1
|
Burdette LA, Leach SA, Kennedy N, Ikwuagwu BC, Summers JS, Tullman-Ercek D. Characterization and engineering of the type 3 secretion system needle monomer from Salmonella through the construction and screening of a comprehensive mutagenesis library. mSphere 2024; 9:e0036724. [PMID: 39109886 DOI: 10.1128/msphere.00367-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/21/2024] [Indexed: 08/29/2024] Open
Abstract
Protein production strategies in bacteria are often limited due to the need for cell lysis and complicated purification schemes. To avoid these challenges, researchers have developed bacterial strains capable of secreting heterologous protein products outside the cell, but secretion titers often remain too low for commercial applicability. Improved understanding of the link between secretion system structure and its secretory abilities can help overcome the barrier to engineering higher secretion titers. Here, we investigated this link with the PrgI protein, the monomer of the secretory channel of the type 3 secretion system (T3SS) of Salmonella enterica. Despite detailed knowledge of the PrgI needle's assembly and structure, little is known about how its structure influences its secretory capabilities. To study this, we recently constructed a comprehensive codon mutagenesis library of the PrgI protein utilizing a novel one-pot recombineering approach. We then screened this library for functional T3SS assembly and secretion titer by measuring the secretion of alkaline phosphatase using a high-throughput activity assay. This allowed us to construct a first-of-its-kind secretion fitness landscape to characterize the PrgI needle's mutability at each position as well as the mutations which lead to enhanced T3SS secretion. We discovered new design rules for building a functional T3SS as well as identified hypersecreting mutants. This work can be used to increase understanding of the T3SS's assembly and identify further targets for engineering. This work also provides a blueprint for future efforts to engineer other complex protein assemblies through the construction of fitness landscapes.IMPORTANCEProtein secretion offers a simplified alternative method for protein purification from bacterial hosts. However, the current state-of-the-art methods for protein secretion in bacteria are still hindered by low yields relative to traditional protein purification strategies. Engineers are now seeking strategies to enhance protein secretion titers from bacterial hosts, often through genetic manipulations. In this study, we demonstrate that protein engineering strategies focused on altering the secretion apparatus can be a fruitful avenue toward this goal. Specifically, this study focuses on how changes to the PrgI needle protein from the type 3 secretion system from Salmonella enterica can impact secretion titer. We demonstrate that this complex is amenable to comprehensive mutagenesis studies and that this can yield both PrgI variants with increased secretory capabilities and insight into the normal functioning of the type 3 secretion system.
Collapse
Affiliation(s)
- Lisa Ann Burdette
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Samuel Alexander Leach
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Nolan Kennedy
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Bon C Ikwuagwu
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Jordan S Summers
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
2
|
Burdette LA, Leach SA, Kennedy N, Ikwuagwu BC, Summers JS, Tullman-Ercek D. Characterization and Engineering of the Type 3 Secretion System Needle Monomer from Salmonella Through the Construction and Screening of a Comprehensive Mutagenesis Library. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592225. [PMID: 38746360 PMCID: PMC11092573 DOI: 10.1101/2024.05.02.592225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Protein production strategies in bacteria are often limited due to the need for cell lysis and complicated purification schemes. To avoid these challenges, researchers have developed bacterial strains capable of secreting heterologous protein products outside the cell, but secretion titers often remain too low for commercial applicability. Improved understanding of the link between secretion system structure and its secretory abilities can help overcome the barrier to engineering higher secretion titers. Here we investigated this link with the PrgI protein, the monomer of the secretory channel of the Type 3 Secretion System (T3SS) of Salmonella enterica . Despite detailed knowledge of the PrgI needle's assembly and structure, little is known about how its structure influences its secretory capabilities. To study this, we recently constructed a comprehensive codon mutagenesis library of the PrgI protein utilizing a novel one pot recombineering approach. We then screened this library for functional T3SS assembly and secretion titer by measuring the secretion of alkaline phosphatase using a high-throughput activity assay. This allowed us to construct a first-of-its-kind secretion fitness landscape (SFL) to characterize the PrgI needle's mutability at each position as well as the mutations which lead to enhanced T3SS secretion. We discovered new design rules for building a functional T3SS as well as identified hypersecreting mutants. This work can be used to increase understanding of the T3SS's assembly and identify further targets for engineering. This work also provides a blueprint for future efforts to engineer other complex protein assemblies through the construction of fitness landscapes. Importance Protein secretion offers a simplified alternative method for protein purification from bacterial hosts. However, the current state-of-the-art methods for protein secretion in bacteria are still hindered by low yields relative to traditional protein purification strategies. Engineers are now seeking strategies to enhance protein secretion titers from bacterial hosts, often through genetic manipulations. In this study, we demonstrate that protein engineering strategies focused on altering the secretion apparatus can be a fruitful avenue toward this goal. Specifically, this study focuses on how changes to the PrgI needle protein from the type 3 secretion system from Salmonella enterica can impact secretion titer. We demonstrate that this complex is amenable to comprehensive mutagenesis studies and that this can yield both PrgI variants with increased secretory capabilities and insight into the normal functioning of the type 3 secretion system.
Collapse
|
3
|
Worrall LJ, Majewski DD, Strynadka NCJ. Structural Insights into Type III Secretion Systems of the Bacterial Flagellum and Injectisome. Annu Rev Microbiol 2023; 77:669-698. [PMID: 37713458 DOI: 10.1146/annurev-micro-032521-025503] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Two of the most fascinating bacterial nanomachines-the broadly disseminated rotary flagellum at the heart of cellular motility and the eukaryotic cell-puncturing injectisome essential to specific pathogenic species-utilize at their core a conserved export machinery called the type III secretion system (T3SS). The T3SS not only secretes the components that self-assemble into their extracellular appendages but also, in the case of the injectisome, subsequently directly translocates modulating effector proteins from the bacterial cell into the infected host. The injectisome is thought to have evolved from the flagellum as a minimal secretory system lacking motility, with the subsequent acquisition of additional components tailored to its specialized role in manipulating eukaryotic hosts for pathogenic advantage. Both nanomachines have long been the focus of intense interest, but advances in structural and functional understanding have taken a significant step forward since 2015, facilitated by the revolutionary advances in cryo-electron microscopy technologies. With several seminal structures of each nanomachine now captured, we review here the molecular similarities and differences that underlie their diverse functions.
Collapse
Affiliation(s)
- Liam J Worrall
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; , ,
| | - Dorothy D Majewski
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; , ,
- Current affiliation: Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; , ,
| |
Collapse
|
4
|
Tian L, Zhong C, He Y, Lu Q, Wang Y, Zhao X, Wei H, Tao X. Preventive of Lacticaseibacillus casei WLCA02 against Salmonella Typhimurium infection via strengthening the intestinal barrier and activating the macrophages. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
5
|
Chen P, Goldberg MB. Recent insights into type-3 secretion system injectisome structure and mechanism of human enteric pathogens. Curr Opin Microbiol 2023; 71:102232. [PMID: 36368294 PMCID: PMC10510281 DOI: 10.1016/j.mib.2022.102232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022]
Abstract
Type-3 secretion system injectisomes are multiprotein complexes that translocate bacterial effector proteins from the cytoplasm of gram-negative bacteria directly into the cytosol of eukaryotic host cells. These systems are present in more than 30 bacterial species, including numerous human, animal, and plant pathogens. We review recent discoveries of structural and molecular mechanisms of effector protein translocation through the injectisomes and recent advances in the understanding of mechanisms of activation of effector protein secretion.
Collapse
Affiliation(s)
- Poyin Chen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Marcia B Goldberg
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
6
|
Drehkopf S, Otten C, Büttner D. Recognition of a translocation motif in the regulator HpaA from Xanthomonas euvesicatoria is controlled by the type III secretion chaperone HpaB. FRONTIERS IN PLANT SCIENCE 2022; 13:955776. [PMID: 35968103 PMCID: PMC9366055 DOI: 10.3389/fpls.2022.955776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The Gram-negative plant-pathogenic bacterium Xanthomonas euvesicatoria is the causal agent of bacterial spot disease in pepper and tomato plants. Pathogenicity of X. euvesicatoria depends on a type III secretion (T3S) system which translocates effector proteins into plant cells and is associated with an extracellular pilus and a translocon in the plant plasma membrane. Effector protein translocation is activated by the cytoplasmic T3S chaperone HpaB which presumably targets effectors to the T3S system. We previously reported that HpaB is controlled by the translocated regulator HpaA which binds to and inactivates HpaB during the assembly of the T3S system. In the present study, we show that translocation of HpaA depends on the T3S substrate specificity switch protein HpaC and likely occurs after pilus and translocon assembly. Translocation of HpaA requires the presence of a translocation motif (TrM) in the N-terminal region. The TrM consists of an arginine-and proline-rich amino acid sequence and is also essential for the in vivo function of HpaA. Mutation of the TrM allowed the translocation of HpaA in hpaB mutant strains but not in the wild-type strain, suggesting that the recognition of the TrM depends on HpaB. Strikingly, the contribution of HpaB to the TrM-dependent translocation of HpaA was independent of the presence of the C-terminal HpaB-binding site in HpaA. We propose that HpaB generates a recognition site for the TrM at the T3S system and thus restricts the access to the secretion channel to effector proteins. Possible docking sites for HpaA at the T3S system were identified by in vivo and in vitro interaction studies and include the ATPase HrcN and components of the predicted cytoplasmic sorting platform of the T3S system. Notably, the TrM interfered with the efficient interaction of HpaA with several T3S system components, suggesting that it prevents premature binding of HpaA. Taken together, our data highlight a yet unknown contribution of the TrM and HpaB to substrate recognition and suggest that the TrM increases the binding specificity between HpaA and T3S system components.
Collapse
|
7
|
Jenkins J, Worrall L, Strynadka N. Recent structural advances towards understanding of the bacterial type III secretion injectisome. Trends Biochem Sci 2022; 47:795-809. [DOI: 10.1016/j.tibs.2022.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022]
|
8
|
Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021; 122:10036-10086. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs. This review highlights the recent high-resolution investigations of intact ECMs and native cells in many organisms spanning across plants, bacteria, fungi, and algae. We spotlight the structural principles identified in ECMs, discuss the current technical limitation and underexplored biochemical topics, and point out the promising opportunities enabled by the recent advances of the rapidly evolving ssNMR technology.
Collapse
Affiliation(s)
- Nader Ghassemi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandre Poulhazan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
9
|
Cryo-EM structure of the needle filament tip complex of the Salmonella type III secretion injectisome. Proc Natl Acad Sci U S A 2021; 118:2114552118. [PMID: 34706941 DOI: 10.1073/pnas.2114552118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 11/18/2022] Open
Abstract
Type III secretion systems are multiprotein molecular machines required for the virulence of several important bacterial pathogens. The central element of these machines is the injectisome, a ∼5-Md multiprotein structure that mediates the delivery of bacterially encoded proteins into eukaryotic target cells. The injectisome is composed of a cytoplasmic sorting platform, and a membrane-embedded needle complex, which is made up of a multiring base and a needle-like filament that extends several nanometers from the bacterial surface. The needle filament is capped at its distal end by another substructure known as the tip complex, which is crucial for the translocation of effector proteins through the eukaryotic cell plasma membrane. Here we report the cryo-EM structure of the Salmonella Typhimurium needle tip complex docked onto the needle filament tip. Combined with a detailed analysis of structurally guided mutants, this study provides major insight into the assembly and function of this essential component of the type III secretion protein injection machine.
Collapse
|
10
|
The type 3 secretion system requires actin polymerization to open translocon pores. PLoS Pathog 2021; 17:e1009932. [PMID: 34499700 PMCID: PMC8454972 DOI: 10.1371/journal.ppat.1009932] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/21/2021] [Accepted: 08/31/2021] [Indexed: 11/19/2022] Open
Abstract
Many bacterial pathogens require a type 3 secretion system (T3SS) to establish a niche. Host contact activates bacterial T3SS assembly of a translocon pore in the host plasma membrane. Following pore formation, the T3SS docks onto the translocon pore. Docking establishes a continuous passage that enables the translocation of virulence proteins, effectors, into the host cytosol. Here we investigate the contribution of actin polymerization to T3SS-mediated translocation. Using the T3SS model organism Shigella flexneri, we show that actin polymerization is required for assembling the translocon pore in an open conformation, thereby enabling effector translocation. Opening of the pore channel is associated with a conformational change to the pore, which is dependent upon actin polymerization and a coiled-coil domain in the pore protein IpaC. Analysis of an IpaC mutant that is defective in ruffle formation shows that actin polymerization-dependent pore opening is distinct from the previously described actin polymerization-dependent ruffles that are required for bacterial internalization. Moreover, actin polymerization is not required for other pore functions, including docking or pore protein insertion into the plasma membrane. Thus, activation of the T3SS is a multilayered process in which host signals are sensed by the translocon pore leading to the activation of effector translocation.
Collapse
|
11
|
Kotov V, Lunelli M, Wald J, Kolbe M, Marlovits TC. Helical reconstruction of Salmonella and Shigella needle filaments attached to type 3 basal bodies. Biochem Biophys Rep 2021; 27:101039. [PMID: 34258394 PMCID: PMC8254080 DOI: 10.1016/j.bbrep.2021.101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/26/2021] [Indexed: 12/02/2022] Open
Abstract
Gram-negative pathogens evolved a syringe-like nanomachine, termed type 3 secretion system, to deliver protein effectors into the cytoplasm of host cells. An essential component of this system is a long helical needle filament that protrudes from the bacterial surface and connects the cytoplasms of the bacterium and the eukaryotic cell. Previous structural research was predominantly focused on reconstituted type 3 needle filaments, which lacked the biological context. In this work we introduce a facile procedure to obtain high-resolution cryo-EM structure of needle filaments attached to the basal body of type 3 secretion systems. We validate our approach by solving the structure of Salmonella PrgI filament and demonstrate its utility by obtaining the first high-resolution cryo-EM reconstruction of Shigella MxiH filament. Our work paves the way to systematic structural characterization of attached type 3 needle filaments in the context of mutagenesis studies, protein structural evolution and drug development.
Collapse
Affiliation(s)
- Vadim Kotov
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany
- University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Michele Lunelli
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany
- Department of Structural Infection Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Jiri Wald
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany
- University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Michael Kolbe
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany
- Department of Structural Infection Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Department of Chemistry, Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Rothenbaumchaussee 19, 20148 Hamburg, Germany
- Corresponding author. Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany.
| | - Thomas C. Marlovits
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany
- University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
- Corresponding author. Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany.
| |
Collapse
|
12
|
Matthews-Palmer TRS, Gonzalez-Rodriguez N, Calcraft T, Lagercrantz S, Zachs T, Yu XJ, Grabe GJ, Holden DW, Nans A, Rosenthal PB, Rouse SL, Beeby M. Structure of the cytoplasmic domain of SctV (SsaV) from the Salmonella SPI-2 injectisome and implications for a pH sensing mechanism. J Struct Biol 2021; 213:107729. [PMID: 33774138 PMCID: PMC8223533 DOI: 10.1016/j.jsb.2021.107729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022]
Abstract
CryoEM of a full-length type III secretion system SctV resolves cytoplasmic but not transmembrane domains. MD simulations show SctV protomers flexibly hinge. Acidification expands the SctV ring by altering interprotomer interactions.
Bacterial type III secretion systems assemble the axial structures of both injectisomes and flagella. Injectisome type III secretion systems subsequently secrete effector proteins through their hollow needle into a host, requiring co-ordination. In the Salmonella enterica serovar Typhimurium SPI-2 injectisome, this switch is triggered by sensing the neutral pH of the host cytoplasm. Central to specificity switching is a nonameric SctV protein with an N-terminal transmembrane domain and a toroidal C-terminal cytoplasmic domain. A ‘gatekeeper’ complex interacts with the SctV cytoplasmic domain in a pH dependent manner, facilitating translocon secretion while repressing effector secretion through a poorly understood mechanism. To better understand the role of SctV in SPI-2 translocon-effector specificity switching, we purified full-length SctV and determined its toroidal cytoplasmic region’s structure using cryo-EM. Structural comparisons and molecular dynamics simulations revealed that the cytoplasmic torus is stabilized by its core subdomain 3, about which subdomains 2 and 4 hinge, varying the flexible outside cleft implicated in gatekeeper and substrate binding. In light of patterns of surface conservation, deprotonation, and structural motion, the location of previously identified critical residues suggest that gatekeeper binds a cleft buried between neighboring subdomain 4s. Simulations suggest that a local pH change from 5 to 7.2 stabilizes the subdomain 3 hinge and narrows the central aperture of the nonameric torus. Our results are consistent with a model of local pH sensing at SctV, where pH-dependent dynamics of SctV cytoplasmic domain affect binding of gatekeeper complex.
Collapse
Affiliation(s)
| | | | - Thomas Calcraft
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom; Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Signe Lagercrantz
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tobias Zachs
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiu-Jun Yu
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Grzegorz J Grabe
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - David W Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Andrea Nans
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sarah L Rouse
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
13
|
Miletic S, Fahrenkamp D, Goessweiner-Mohr N, Wald J, Pantel M, Vesper O, Kotov V, Marlovits TC. Substrate-engaged type III secretion system structures reveal gating mechanism for unfolded protein translocation. Nat Commun 2021; 12:1546. [PMID: 33750771 PMCID: PMC7943601 DOI: 10.1038/s41467-021-21143-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Many bacterial pathogens rely on virulent type III secretion systems (T3SSs) or injectisomes to translocate effector proteins in order to establish infection. The central component of the injectisome is the needle complex which assembles a continuous conduit crossing the bacterial envelope and the host cell membrane to mediate effector protein translocation. However, the molecular principles underlying type III secretion remain elusive. Here, we report a structure of an active Salmonella enterica serovar Typhimurium needle complex engaged with the effector protein SptP in two functional states, revealing the complete 800Å-long secretion conduit and unraveling the critical role of the export apparatus (EA) subcomplex in type III secretion. Unfolded substrates enter the EA through a hydrophilic constriction formed by SpaQ proteins, which enables side chain-independent substrate transport. Above, a methionine gasket formed by SpaP proteins functions as a gate that dilates to accommodate substrates while preventing leaky pore formation. Following gate penetration, a moveable SpaR loop first folds up to then support substrate transport. Together, these findings establish the molecular basis for substrate translocation through T3SSs and improve our understanding of bacterial pathogenicity and motility.
Collapse
Affiliation(s)
- Sean Miletic
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany.,Centre for Structural Systems Biology (CSSB), Hamburg, Germany.,Deutsches Elektronen-Synchrotron Zentrum (DESY), Hamburg, Germany.,Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.,Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Dirk Fahrenkamp
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany.,Centre for Structural Systems Biology (CSSB), Hamburg, Germany.,Deutsches Elektronen-Synchrotron Zentrum (DESY), Hamburg, Germany
| | - Nikolaus Goessweiner-Mohr
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany.,Deutsches Elektronen-Synchrotron Zentrum (DESY), Hamburg, Germany.,Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.,Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Jiri Wald
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany.,Centre for Structural Systems Biology (CSSB), Hamburg, Germany.,Deutsches Elektronen-Synchrotron Zentrum (DESY), Hamburg, Germany.,Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.,Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Maurice Pantel
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany.,Centre for Structural Systems Biology (CSSB), Hamburg, Germany.,Deutsches Elektronen-Synchrotron Zentrum (DESY), Hamburg, Germany
| | - Oliver Vesper
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany.,Centre for Structural Systems Biology (CSSB), Hamburg, Germany.,Deutsches Elektronen-Synchrotron Zentrum (DESY), Hamburg, Germany.,Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.,Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Vadim Kotov
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany.,Centre for Structural Systems Biology (CSSB), Hamburg, Germany.,Deutsches Elektronen-Synchrotron Zentrum (DESY), Hamburg, Germany.,Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.,Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Thomas C Marlovits
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany. .,Centre for Structural Systems Biology (CSSB), Hamburg, Germany. .,Deutsches Elektronen-Synchrotron Zentrum (DESY), Hamburg, Germany. .,Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria. .,Research Institute of Molecular Pathology (IMP), Vienna, Austria.
| |
Collapse
|
14
|
The Shigella Type III Secretion System: An Overview from Top to Bottom. Microorganisms 2021; 9:microorganisms9020451. [PMID: 33671545 PMCID: PMC7926512 DOI: 10.3390/microorganisms9020451] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Shigella comprises four species of human-restricted pathogens causing bacillary dysentery. While Shigella possesses multiple genetic loci contributing to virulence, a type III secretion system (T3SS) is its primary virulence factor. The Shigella T3SS nanomachine consists of four major assemblies: the cytoplasmic sorting platform; the envelope-spanning core/basal body; an exposed needle; and a needle-associated tip complex with associated translocon that is inserted into host cell membranes. The initial subversion of host cell activities is carried out by the effector functions of the invasion plasmid antigen (Ipa) translocator proteins, with the cell ultimately being controlled by dedicated effector proteins that are injected into the host cytoplasm though the translocon. Much of the information now available on the T3SS injectisome has been accumulated through collective studies on the T3SS from three systems, those of Shigella flexneri, Salmonella typhimurium and Yersinia enterocolitica/Yersinia pestis. In this review, we will touch upon the important features of the T3SS injectisome that have come to light because of research in the Shigella and closely related systems. We will also briefly highlight some of the strategies being considered to target the Shigella T3SS for disease prevention.
Collapse
|
15
|
Pore-forming Esx proteins mediate toxin secretion by Mycobacterium tuberculosis. Nat Commun 2021; 12:394. [PMID: 33452244 PMCID: PMC7810871 DOI: 10.1038/s41467-020-20533-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
Mycobacterium tuberculosis secretes the tuberculosis necrotizing toxin (TNT) to kill host cells. Here, we show that the WXG100 proteins EsxE and EsxF are essential for TNT secretion. EsxE and EsxF form a water-soluble heterodimer (EsxEF) that assembles into oligomers and long filaments, binds to membranes, and forms stable membrane-spanning channels. Electron microscopy of EsxEF reveals mainly pentameric structures with a central pore. Mutations of both WXG motifs and of a GXW motif do not affect dimerization, but abolish pore formation, membrane deformation and TNT secretion. The WXG/GXW mutants are locked in conformations with altered thermostability and solvent exposure, indicating that the WXG/GXW motifs are molecular switches controlling membrane interaction and pore formation. EsxF is accessible on the bacterial cell surface, suggesting that EsxEF form an outer membrane channel for toxin export. Thus, our study reveals a protein secretion mechanism in bacteria that relies on pore formation by small WXG proteins.
Collapse
|
16
|
Cryoelectron-microscopy structure of the enteropathogenic Escherichia coli type III secretion system EspA filament. Proc Natl Acad Sci U S A 2021; 118:2022826118. [PMID: 33397726 PMCID: PMC7812819 DOI: 10.1073/pnas.2022826118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic Escherichia coli (EHEC) utilize a macromolecular type III secretion system (T3SS) to inject effector proteins into eukaryotic cells. This apparatus spans the inner and outer bacterial membranes and includes a helical needle protruding into the extracellular space. Thus far observed only in EPEC and EHEC and not found in other pathogenic Gram-negative bacteria that have a T3SS is an additional helical filament made by the EspA protein that forms a long extension to the needle, mediating both attachment to eukaryotic cells and transport of effector proteins through the intestinal mucus layer. Here, we present the structure of the EspA filament from EPEC at 3.4 Å resolution. The structure reveals that the EspA filament is a right-handed 1-start helical assembly with a conserved lumen architecture with respect to the needle to ensure the seamless transport of unfolded cargos en route to the target cell. This functional conservation is despite the fact that there is little apparent overall conservation at the level of sequence or structure with the needle. We also unveil the molecular details of the immunodominant EspA epitope that can now be exploited for the rational design of epitope display systems.
Collapse
|
17
|
Umrekar TR, Cohen E, Drobnič T, Gonzalez-Rodriguez N, Beeby M. CryoEM of bacterial secretion systems: A primer for microbiologists. Mol Microbiol 2020; 115:366-382. [PMID: 33140482 DOI: 10.1111/mmi.14637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
"CryoEM" has come of age, enabling considerable structural insights into many facets of molecular biology. Here, we present a primer for microbiologists to understand the capabilities and limitations of two complementary cryoEM techniques for studying bacterial secretion systems. The first, single particle analysis, determines the structures of purified protein complexes to resolutions sufficient for molecular modeling, while the second, electron cryotomography and subtomogram averaging, tends to determine more modest resolution structures of protein complexes in intact cells. We illustrate these abilities with examples of insights provided into how secretion systems work by cryoEM, with a focus on type III secretion systems.
Collapse
Affiliation(s)
| | - Eli Cohen
- Department of Life Sciences, Imperial College London, London, UK
| | - Tina Drobnič
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
18
|
Miletic S, Goessweiner-Mohr N, Marlovits TC. The Structure of the Type III Secretion System Needle Complex. Curr Top Microbiol Immunol 2020; 427:67-90. [PMID: 31667599 DOI: 10.1007/82_2019_178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The type III secretion system (T3SS) is an essential virulence factor of many pathogenic bacterial species including Salmonella, Yersinia, Shigella and enteropathogenic Escherichia coli (EPEC). It is an intricate molecular machine that spans the bacterial membranes and injects effector proteins into target host cells, enabling bacterial infection. The T3SS needle complex comprises of proteinaceous rings supporting a needle filament which extends out into the extracellular environment. It serves as the central conduit for translocating effector proteins. Multiple laboratories have dedicated a remarkable effort to decipher the structure and function of the needle complex. A combination of structural biology techniques such as cryo-electron microscopy (cryoEM), X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and computer modelling have been utilized to study different structural components at progressively higher resolutions. This chapter will provide an overview of the structural details of the T3SS needle complex, shedding light on this essential component of this fascinating bacterial system.
Collapse
Affiliation(s)
- Sean Miletic
- Center for Structural Systems Biology, Institute for Structural and Systems Biology, Universitätsklinikum Hamburg-Eppendorf, 85 Notkestraße, Hamburg, 22607, Germany
| | | | - Thomas C Marlovits
- Center for Structural Systems Biology, Institute for Structural and Systems Biology, Universitätsklinikum Hamburg-Eppendorf, 85 Notkestraße, Hamburg, 22607, Germany.
| |
Collapse
|
19
|
Hu J, Worrall LJ, Strynadka NCJ. Towards capture of dynamic assembly and action of the T3SS at near atomic resolution. Curr Opin Struct Biol 2020; 61:71-78. [DOI: 10.1016/j.sbi.2019.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 11/30/2022]
|
20
|
Russo BC, Duncan JK, Wiscovitch AL, Hachey AC, Goldberg MB. Activation of Shigella flexneri type 3 secretion requires a host-induced conformational change to the translocon pore. PLoS Pathog 2019; 15:e1007928. [PMID: 31725799 PMCID: PMC6879154 DOI: 10.1371/journal.ppat.1007928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/26/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Type 3 secretion systems (T3SSs) are conserved bacterial nanomachines that inject virulence proteins (effectors) into eukaryotic cells during infection. Due to their ability to inject heterologous proteins into human cells, these systems are being developed as therapeutic delivery devices. The T3SS assembles a translocon pore in the plasma membrane and then docks onto the pore. Docking activates effector secretion through the pore and into the host cytosol. Here, using Shigella flexneri, a model pathogen for the study of type 3 secretion, we determined the molecular mechanisms by which host intermediate filaments trigger docking and enable effector secretion. We show that the interaction of intermediate filaments with the translocon pore protein IpaC changed the pore's conformation in a manner that was required for docking. Intermediate filaments repositioned residues of the Shigella pore protein IpaC that are located on the surface of the pore and in the pore channel. Restricting these conformational changes blocked docking in an intermediate filament-dependent manner. These data demonstrate that a host-induced conformational change to the pore enables T3SS docking and effector secretion, providing new mechanistic insight into the regulation of type 3 secretion.
Collapse
Affiliation(s)
- Brian C. Russo
- Center for Bacterial Pathogenesis, Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeffrey K. Duncan
- Center for Bacterial Pathogenesis, Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Alexandra L. Wiscovitch
- Center for Bacterial Pathogenesis, Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Research Scholar Initiative, The Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Austin C. Hachey
- Center for Bacterial Pathogenesis, Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Marcia B. Goldberg
- Center for Bacterial Pathogenesis, Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
21
|
Habenstein B, El Mammeri N, Tolchard J, Lamon G, Tawani A, Berbon M, Loquet A. Structures of Type III Secretion System Needle Filaments. Curr Top Microbiol Immunol 2019; 427:109-131. [PMID: 31974760 DOI: 10.1007/82_2019_192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among the Gram-negative bacterial secretion systems, type III secretion systems (T3SS) possess a unique extracellular molecular apparatus called the needle. This macromolecular protein assembly is a nanometre-size filament formed by the helical arrangement of hundreds of copies of a single, small protein, which is highly conserved between T3SSs from animal to plant bacterial pathogens. The needle filament forms a hollow tube with a channel ~20 Å in diameter that serves as a conduit for proteins secreted into the targeted host cell. In the past ten years, technical breakthroughs in biophysical techniques such as cryo-electron microscopy (cryo-EM) and solid-state NMR (SSNMR) spectroscopy have uncovered atomic resolution details about the T3SS needle assembly. Several high-resolution structures of Salmonella typhimurium and Shigella flexneri T3SS needles have been reported demonstrating a common structural fold. These structural models have been used to explain the active role of the needle in transmitting the host-cell contact signal from the tip to the base of the T3SS through conformational changes as well as during the injection of effector proteins. In this chapter, we summarize the current knowledge about the structure and the role of the T3SS needle during T3SS assembly and effector secretion.
Collapse
Affiliation(s)
- Birgit Habenstein
- University of Bordeaux, CNRS, UMR 5248, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, Pessac, 33607, France.
| | - Nadia El Mammeri
- University of Bordeaux, CNRS, UMR 5248, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, Pessac, 33607, France
| | - James Tolchard
- University of Bordeaux, CNRS, UMR 5248, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, Pessac, 33607, France
| | - Gaëlle Lamon
- University of Bordeaux, CNRS, UMR 5248, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, Pessac, 33607, France
| | - Arpita Tawani
- University of Bordeaux, CNRS, UMR 5248, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, Pessac, 33607, France
| | - Mélanie Berbon
- University of Bordeaux, CNRS, UMR 5248, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, Pessac, 33607, France
| | - Antoine Loquet
- University of Bordeaux, CNRS, UMR 5248, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, Pessac, 33607, France.
| |
Collapse
|