1
|
Xie X, Liu W, Yuan Z, Chen H, Mao W. Bridging epigenomics and tumor immunometabolism: molecular mechanisms and therapeutic implications. Mol Cancer 2025; 24:71. [PMID: 40057791 PMCID: PMC11889836 DOI: 10.1186/s12943-025-02269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/11/2025] [Indexed: 04/02/2025] Open
Abstract
Epigenomic modifications-such as DNA methylation, histone acetylation, and histone methylation-and their implications in tumorigenesis, progression, and treatment have emerged as a pivotal field in cancer research. Tumors undergo metabolic reprogramming to sustain proliferation and metastasis in nutrient-deficient conditions, while suppressing anti-tumor immunity in the tumor microenvironment (TME). Concurrently, immune cells within the immunosuppressive TME undergo metabolic adaptations, leading to alterations in their immune function. The complicated interplay between metabolites and epigenomic modulation has spotlighted the significance of epigenomic regulation in tumor immunometabolism. In this review, characteristics of the epigenomic modification associated with tumors are systematically summarized alongside with their regulatory roles in tumor metabolic reprogramming and immunometabolism. Classical and emerging approaches are delineated to broaden the boundaries of research on the crosstalk research on the crosstalk between tumor immunometabolism and epigenomics. Furthermore, we discuss potential therapeutic strategies that target tumor immunometabolism to modulate epigenomic modifications, highlighting the burgeoning synergy between metabolic therapies and immunotherapy as a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Xiaowen Xie
- Department of Thoracic Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Weici Liu
- Department of Thoracic Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
- Center of Clinical Research, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Zhiyuan Yuan
- Institute of Science and Technology for Brain-Inspired Intelligence; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
| | - Hanqing Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Wenjun Mao
- Department of Thoracic Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
2
|
Ouyang C, Huang J, Huang G, Wang Y. Dendritic cell immunometabolism - a potential therapeutic target for allergic diseases. Int J Med Sci 2025; 22:417-431. [PMID: 39781535 PMCID: PMC11704690 DOI: 10.7150/ijms.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/14/2024] [Indexed: 01/12/2025] Open
Abstract
Allergic diseases are a group of chronic inflammatory disorders driven by abnormal immune responses. Dendritic cells (DCs) play a pivotal role in the initiation and progression of allergic diseases by modulating T cell responses. Extensive progress has been made in characterizing crucial roles of metabolic reprogramming in the regulation of immune cell functions. As the critical upstream regulators and effectors in allergic responses, the activation, migration, and function of DCs are reliant on metabolic reprogramming. In this review, we summarize the metabolic characteristics of DCs, and how the cellular microenvironment shapes DC function. We also elucidate the metabolic regulation of DC biology in the context of allergic diseases and targeted therapeutic strategies based on DC metabolism regulation. Understanding the functional alterations in DCs during allergic responses and the underlying mechanisms governing its metabolic regulation is crucial for the development of effective strategies for the prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
| | | | | | - Yanyan Wang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University. Dongguan, Guangdong 523808, China
| |
Collapse
|
3
|
Ghosh S, Dutta R, Ghatak D, Goswami D, De R. Immunometabolic characteristics of Dendritic Cells and its significant modulation by mitochondria-associated signaling in the tumor microenvironment influence cancer progression. Biochem Biophys Res Commun 2024; 726:150268. [PMID: 38909531 DOI: 10.1016/j.bbrc.2024.150268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Dendritic cells (DCs) mediated T-cell responses is critical to anti-tumor immunity. This study explores immunometabolic attributes of DC, emphasizing on mitochondrial association, in Tumor Microenvironment (TME) that regulate cancer progression. Conventional DC subtypes cross-present tumor-associated antigens to activate lymphocytes. However, plasmacytoid DCs participate in both pro- and anti-tumor signaling where mitochondrial reactive oxygen species (mtROS) play crucial role. CTLA-4, CD-47 and other surface-receptors of DC negatively regulates T-cell. Increased glycolysis-mediated mitochondrial citrate buildup and translocation to cytosol with augmented NADPH, enhances mitochondrial fatty acid synthesis fueling DCs. Different DC subtypes and stages, exhibit variable mitochondrial content, membrane potential, structural dynamics and bioenergetic metabolism regulated by various cytokine stimulation, e.g., GM-CSF, IL-4, etc. CD8α+ cDC1s augmented oxidative phosphorylation (OXPHOS) which diminishes at advance effector stages. Glutaminolysis in mitochondria supplement energy in DCs but production of kynurenine and other oncometabolites leads to immunosuppression. Mitochondria-associated DAMPs cause activation of cGAS-STING pathway and inflammasome oligomerization stimulating DC and T cells. In this study, through a comprehensive survey and critical analysis of the latest literature, the potential of DC metabolism for more effective tumor therapy is highlighted. This underscores the need for future research to explore specific therapeutic targets and potential drug candidates.
Collapse
Affiliation(s)
- Sayak Ghosh
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rittick Dutta
- Swami Vivekananda University, Kolkata, 700121, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Devyani Goswami
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
4
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
5
|
Pant T, Uche N, Juric M, Zielonka J, Bai X. Regulation of immunomodulatory networks by Nrf2-activation in immune cells: Redox control and therapeutic potential in inflammatory diseases. Redox Biol 2024; 70:103077. [PMID: 38359749 PMCID: PMC10877431 DOI: 10.1016/j.redox.2024.103077] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
Inflammatory diseases present a serious health challenge due to their widespread prevalence and the severe impact on patients' lives. In the quest to alleviate the burden of these diseases, nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a pivotal player. As a transcription factor intimately involved in cellular defense against metabolic and oxidative stress, Nrf2's role in modulating the inflammatory responses of immune cells has garnered significant attention. Recent findings suggest that Nrf2's ability to alter the redox status of cells underlies its regulatory effects on immune responses. Our review delves into preclinical and clinical evidence that underscores the complex influence of Nrf2 activators on immune cell phenotypes, particularly in the inflammatory milieu. By offering a detailed analysis of Nrf2's role in different immune cell populations, we cast light on the potential of Nrf2 activators in shaping the immune response towards a more regulated state, mitigating the adverse effects of inflammation through modeling redox status of immune cells. Furthermore, we explore the innovative use of nanoencapsulation techniques that enhance the delivery and efficacy of Nrf2 activators, potentially advancing the treatment strategies for inflammatory ailments. We hope this review will stimulate the development and expansion of Nrf2-targeted treatments that could substantially improve outcomes for patients suffering from a broad range of inflammatory diseases.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Nnamdi Uche
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matea Juric
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
6
|
Abstract
Dendritic cells (DCs) are innate immune cells that detect and process environmental signals and communicate them with T cells to bridge innate and adaptive immunity. Immune signals and microenvironmental cues shape the function of DC subsets in different contexts, which is associated with reprogramming of cellular metabolic pathways. In addition to integrating these extracellular cues to meet bioenergetic and biosynthetic demands, cellular metabolism interplays with immune signaling to shape DC-dependent immune responses. Emerging evidence indicates that lipid metabolism serves as a key regulator of DC responses. Here, we summarize the roles of fatty acid and cholesterol metabolism, as well as selective metabolites, in orchestrating the functions of DCs. Specifically, we highlight how different lipid metabolic programs, including de novo fatty acid synthesis, fatty acid β oxidation, lipid storage, and cholesterol efflux, influence DC function in different contexts. Further, we discuss how dysregulation of lipid metabolism shapes DC intracellular signaling and contributes to the impaired DC function in the tumor microenvironment. Finally, we conclude with a discussion on key future directions for the regulation of DC biology by lipid metabolism. Insights into the connections between lipid metabolism and DC functional specialization may facilitate the development of new therapeutic strategies for human diseases.
Collapse
Affiliation(s)
- Zhiyuan You
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
7
|
Kaldirim M, Lang A, Pfeiler S, Fiegenbaum P, Kelm M, Bönner F, Gerdes N. Modulation of mTOR Signaling in Cardiovascular Disease to Target Acute and Chronic Inflammation. Front Cardiovasc Med 2022; 9:907348. [PMID: 35845058 PMCID: PMC9280721 DOI: 10.3389/fcvm.2022.907348] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023] Open
Abstract
Inflammation is a key component in the pathogenesis of cardiovascular diseases causing a significant burden of morbidity and mortality worldwide. Recent research shows that mammalian target of rapamycin (mTOR) signaling plays an important role in the general and inflammation-driven mechanisms that underpin cardiovascular disease. mTOR kinase acts prominently in signaling pathways that govern essential cellular activities including growth, proliferation, motility, energy consumption, and survival. Since the development of drugs targeting mTOR, there is proven efficacy in terms of survival benefit in cancer and allograft rejection. This review presents current information and concepts of mTOR activity in myocardial infarction and atherosclerosis, two important instances of cardiovascular illness involving acute and chronic inflammation. In experimental models, inhibition of mTOR signaling reduces myocardial infarct size, enhances functional remodeling, and lowers the overall burden of atheroma. Aside from the well-known effects of mTOR inhibition, which are suppression of growth and general metabolic activity, mTOR also impacts on specific leukocyte subpopulations and inflammatory processes. Inflammatory cell abundance is decreased due to lower migratory capacity, decreased production of chemoattractants and cytokines, and attenuated proliferation. In contrast to the generally suppressed growth signals, anti-inflammatory cell types such as regulatory T cells and reparative macrophages are enriched and activated, promoting resolution of inflammation and tissue regeneration. Nonetheless, given its involvement in the control of major cellular pathways and the maintenance of a functional immune response, modification of this system necessitates a balanced and time-limited approach. Overall, this review will focus on the advancements, prospects, and limits of regulating mTOR signaling in cardiovascular disease.
Collapse
Affiliation(s)
- Madlen Kaldirim
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Alexander Lang
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Susanne Pfeiler
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Pia Fiegenbaum
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany.,Medical Faculty, Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine University, Düsseldorf, Germany
| | - Florian Bönner
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany.,Medical Faculty, Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine University, Düsseldorf, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany.,Medical Faculty, Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
8
|
Lou X, Gao H, Xu X, Ye Z, Zhang W, Wang F, Chen J, Zhang Y, Chen X, Qin Y, Yu X, Ji S. The Interplay of Four Main Pathways Recomposes Immune Landscape in Primary and Metastatic Gastroenteropancreatic Neuroendocrine Tumors. Front Oncol 2022; 12:808448. [PMID: 35664743 PMCID: PMC9158120 DOI: 10.3389/fonc.2022.808448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The four major pathways in gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) including chromatin remodeling, DNA damage repair, activation of mTOR signaling, and telomere maintenance were mediated by some critical molecules and constituted critical processes of regulation in cancer-causing processes. However, the interplay and potential role of these pathway-related molecules in the tumor microenvironment of the primary and metastatic site remained unknown. METHODS We systematically evaluated the mRNA expression of 34 molecules associated with the four pathways in 227 GEP-NEN samples from 5 datasets. We assigned the samples into two expression patterns of pathway-related molecules by an unsupervised clustering method. Subsequently, we explored the specific cell-related molecules, especially immune and stromal cells using the WGCNA method, based on differentially expressed genes (DEGs) responsible for the different patterns of pathway-related molecules, which provided a new method to qualify the pathway-related subtypes of individual tumors, then the PC_Score and PI_Score scoring systems were also constructed using obtained specific cell-related molecules. Furthermore, we performed the association of pathway-related subtypes with characteristics of immune landscape in primary and metastatic GEP-NENs. RESULTS We demonstrated that the specific pathway-related molecules (SMARCA4, MLH1, TSC1, ATRX, and ATR) were associated with cytolytic activity. Then we identified the two distinct patterns of pathway-related molecules, which were characteristic with a significantly distinct immune landscape. Using WGCNA, we also identified the fibroblast-related molecules, including ASPN, COL10A1, COL3A1, EDNRA, MYL9, PRELP, RAB31, SPARC, and THBS2, and immune-related molecules including CASP1, CCL5, CTSS, CYBRD1, PMP22, and TFEC. Based on these specific markers, we identified four distinct pathway-related subtypes, characterized by immune and fibrotic enriched (I/FE), immune enriched (IE), fibrotic enriched (FE), and immune and fibrotic desert (I/FD), of which I/FE was characteristic with the highest PC_Score and PI_Score whereas I/FD presents the opposite trend. I/FE was positively correlated with immune landscape of T-cell activation and immunosuppression. Furthermore, the I/FE marked GEP-NENs with increased immune activation scores (T-cell costimulation, MHC I presentation, and APC costimulation). Importantly, the four distinct pathway-related subtypes were not conserved in different tumor sites, because I/FE was lacking in the liver metastatic site even though IE, FE, and I/FD also could be observed in the metastatic site. CONCLUSIONS This study was the first to perform a comprehensive analysis of the four major pathways in GEP-NENs. We demonstrated the potential function of these pathway-related molecules in immune landscapes. Our findings indicated that the primary and metastatic GEP-NENs had distinct antitumor phenotypes. This work highlighted the interplay and potential clinical utility of these pathway-related molecules in GEP-NENs.
Collapse
Affiliation(s)
- Xin Lou
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Heli Gao
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xiaowu Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zeng Ye
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wuhu Zhang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Fei Wang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yue Zhang
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xuemin Chen
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yi Qin
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Lv N, Jin S, Liang Z, Wu X, Kang Y, Su L, Dong Y, Wang B, Ma T, Shi L. PP2Cδ Controls the Differentiation and Function of Dendritic Cells Through Regulating the NSD2/mTORC2/ACLY Pathway. Front Immunol 2022; 12:751409. [PMID: 35069527 PMCID: PMC8777276 DOI: 10.3389/fimmu.2021.751409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/16/2021] [Indexed: 12/29/2022] Open
Abstract
Dendritic cells (DCs) are recognized as a key orchestrator of immune response and homeostasis, deregulation of which may lead to autoimmunity such as experimental autoimmune encephalomyelitis (EAE). Herein we show that the phosphatase PP2Cδ played a pivotal role in regulating DC activation and function, as PP2Cδ ablation caused aberrant maturation, activation, and Th1/Th17-priming of DCs, and hence induced onset of exacerbated EAE. Mechanistically, PP2Cδ restrained the expression of the essential subunit of mTORC2, Rictor, primarily through de-phosphorylating and proteasomal degradation of the methyltransferase NSD2 via CRL4DCAF2 E3 ligase. Loss of PP2Cδ in DCs accordingly sustained activation of the Rictor/mTORC2 pathway and boosted glycolytic and mitochondrial metabolism. Consequently, ATP-citrate lyse (ACLY) was increasingly activated and catalyzed acetyl-CoA for expression of the genes compatible with hyperactivated DCs under PP2Cδ deletion. Collectively, our findings demonstrate that PP2Cδ has an essential role in controlling DCs activation and function, which is critical for prevention of autoimmunity.
Collapse
Affiliation(s)
- Nianyin Lv
- Department of Immunology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sufeng Jin
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Key Lab of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Zihao Liang
- Department of Immunology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohui Wu
- Department of Immunology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanhua Kang
- Department of Immunology, Nanjing University of Chinese Medicine, Nanjing, China.,Key Lab of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Lan Su
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, China
| | - Yeping Dong
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, China
| | - Bingwei Wang
- College of Medicine and Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tonghui Ma
- College of Medicine and Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyun Shi
- Department of Immunology, Nanjing University of Chinese Medicine, Nanjing, China.,Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
10
|
Xu L, Wu Q, Yan H, Shu C, Fan W, Tong X, Li Q. Long noncoding RNA KB-1460A1.5 inhibits glioma tumorigenesis via miR-130a-3p/TSC1/mTOR/YY1 feedback loop. Cancer Lett 2022; 525:33-45. [PMID: 34728310 DOI: 10.1016/j.canlet.2021.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been shown to be closely related to cancer progression and therapy. However, the clinical significance of lncRNAs and the mechanisms by which they function in glioma are largely unknown. In this study, using online data sets combined with collected clinical glioma tissues, we determined that the lncRNA KB-1460A1.5 is downregulated and positively correlated with prognosis in glioma. Functional experiments showed that overexpression of KB-1460A1.5 inhibits glioma cell proliferation, migration and invasion in vitro and in vivo, while downregulation of KB-1460A1.5 has the opposite effects. Mechanistically, tandem mass tag (TMT)-based quantitative proteomic analysis revealed that KB-1460A1.5 preferentially affects the Akt/TSC1/mTOR pathway. KB-1460A1.5 was found to function as a competing endogenous RNA (ceRNA) to regulate the expression of TSC1, a key regulatory component of the mTOR pathway, by sponging miR-130a-3p in glioma cells. Furthermore, our data demonstrate that the mTOR pathway regulates the expression of the transcription factor Yin Yang 1 (YY1), which in turn binds directly to the KB-1460A1.5 promoter and affects the expression of KB-1460A1.5. Untargeted metabolomics and quantitative real-time PCR (qRT-PCR) analysis further confirmed the effects of KB-1460A1.5 on amino acid metabolism. In conclusion, this study revealed that lncRNA KB-1460A1.5 inhibits glioma tumorigenesis via miR-130a-3p/TSC1/mTOR/YY1 feedback loop.
Collapse
Affiliation(s)
- Lixia Xu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, 300350, PR China
| | - Qiaoli Wu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, 300350, PR China
| | - Hua Yan
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, 300350, PR China; Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, PR China
| | - Chang Shu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, 300350, PR China
| | - Weijia Fan
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, 300350, PR China
| | - Xiaoguang Tong
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, 300350, PR China; Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, PR China.
| | - Qingguo Li
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, 300350, PR China; Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, PR China.
| |
Collapse
|
11
|
Lian X, Yang K, Li R, Li M, Zuo J, Zheng B, Wang W, Wang P, Zhou S. Immunometabolic rewiring in tumorigenesis and anti-tumor immunotherapy. Mol Cancer 2022; 21:27. [PMID: 35062950 PMCID: PMC8780708 DOI: 10.1186/s12943-021-01486-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
Cellular metabolism constitutes a fundamental process in biology. During tumor initiation and progression, each cellular component in the cancerous niche undergoes dramatic metabolic reprogramming, adapting to a challenging microenvironment of hypoxia, nutrient deprivation, and other stresses. While the metabolic hallmarks of cancer have been extensively studied, the metabolic states of the immune cells are less well elucidated. Here we review the metabolic disturbance and fitness of the immune system in the tumor microenvironment (TME), focusing on the impact of oncometabolites to the function of immune cells and the clinical significance of targeting metabolism in anti-tumor immunotherapy. Metabolic alterations in the immune system of TME offer novel therapeutic insight into cancer treatment.
Collapse
|
12
|
Das S, Mukhopadhyay I. TiMEG: an integrative statistical method for partially missing multi-omics data. Sci Rep 2021; 11:24077. [PMID: 34911979 PMCID: PMC8674330 DOI: 10.1038/s41598-021-03034-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
Multi-omics data integration is widely used to understand the genetic architecture of disease. In multi-omics association analysis, data collected on multiple omics for the same set of individuals are immensely important for biomarker identification. But when the sample size of such data is limited, the presence of partially missing individual-level observations poses a major challenge in data integration. More often, genotype data are available for all individuals under study but gene expression and/or methylation information are missing for different subsets of those individuals. Here, we develop a statistical model TiMEG, for the identification of disease-associated biomarkers in a case-control paradigm by integrating the above-mentioned data types, especially, in presence of missing omics data. Based on a likelihood approach, TiMEG exploits the inter-relationship among multiple omics data to capture weaker signals, that remain unidentified in single-omic analysis or common imputation-based methods. Its application on a real tuberous sclerosis dataset identified functionally relevant genes in the disease pathway.
Collapse
Affiliation(s)
- Sarmistha Das
- Human Genetics Unit, Indian Statistical Institute, Kolkata, 700108, India
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, 38105, USA
| | | |
Collapse
|
13
|
Zhang J, Lu Q, Pang H, Zhang M, Wei W. MiR-103a-3p aggravates renal cell carcinoma by targeting TMEM33. Am J Transl Res 2021; 13:12694-12703. [PMID: 34956484 PMCID: PMC8661195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/31/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE We investigated the mechanism of miR-103a-3p-mediated renal cell carcinoma (RCC) progression. METHODS The miR-103a-3p expressions were measured in clinical samples and in two RCC cell lines. MiR-103a-3p was inhibited or over-expressed in the 786-O and UO31 cell lines, respectively. RESULTS We found that miR-103a-3p is closely related to the development of RCC cells. A bioinformatics analysis and a dual-luciferase reporter gene assay revealed that there is a direct interaction between TMEM33 and miR-103a-3p. Moreover, a rescue assay further confirmed that TMEM33 overexpression can attenuate miR-103a-3p-induced RCC cell development. CONCLUSION miR-103a-3p exerts a carcinogenic function in RCC by regulating TMEM33, a finding that may provide new insights into the development of prognostic markers and therapeutic targets for RCC.
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of Urology, The Fourth People’s Hospital of ShenyangShenyang 110031, Liaoning Province, China
| | - Qingbo Lu
- Department of Emergency, Ningyang County First People’s HospitalTai’an 271400, Shandong Province, China
| | - Haigang Pang
- Department of Urology, The 971 Hospital of Chinese People’s Liberation Army NavyQingdao 266071, Shandong Province, China
| | - Min Zhang
- Department of Geriatrics, Sishui County People’s HospitalJi’ning 273200, Shandong Province, China
| | - Wenhai Wei
- Department of Anesthesiology, Shouguang Maternal and Child Care HospitalWeifang 262700, Shandong Province, China
| |
Collapse
|
14
|
Chen CL, Hsu SC, Ann DK, Yen Y, Kung HJ. Arginine Signaling and Cancer Metabolism. Cancers (Basel) 2021; 13:3541. [PMID: 34298755 PMCID: PMC8306961 DOI: 10.3390/cancers13143541] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Arginine is an amino acid critically involved in multiple cellular processes including the syntheses of nitric oxide and polyamines, and is a direct activator of mTOR, a nutrient-sensing kinase strongly implicated in carcinogenesis. Yet, it is also considered as a non- or semi-essential amino acid, due to normal cells' intrinsic ability to synthesize arginine from citrulline and aspartate via ASS1 (argininosuccinate synthase 1) and ASL (argininosuccinate lyase). As such, arginine can be used as a dietary supplement and its depletion as a therapeutic strategy. Strikingly, in over 70% of tumors, ASS1 transcription is suppressed, rendering the cells addicted to external arginine, forming the basis of arginine-deprivation therapy. In this review, we will discuss arginine as a signaling metabolite, arginine's role in cancer metabolism, arginine as an epigenetic regulator, arginine as an immunomodulator, and arginine as a therapeutic target. We will also provide a comprehensive summary of ADI (arginine deiminase)-based arginine-deprivation preclinical studies and an update of clinical trials for ADI and arginase. The different cell killing mechanisms associated with various cancer types will also be described.
Collapse
Affiliation(s)
- Chia-Lin Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan;
| | - Sheng-Chieh Hsu
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu 30035, Taiwan;
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan
| | - David K. Ann
- Department of Diabetes and Metabolic Diseases Research, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Yun Yen
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan;
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Comprehensive Cancer Center, Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
15
|
Shi Y, Shen HM, Gopalakrishnan V, Gordon N. Epigenetic Regulation of Autophagy Beyond the Cytoplasm: A Review. Front Cell Dev Biol 2021; 9:675599. [PMID: 34195194 PMCID: PMC8237754 DOI: 10.3389/fcell.2021.675599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a highly conserved catabolic process induced under various stress conditions to protect the cell from harm and allow survival in the face of nutrient- or energy-deficient states. Regulation of autophagy is complex, as cells need to adapt to a continuously changing microenvironment. It is well recognized that the AMPK and mTOR signaling pathways are the main regulators of autophagy. However, various other signaling pathways have also been described to regulate the autophagic process. A better understanding of these complex autophagy regulatory mechanisms will allow the discovery of new potential therapeutic targets. Here, we present a brief overview of autophagy and its regulatory pathways with emphasis on the epigenetic control mechanisms.
Collapse
Affiliation(s)
- Yin Shi
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Vidya Gopalakrishnan
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nancy Gordon
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
16
|
Jin J, Qian F, Zheng D, He W, Gong J, He Q. Mesenchymal Stem Cells Attenuate Renal Fibrosis via Exosomes-Mediated Delivery of microRNA Let-7i-5p Antagomir. Int J Nanomedicine 2021; 16:3565-3578. [PMID: 34079249 PMCID: PMC8164705 DOI: 10.2147/ijn.s299969] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/30/2021] [Indexed: 01/17/2023] Open
Abstract
Background Renal fibrosis is a chronic and progressive process affecting kidneys in chronic kidney disease (CKD). Mesenchymal stem cells-derived exosomes (MSCs-Exo) have been shown to alleviate renal fibrosis and injury, but the mechanism of MSCs-Exo-induced renal protection remains unknown. Methods In this study, MSCs were transfected with let-7i-5p antagomir (anti-let-7i-5p), and then exosomes were isolated from the transfected MSCs to deliver anti-let-7i-5p oligonucleotides to inhibit the level of let-7i-5p in kidney tubular epithelial cells (NRK-52E). Results In both NRK-52E cells stimulated by TGF-β1 and the mouse kidneys after unilateral ureteral obstruction (UUO), we demonstrated increased level of let-7i-5p. In addition, MSCs-Exo can deliver anti-let-7i-5p to reduce the level of let-7i-5p in NRK-52E cells and increase the expression of its target gene TSC1. Moreover, exosomal anti-let-7i-5p reduced extracellular matrix (ECM) deposition and attenuated epithelial-mesenchymal transition (EMT) process in transforming growth factor beta 1 (TGF-β1)-stimulated NRK-52E cells and in the kidneys of UUO-treated mice. Meanwhile, mice received exosomal anti-let-7i-5p displayed reduced renal fibrosis and improved kidney function when challenged with UUO. Furthermore, exosomal anti-let-7i-5p promoted the activation the tuberous sclerosis complex subunit 1/mammalian target of rapamycin (TSC1/mTOR) signaling pathway in vivo and in vitro. Conclusion In conclusion, exosomal anti-let-7i-5p from MSCs exerts anti-fibrotic effects in TGF-β1-induced fibrogenic responses in NRK52E cells in vitro as well as in UUO-induced renal fibrosis model in vivo. These results provided a novel perspective on improving renal fibrosis by MSCs-Exo.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Fengmei Qian
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Danna Zheng
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Wenfang He
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Jianguang Gong
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People's Republic of China
| |
Collapse
|
17
|
Ahn R, Ursini-Siegel J. Clinical Potential of Kinase Inhibitors in Combination with Immune Checkpoint Inhibitors for the Treatment of Solid Tumors. Int J Mol Sci 2021; 22:ijms22052608. [PMID: 33807608 PMCID: PMC7961781 DOI: 10.3390/ijms22052608] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Oncogenic kinases contribute to immunosuppression and modulate the tumor microenvironment in solid tumors. Increasing evidence supports the fundamental role of oncogenic kinase signaling networks in coordinating immunosuppressive tumor microenvironments. This has led to numerous studies examining the efficacy of kinase inhibitors in inducing anti-tumor immune responses by increasing tumor immunogenicity. Kinase inhibitors are the second most common FDA-approved group of drugs that are deployed for cancer treatment. With few exceptions, they inevitably lead to intrinsic and/or acquired resistance, particularly in patients with metastatic disease when used as a monotherapy. On the other hand, cancer immunotherapies, including immune checkpoint inhibitors, have revolutionized cancer treatment for malignancies such as melanoma and lung cancer. However, key hurdles remain to successfully incorporate such therapies in the treatment of other solid cancers. Here, we review the recent literature on oncogenic kinases that regulate tumor immunogenicity, immune suppression, and anti-tumor immunity. Furthermore, we discuss current efforts in clinical trials that combine kinase inhibitors and immune checkpoint inhibitors to treat breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Ryuhjin Ahn
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Josie Ursini-Siegel
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC H3A 0G4, Canada
- Department of Oncology, McGill University, 546 Pine Avenue West, Montréal, QC H2W 1S6, Canada
- Correspondence: ; Tel.: +514-340-8222 (ext. 26557); Fax: +514-340-7502
| |
Collapse
|
18
|
Peng X, He Y, Huang J, Tao Y, Liu S. Metabolism of Dendritic Cells in Tumor Microenvironment: For Immunotherapy. Front Immunol 2021; 12:613492. [PMID: 33732237 PMCID: PMC7959811 DOI: 10.3389/fimmu.2021.613492] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are a type of an antigen-presenting cell which undertake a job on capturing antigens coming from pathogens or tumors and presenting to T cells for immune response. The metabolism of DCs controls its development, polarization, and maturation processes and provides energy support for its functions. However, the immune activity of DCs in tumor microenvironment (TME) is inhibited generally. Abnormal metabolism of tumor cells causes metabolic changes in TME, such as hyperglycolysis, lactate and lipid accumulation, acidification, tryptophan deprivation, which limit the function of DCs and lead to the occurrence of tumor immune escape. Combined metabolic regulation with immunotherapy can strengthen the ability of antigen-presentation and T cell activation of DCs, improve the existing anti-tumor therapy, and overcome the defects of DC-related therapies in the current stage, which has great potential in oncology therapy. Therefore, we reviewed the glucose, lipid, and amino acid metabolism of DCs, as well as the metabolic changes after being affected by TME. Together with the potential metabolic targets of DCs, possible anti-tumor therapeutic pathways were summarized.
Collapse
Affiliation(s)
- Xin Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Youe He
- Department of Translational Medicine, Cancer Biological Treatment Center, Xiangya Hospital, Central South University, Changsha, China.,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis of Ministry of Health, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Mallela K, Kumar A. Role of TSC1 in physiology and diseases. Mol Cell Biochem 2021; 476:2269-2282. [PMID: 33575875 DOI: 10.1007/s11010-021-04088-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Since its initial discovery as the gene altered in Tuberous Sclerosis Complex (TSC), an autosomal dominant disorder, the interest in TSC1 (Tuberous Sclerosis Complex 1) has steadily risen. TSC1, an essential component of the pro-survival PI3K/AKT/MTOR signaling pathway, plays an important role in processes like development, cell growth and proliferation, survival, autophagy and cilia development by co-operating with a variety of regulatory molecules. Recent studies have emphasized the tumor suppressive role of TSC1 in several human cancers including liver, lung, bladder, breast, ovarian, and pancreatic cancers. TSC1 perceives inputs from various signaling pathways, including TNF-α/IKK-β, TGF-β-Smad2/3, AKT/Foxo/Bim, Wnt/β-catenin/Notch, and MTOR/Mdm2/p53 axis, thereby regulating cancer cell proliferation, metabolism, migration, invasion, and immune regulation. This review provides a first comprehensive evaluation of TSC1 and illuminates its diverse functions apart from its involvement in TSC genetic disorder. Further, we have summarized the physiological functions of TSC1 in various cellular events and conditions whose dysregulation may lead to several pathological manifestations including cancer.
Collapse
Affiliation(s)
- Karthik Mallela
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
20
|
Minarrieta L, Velasquez LN, Sparwasser T, Berod L. Dendritic cell metabolism: moving beyond in vitro-culture-generated paradigms. Curr Opin Biotechnol 2021; 68:202-212. [PMID: 33517147 DOI: 10.1016/j.copbio.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) are key orchestrators of immunity and tolerance. It has become evident that DC function can be influenced by cellular metabolic programs. However, conclusions from early metabolic studies using in vitro GM-CSF DC cultures fail to correlate with bona fide DC populations. Here, we discuss the existing paradigms in the DC metabolism field, focusing on the limitations of the models utilized. Furthermore, we introduce alternative models to generate DCs in vitro that better emulate DCs found in vivo. Finally, we highlight new techniques to evaluate DC metabolism at the single-cell level. The combination of these two strategies could help advance the DC metabolism field towards a more physiological understanding, which is crucial for the development of effective DC-based therapies.
Collapse
Affiliation(s)
- Lucía Minarrieta
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Lis Noelia Velasquez
- Institute of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luciana Berod
- Institute of Molecular Medicine, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
21
|
Acevedo N, Scala G, Merid SK, Frumento P, Bruhn S, Andersson A, Ogris C, Bottai M, Pershagen G, Koppelman GH, Melén E, Sonnhammer E, Alm J, Söderhäll C, Kere J, Greco D, Scheynius A. DNA Methylation Levels in Mononuclear Leukocytes from the Mother and Her Child Are Associated with IgE Sensitization to Allergens in Early Life. Int J Mol Sci 2021; 22:ijms22020801. [PMID: 33466918 PMCID: PMC7830007 DOI: 10.3390/ijms22020801] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022] Open
Abstract
DNA methylation changes may predispose becoming IgE-sensitized to allergens. We analyzed whether DNA methylation in peripheral blood mononuclear cells (PBMC) is associated with IgE sensitization at 5 years of age (5Y). DNA methylation was measured in 288 PBMC samples from 74 mother/child pairs from the birth cohort ALADDIN (Assessment of Lifestyle and Allergic Disease During INfancy) using the HumanMethylation450BeadChip (Illumina). PBMCs were obtained from the mothers during pregnancy and from their children in cord blood, at 2 years and 5Y. DNA methylation levels at each time point were compared between children with and without IgE sensitization to allergens at 5Y. For replication, CpG sites associated with IgE sensitization in ALADDIN were evaluated in whole blood DNA of 256 children, 4 years old, from the BAMSE (Swedish abbreviation for Children, Allergy, Milieu, Stockholm, Epidemiology) cohort. We found 34 differentially methylated regions (DMRs) associated with IgE sensitization to airborne allergens and 38 DMRs associated with sensitization to food allergens in children at 5Y (Sidak p ≤ 0.05). Genes associated with airborne sensitization were enriched in the pathway of endocytosis, while genes associated with food sensitization were enriched in focal adhesion, the bacterial invasion of epithelial cells, and leukocyte migration. Furthermore, 25 DMRs in maternal PBMCs were associated with IgE sensitization to airborne allergens in their children at 5Y, which were functionally annotated to the mTOR (mammalian Target of Rapamycin) signaling pathway. This study supports that DNA methylation is associated with IgE sensitization early in life and revealed new candidate genes for atopy. Moreover, our study provides evidence that maternal DNA methylation levels are associated with IgE sensitization in the child supporting early in utero effects on atopy predisposition.
Collapse
Affiliation(s)
- Nathalie Acevedo
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs’ Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden; (N.A.); (S.K.M.); (E.M.); (J.A.)
- Institute for Immunological Research, University of Cartagena, 130014 Cartagena, Colombia
| | - Giovanni Scala
- Department of Biology, University of Naples Federico II, 80138 Napoli, Italy;
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
- Institute of Biosciences and Medical Technologies (BioMediTech), Tampere University, 33520 Tampere, Finland
| | - Simon Kebede Merid
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs’ Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden; (N.A.); (S.K.M.); (E.M.); (J.A.)
| | - Paolo Frumento
- Department of Political Sciences, University of Pisa, 56126 Pisa, Italy;
| | - Sören Bruhn
- Department of Medicine Solna, Translational Immunology Unit, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (S.B.); (A.A.)
| | - Anna Andersson
- Department of Medicine Solna, Translational Immunology Unit, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (S.B.); (A.A.)
| | - Christoph Ogris
- Stockholm Bioinformatics Center, Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, SE-17121 Solna, Sweden; (C.O.); (E.S.)
- Institute of Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Matteo Bottai
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (M.B.); (G.P.)
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (M.B.); (G.P.)
| | - Gerard H. Koppelman
- Section of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Erik Melén
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs’ Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden; (N.A.); (S.K.M.); (E.M.); (J.A.)
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (M.B.); (G.P.)
| | - Erik Sonnhammer
- Stockholm Bioinformatics Center, Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, SE-17121 Solna, Sweden; (C.O.); (E.S.)
| | - Johan Alm
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs’ Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden; (N.A.); (S.K.M.); (E.M.); (J.A.)
| | - Cilla Söderhäll
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (C.S.); (J.K.)
- Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (C.S.); (J.K.)
- Folkhälsan Research Institute, Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
- Institute of Biosciences and Medical Technologies (BioMediTech), Tampere University, 33520 Tampere, Finland
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Annika Scheynius
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs’ Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden; (N.A.); (S.K.M.); (E.M.); (J.A.)
- Science for Life Laboratory, Karolinska Institutet, SE-171 65 Solna, Sweden
- Correspondence:
| |
Collapse
|
22
|
Anderson G. Tumour Microenvironment: Roles of the Aryl Hydrocarbon Receptor, O-GlcNAcylation, Acetyl-CoA and Melatonergic Pathway in Regulating Dynamic Metabolic Interactions across Cell Types-Tumour Microenvironment and Metabolism. Int J Mol Sci 2020; 22:E141. [PMID: 33375613 PMCID: PMC7795031 DOI: 10.3390/ijms22010141] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
This article reviews the dynamic interactions of the tumour microenvironment, highlighting the roles of acetyl-CoA and melatonergic pathway regulation in determining the interactions between oxidative phosphorylation (OXPHOS) and glycolysis across the array of cells forming the tumour microenvironment. Many of the factors associated with tumour progression and immune resistance, such as yin yang (YY)1 and glycogen synthase kinase (GSK)3β, regulate acetyl-CoA and the melatonergic pathway, thereby having significant impacts on the dynamic interactions of the different types of cells present in the tumour microenvironment. The association of the aryl hydrocarbon receptor (AhR) with immune suppression in the tumour microenvironment may be mediated by the AhR-induced cytochrome P450 (CYP)1b1-driven 'backward' conversion of melatonin to its immediate precursor N-acetylserotonin (NAS). NAS within tumours and released from tumour microenvironment cells activates the brain-derived neurotrophic factor (BDNF) receptor, TrkB, thereby increasing the survival and proliferation of cancer stem-like cells. Acetyl-CoA is a crucial co-substrate for initiation of the melatonergic pathway, as well as co-ordinating the interactions of OXPHOS and glycolysis in all cells of the tumour microenvironment. This provides a model of the tumour microenvironment that emphasises the roles of acetyl-CoA and the melatonergic pathway in shaping the dynamic intercellular metabolic interactions of the various cells within the tumour microenvironment. The potentiation of YY1 and GSK3β by O-GlcNAcylation will drive changes in metabolism in tumours and tumour microenvironment cells in association with their regulation of the melatonergic pathway. The emphasis on metabolic interactions across cell types in the tumour microenvironment provides novel future research and treatment directions.
Collapse
Affiliation(s)
- George Anderson
- Clinical Research Communications (CRC) Scotland & London, Eccleston Square, London SW1V 6UT, UK
| |
Collapse
|
23
|
Khan P, Siddiqui JA, Maurya SK, Lakshmanan I, Jain M, Ganti AK, Salgia R, Batra SK, Nasser MW. Epigenetic landscape of small cell lung cancer: small image of a giant recalcitrant disease. Semin Cancer Biol 2020; 83:57-76. [PMID: 33220460 PMCID: PMC8218609 DOI: 10.1016/j.semcancer.2020.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Small cell lung cancer (SCLC) is a particular subtype of lung cancer with high mortality. Recent advances in understanding SCLC genomics and breakthroughs of immunotherapy have substantially expanded existing knowledge and treatment modalities. However, challenges associated with SCLC remain enigmatic and elusive. Most of the conventional drug discovery approaches targeting altered signaling pathways in SCLC end up in the 'grave-yard of drug discovery', which mandates exploring novel approaches beyond inhibiting cell signaling pathways. Epigenetic modifications have long been documented as the key contributors to the tumorigenesis of almost all types of cancer, including SCLC. The last decade witnessed an exponential increase in our understanding of epigenetic modifications for SCLC. The present review highlights the central role of epigenetic regulations in acquiring neoplastic phenotype, metastasis, aggressiveness, resistance to chemotherapy, and immunotherapeutic approaches of SCLC. Different types of epigenetic modifications (DNA/histone methylation or acetylation) that can serve as predictive biomarkers for prognostication, treatment stratification, neuroendocrine lineage determination, and development of potential SCLC therapies are also discussed. We also review the utility of epigenetic targets/epidrugs in combination with first-line chemotherapy and immunotherapy that are currently under investigation in preclinical and clinical studies. Altogether, the information presents the inclusive landscape of SCLC epigenetics and epidrugs that will help to improve SCLC outcomes.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar Kishor Ganti
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA; Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte 91010, CA, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
24
|
The epigenetic face of lupus: Focus on antigen-presenting cells. Int Immunopharmacol 2020; 81:106262. [PMID: 32045873 DOI: 10.1016/j.intimp.2020.106262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
In recent years, epigenetic mechanisms became widely known due to their ability to regulate and maintain physiological processes such as cell growth, development, differentiation and genomic stability. When dysregulated, epigenetic mechanisms, may introduce gene expression changes and disturbance in immune homeostasis leading to autoimmune diseases. Systemic lupus erythematosus (SLE), the most extensively studied autoimmune disorder, has already been correlated with epigenetic modifications, especially in T cells. Since these cell rely on antigen presentation, it may be assumed that erroneous activity of antigen-presenting cells (APCs), culminates in T cell abnormalities. In this review we summarize and discuss the epigenetic modifications in SLE affected APCs, with the focus on dendritic cells (DCs), B cells and monocytes. Unravelling this aspect of SLE pathogenesis, might result in identification of new disease biomarkers and putative therapeutic approaches.
Collapse
|
25
|
|