful insights from them. In the present paper, the individual steps and challenges involved in a time-lapse experiment are discussed, and a rigorous framework for designing, performing, and extracting single-cell gene expression dynamics data from such experiments is outlined.
Collapse
Affiliation(s)
- Georgeos Hardo
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Somenath Bakshi
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
21
|
Abstract
Damage is an inevitable consequence of life. For unicellular organisms, this leads to a trade-off between allocating resources into damage repair or into growth coupled with segregation of damage upon cell division, i.e., aging and senescence. Few studies considered repair as an alternative to senescence. None considered biofilms, where the majority of unicellular organisms live, although fitness advantages in well-mixed systems often turn into disadvantages in spatially structured systems such as biofilms. We compared the fitness consequences of aging versus an adaptive repair mechanism based on sensing damage, using an individual-based model of a generic unicellular organism growing in biofilms. We found that senescence is not beneficial provided that growth is limited by substrate availability. Instead, it is useful as a stress response to deal with damage that failed to be repaired when (i) extrinsic mortality was high; (ii) a degree of multicellularity was present; and (iii) damage segregation was effective. The extent of senescence due to damage accumulation—or aging—is evidently evolvable as it differs hugely between species and is not universal, suggesting that its fitness advantages depend on life history and environment. In contrast, repair of damage is present in all organisms studied. Despite the fundamental trade-off between investing resources into repair or into growth, repair and segregation of damage have not always been considered alternatives. For unicellular organisms, unrepaired damage could be divided asymmetrically between daughter cells, leading to senescence of one and rejuvenation of the other. Repair of “unicells” has been predicted to be advantageous in well-mixed environments such as chemostats. Most microorganisms, however, live in spatially structured systems, such as biofilms, with gradients of environmental conditions and cellular physiology as well as a clonal population structure. To investigate whether this clonal structure might favor senescence by damage segregation (a division-of-labor strategy akin to the germline-soma division in multicellular organisms), we used an individual-based computational model and developed an adaptive repair strategy where cells respond to their current intracellular damage levels by investing into repair machinery accordingly. Our simulations showed that the new adaptive repair strategy was advantageous provided that growth was limited by substrate availability, which is typical for biofilms. Thus, biofilms do not favor a germline-soma-like division of labor between daughter cells in terms of damage segregation. We suggest that damage segregation is beneficial only when extrinsic mortality is high, a degree of multicellularity is present, and an active mechanism makes segregation effective. IMPORTANCE Damage is an inevitable consequence of life. For unicellular organisms, this leads to a trade-off between allocating resources into damage repair or into growth coupled with segregation of damage upon cell division, i.e., aging and senescence. Few studies considered repair as an alternative to senescence. None considered biofilms, where the majority of unicellular organisms live, although fitness advantages in well-mixed systems often turn into disadvantages in spatially structured systems such as biofilms. We compared the fitness consequences of aging versus an adaptive repair mechanism based on sensing damage, using an individual-based model of a generic unicellular organism growing in biofilms. We found that senescence is not beneficial provided that growth is limited by substrate availability. Instead, it is useful as a stress response to deal with damage that failed to be repaired when (i) extrinsic mortality was high; (ii) a degree of multicellularity was present; and (iii) damage segregation was effective.
Collapse
|
22
|
Mikuła-Pietrasik J, Pakuła M, Markowska M, Uruski P, Szczepaniak-Chicheł L, Tykarski A, Książek K. Nontraditional systems in aging research: an update. Cell Mol Life Sci 2020; 78:1275-1304. [PMID: 33034696 PMCID: PMC7904725 DOI: 10.1007/s00018-020-03658-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Research on the evolutionary and mechanistic aspects of aging and longevity has a reductionist nature, as the majority of knowledge originates from experiments on a relatively small number of systems and species. Good examples are the studies on the cellular, molecular, and genetic attributes of aging (senescence) that are primarily based on a narrow group of somatic cells, especially fibroblasts. Research on aging and/or longevity at the organismal level is dominated, in turn, by experiments on Drosophila melanogaster, worms (Caenorhabditis elegans), yeast (Saccharomyces cerevisiae), and higher organisms such as mice and humans. Other systems of aging, though numerous, constitute the minority. In this review, we collected and discussed a plethora of up-to-date findings about studies of aging, longevity, and sometimes even immortality in several valuable but less frequently used systems, including bacteria (Caulobacter crescentus, Escherichia coli), invertebrates (Turritopsis dohrnii, Hydra sp., Arctica islandica), fishes (Nothobranchius sp., Greenland shark), reptiles (giant tortoise), mammals (blind mole rats, naked mole rats, bats, elephants, killer whale), and even 3D organoids, to prove that they offer biogerontologists as much as the more conventional tools. At the same time, the diversified knowledge gained owing to research on those species may help to reconsider aging from a broader perspective, which should translate into a better understanding of this tremendously complex and clearly system-specific phenomenon.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Martyna Pakuła
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Małgorzata Markowska
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | | | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| |
Collapse
|
23
|
Shi C, Chao L, Proenca AM, Qiu A, Chao J, Rang CU. Allocation of gene products to daughter cells is determined by the age of the mother in single Escherichia coli cells. Proc Biol Sci 2020; 287:20200569. [PMID: 32370668 DOI: 10.1098/rspb.2020.0569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gene expression and growth rate are highly stochastic in Escherichia coli. Some of the growth rate variations result from the deterministic and asymmetric partitioning of damage by the mother to its daughters. One daughter, denoted the old daughter, receives more damage, grows more slowly and ages. To determine if expressed gene products are also allocated asymmetrically, we compared the levels of expressed green fluorescence protein in growing daughters descending from the same mother. Our results show that old daughters were less fluorescent than new daughters. Moreover, old mothers, which were born as old daughters, produced daughters that were more asymmetric when compared to new mothers. Thus, variation in gene products in a clonal E. coli population also has a deterministic component. Because fluorescence levels and growth rates were positively correlated, the aging of old daughters appears to result from both the presence of both more damage and fewer expressed gene products.
Collapse
Affiliation(s)
- Chao Shi
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Lin Chao
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Audrey Menegaz Proenca
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA.,Geobiology Laboratory, Institute of Petroleum and Natural Resources, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andrew Qiu
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Jasper Chao
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Camilla U Rang
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
24
|
Schramm FD, Schroeder K, Jonas K. Protein aggregation in bacteria. FEMS Microbiol Rev 2020; 44:54-72. [PMID: 31633151 PMCID: PMC7053576 DOI: 10.1093/femsre/fuz026] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Protein aggregation occurs as a consequence of perturbations in protein homeostasis that can be triggered by environmental and cellular stresses. The accumulation of protein aggregates has been associated with aging and other pathologies in eukaryotes, and in bacteria with changes in growth rate, stress resistance and virulence. Numerous past studies, mostly performed in Escherichia coli, have led to a detailed understanding of the functions of the bacterial protein quality control machinery in preventing and reversing protein aggregation. However, more recent research points toward unexpected diversity in how phylogenetically different bacteria utilize components of this machinery to cope with protein aggregation. Furthermore, how persistent protein aggregates localize and are passed on to progeny during cell division and how their presence impacts reproduction and the fitness of bacterial populations remains a controversial field of research. Finally, although protein aggregation is generally seen as a symptom of stress, recent work suggests that aggregation of specific proteins under certain conditions can regulate gene expression and cellular resource allocation. This review discusses recent advances in understanding the consequences of protein aggregation and how this process is dealt with in bacteria, with focus on highlighting the differences and similarities observed between phylogenetically different groups of bacteria.
Collapse
Affiliation(s)
- Frederic D Schramm
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| | - Kristen Schroeder
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| |
Collapse
|