1
|
Matsumura K, Yamamoto Y, Yoshimura K, Miyatake T. Effect of temperature on sexual size dimorphism during the developmental period in the broad-horned flour beetle. J Therm Biol 2024; 124:103962. [PMID: 39217677 DOI: 10.1016/j.jtherbio.2024.103962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Adult size in numerous insects is strongly dependent on temperature. In several cases, a temperature-size rule is observed in which developmental temperature and adult size tradeoff. Although several previous studies have demonstrated the temperature-size rule, only a few have explored the relationship between developmental temperature and weapon traits or sexual size dimorphism. This study was conducted to investigate the size of the broad-horned flour beetle Gnatocerus cornutus when it was developed under different temperatures. G. cornutus males possess weapon traits for male-male combat and exhibit sexual size dimorphism in other morphological traits. Results showed that male weapon size and body size complied with the temperature-size rule. Furthermore, the extent of sex dimorphism in genae width, a weapon-supportive trait, were larger at lower temperatures. Our findings suggest that the temperature-size rule also influences the size of sexual traits.
Collapse
Affiliation(s)
- Kentarou Matsumura
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Japan.
| | - Yuto Yamamoto
- The United Graduate School of Agricultural Sciences, Ehime University, Ehime, Japan
| | - Kaito Yoshimura
- Graduate School of Environmental Life, Natural and Technology, Okayama University, Okayama, Japan
| | - Takahisa Miyatake
- Graduate School of Environmental Life, Natural and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
2
|
Hu Y, Crabtree JR, Macagno ALM, Moczek AP. Histone deacetylases regulate organ-specific growth in a horned beetle. EvoDevo 2024; 15:4. [PMID: 38575982 PMCID: PMC10996171 DOI: 10.1186/s13227-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Nutrient availability is among the most widespread means by which environmental variability affects developmental outcomes. Because almost all cells within an individual organism share the same genome, structure-specific growth responses must result from changes in gene regulation. Earlier work suggested that histone deacetylases (HDACs) may serve as epigenetic regulators linking nutritional conditions to trait-specific development. Here we expand on this work by assessing the function of diverse HDACs in the structure-specific growth of both sex-shared and sex-specific traits including evolutionarily novel structures in the horned dung beetle Onthophagus taurus. RESULTS We identified five HDAC members whose downregulation yielded highly variable mortality depending on which HDAC member was targeted. We then show that HDAC1, 3, and 4 operate in both a gene- and trait-specific manner in the regulation of nutrition-responsiveness of appendage size and shape. Specifically, HDAC 1, 3, or 4 knockdown diminished wing size similarly while leg development was differentially affected by RNAi targeting HDAC3 and HDAC4. In addition, depletion of HDAC3 transcript resulted in a more rounded shape of genitalia at the pupal stage and decreased the length of adult aedeagus across all body sizes. Most importantly, we find that HDAC3 and HDAC4 pattern the morphology and regulate the scaling of evolutionarily novel head and thoracic horns as a function of nutritional variation. CONCLUSION Collectively, our results suggest that both functional overlap and division of labor among HDAC members contribute to morphological diversification of both conventional and recently evolved appendages. More generally, our work raises the possibility that HDAC-mediated scaling relationships and their evolution may underpin morphological diversification within and across insect species broadly.
Collapse
Affiliation(s)
- Yonggang Hu
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN, 47405, USA.
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
| | - Jordan R Crabtree
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN, 47405, USA
| | - Anna L M Macagno
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN, 47405, USA
- Biostatistics Consulting Center, Department of Epidemiology and Biostatistics, School of Public Health Bloomington, Indiana University, 2719 E. 10th Street, Bloomington, IN, 47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN, 47405, USA
| |
Collapse
|
3
|
Weger AA, Rittschof CC. The diverse roles of insulin signaling in insect behavior. FRONTIERS IN INSECT SCIENCE 2024; 4:1360320. [PMID: 38638680 PMCID: PMC11024295 DOI: 10.3389/finsc.2024.1360320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
In insects and other animals, nutrition-mediated behaviors are modulated by communication between the brain and peripheral systems, a process that relies heavily on the insulin/insulin-like growth factor signaling pathway (IIS). Previous studies have focused on the mechanistic and physiological functions of insulin-like peptides (ILPs) in critical developmental and adult milestones like pupation or vitellogenesis. Less work has detailed the mechanisms connecting ILPs to adult nutrient-mediated behaviors related to survival and reproductive success. Here we briefly review the range of behaviors linked to IIS in insects, from conserved regulation of feeding behavior to evolutionarily derived polyphenisms. Where possible, we incorporate information from Drosophila melanogaster and other model species to describe molecular and neural mechanisms that connect nutritional status to behavioral expression via IIS. We identify knowledge gaps which include the diverse functional roles of peripheral ILPs, how ILPs modulate neural function and behavior across the lifespan, and the lack of detailed mechanistic research in a broad range of taxa. Addressing these gaps would enable a better understanding of the evolution of this conserved and widely deployed tool kit pathway.
Collapse
Affiliation(s)
| | - Clare C. Rittschof
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Sugiyama M, Ozawa T, Ohta K, Okada K, Niimi T, Yamaguchi K, Shigenobu S, Okada Y. Transcriptomic and functional screening of weapon formation genes implies significance of cell adhesion molecules and female-biased genes in broad-horned flour beetle. PLoS Genet 2023; 19:e1011069. [PMID: 38051754 PMCID: PMC10723671 DOI: 10.1371/journal.pgen.1011069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/15/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
For understanding the evolutionary mechanism of sexually selected exaggerated traits, it is essential to uncover its molecular basis. By using broad-horned flour beetle that has male-specific exaggerated structures (mandibular horn, head horn and gena enlargement), we investigated the transcriptomic and functional characters of sex-biased genes. Comparative transcriptome of male vs. female prepupal heads elucidated 673 sex-biased genes. Counter-intuitively, majority of them were female-biased (584 genes), and GO enrichment analysis showed cell-adhesion molecules were frequently female-biased. This pattern motivated us to hypothesize that female-biased transcripts (i.e. the transcripts diminished in males) may play a role in outgrowth formation. Potentially, female-biased genes may act as suppressors of weapon structure. In order to test the functionality of female-biased genes, we performed RNAi-mediated functional screening for top 20 female-biased genes and 3 genes in the most enriched GO term (cell-cell adhesion, fat1/2/3, fat4 and dachsous). Knockdown of one transcription factor, zinc finger protein 608 (zfp608) resulted in the formation of male-like gena in females, supporting the outgrowth suppression function of this gene. Similarly, knockdown of fat4 induced rudimental, abnormal mandibular horn in female. fat1/2/3RNAi, fat4RNAi and dachsousRNAi males exhibited thick and/or short mandibular horns and legs. These cell adhesion molecules are known to regulate tissue growth direction and known to be involved in the weapon formation in Scarabaeoidea beetles. Functional evidence in phylogenetically distant broad-horned flour beetle suggest that cell adhesion genes are repeatedly deployed in the acquisition of outgrowth. In conclusion, this study clarified the overlooked functions of female-biased genes in weapon development.
Collapse
Affiliation(s)
- Miyu Sugiyama
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Takane Ozawa
- Department of Life Sciences, The University of Tokyo, Komaba, Tokyo, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, The University of Tokyo, Komaba, Tokyo, Japan
| | - Kensuke Okada
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima-naka, Okayama, Japan
| | - Teruyuki Niimi
- National Institute for Basic Biology, Nishigonaka, Myodaiji, Okazaki, Japan
- Basic Biology Program, The Graduate University for Advanced Studies, SOKENDAI, Nishigonaka, Myodaiji, Okazaki, Japan
| | - Katsushi Yamaguchi
- National Institute for Basic Biology, Nishigonaka, Myodaiji, Okazaki, Japan
| | - Shuji Shigenobu
- National Institute for Basic Biology, Nishigonaka, Myodaiji, Okazaki, Japan
- Basic Biology Program, The Graduate University for Advanced Studies, SOKENDAI, Nishigonaka, Myodaiji, Okazaki, Japan
| | - Yasukazu Okada
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
5
|
Rohner PT, Casasa S, Moczek AP. Assessing the evolutionary lability of insulin signalling in the regulation of nutritional plasticity across traits and species of horned dung beetles. J Evol Biol 2023; 36:1641-1648. [PMID: 37885148 DOI: 10.1111/jeb.14240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 10/28/2023]
Abstract
Nutrition-dependent growth of sexual traits is a major contributor to phenotypic diversity, and a large body of research documents insulin signalling as a major regulator of nutritional plasticity. However, findings across studies raise the possibility that the role of individual components within the insulin signalling pathway diverges in function among traits and taxa. Here, we use RNAi-mediated transcript depletion in the gazelle dung beetle to investigate the functions of forkhead box O (Foxo) and two paralogs of the insulin receptor (InR1 and InR2) in shaping nutritional plasticity in polyphenic male head horns, exaggerated fore legs, and weakly nutrition-responsive genitalia. Our functional genetic manipulations led to three main findings: FoxoRNAi reduced the length of exaggerated head horns in large males, while neither InR1 nor InR2 knock-downs resulted in measurable horn phenotypes. These results are similar to those documented previously for another dung beetle (Onthophagus taurus), but in stark contrast to findings in rhinoceros beetles. Secondly, knockdown of Foxo, InR1, and InR2 led to an increase in the intercept or slope of the scaling relationship of genitalia size. These findings are in contrast even to results documented previously for O. taurus. Lastly, while FoxoRNAi reduces male forelegs in D. gazella and O. taurus, the effects of InR1 and InR2 knockdowns diverged across dung beetle species. Our results add to the growing body of literature indicating that despite insulin signalling's conserved role as a regulator of nutritional plasticity, the functions of its components may diversify among traits and species, potentially fuelling the evolution of scaling relationships.
Collapse
Affiliation(s)
- Patrick T Rohner
- Department of Ecology, Behavior, and Evolution, University of California San Diego, San Diego, California, USA
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Sofia Casasa
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Armin P Moczek
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
6
|
Weber JN, Kojima W, Boisseau RP, Niimi T, Morita S, Shigenobu S, Gotoh H, Araya K, Lin CP, Thomas-Bulle C, Allen CE, Tong W, Lavine LC, Swanson BO, Emlen DJ. Evolution of horn length and lifting strength in the Japanese rhinoceros beetle Trypoxylus dichotomus. Curr Biol 2023; 33:4285-4297.e5. [PMID: 37734374 DOI: 10.1016/j.cub.2023.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/28/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
What limits the size of nature's most extreme structures? For weapons like beetle horns, one possibility is a tradeoff associated with mechanical levers: as the output arm of the lever system-the beetle horn-gets longer, it also gets weaker. This "paradox of the weakening combatant" could offset reproductive advantages of additional increases in weapon size. However, in contemporary populations of most heavily weaponed species, males with the longest weapons also tend to be the strongest, presumably because selection drove the evolution of compensatory changes to these lever systems that ameliorated the force reductions of increased weapon size. Therefore, we test for biomechanical limits by reconstructing the stages of weapon evolution, exploring whether initial increases in weapon length first led to reductions in weapon force generation that were later ameliorated through the evolution of mechanisms of mechanical compensation. We describe phylogeographic relationships among populations of a rhinoceros beetle and show that the "pitchfork" shaped head horn likely increased in length independently in the northern and southern radiations of beetles. Both increases in horn length were associated with dramatic reductions to horn lifting strength-compelling evidence for the paradox of the weakening combatant-and these initial reductions to horn strength were later ameliorated in some populations through reductions to horn length or through increases in head height (the input arm for the horn lever system). Our results reveal an exciting geographic mosaic of weapon size, weapon force, and mechanical compensation, shedding light on larger questions pertaining to the evolution of extreme structures.
Collapse
Affiliation(s)
- Jesse N Weber
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Wataru Kojima
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan
| | - Romain P Boisseau
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Shinichi Morita
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Shuji Shigenobu
- Trans-Scale Biology Center, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Hiroki Gotoh
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Oya, Suruga Ward, Shizuoka, Japan
| | - Kunio Araya
- Faculty of Social and Cultural Studies, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-city Fukuoka 819-0395, Japan
| | - Chung-Ping Lin
- Department of Life Science, National Taiwan Normal University, No.88 Sec. 4, Tingzhou Rd, Taipei 11677, Taiwan
| | - Camille Thomas-Bulle
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA; Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Cerisse E Allen
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Wenfei Tong
- Cornell Laboratory of Ornithology, Ithaca, NY 14850, USA
| | - Laura Corley Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Brook O Swanson
- Department of Biology, Gonzaga University, 502 East Boone Avenue, Spokane, WA 99258-0102, USA
| | - Douglas J Emlen
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
7
|
Vea IM, Wilcox AS, Frankino WA, Shingleton AW. Genetic Variation in Sexual Size Dimorphism Is Associated with Variation in Sex-Specific Plasticity in Drosophila. Am Nat 2023; 202:368-381. [PMID: 37606943 DOI: 10.1086/725420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
AbstractThe difference in body size between females and males, or sexual size dimorphism (SSD), is ubiquitous, yet we have a poor understanding of the developmental genetic mechanisms that generate it and how these mechanisms may vary within and among species. Such an understanding of the genetic architecture of SSD is important if we are to evaluate alternative models of SSD evolution, but the genetic architecture is difficult to describe because SSD is a characteristic of populations, not individuals. Here, we overcome this challenge by using isogenic lineages of Drosophila to measure SSD for 196 genotypes. We demonstrate extensive genetic variation for SSD, primarily driven by higher levels of genetic variation for body size among females than among males. While we observe a general increase in SSD with sex-averaged body size (pooling for sex) among lineages, most of the variation in SSD is independent of sex-averaged body size and shows a strong genetic correlation with sex-specific plasticity, such that increased female-biased SSD is associated with increased body size plasticity in females. Our data are consistent with the condition dependence hypothesis of sexual dimorphism and suggest that SSD in Drosophila is a consequence of selection on the developmental genetic mechanisms that regulate the plasticity of body size.
Collapse
|
8
|
Farfán-Pira KJ, Martínez-Cuevas TI, Evans TA, Nahmad M. A cis-regulatory sequence of the selector gene vestigial drives the evolution of wing scaling in Drosophila species. J Exp Biol 2023; 226:jeb244692. [PMID: 37078652 PMCID: PMC10234621 DOI: 10.1242/jeb.244692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Scaling between specific organs and overall body size has long fascinated biologists, being a primary mechanism by which organ shapes evolve. Yet, the genetic mechanisms that underlie the evolution of scaling relationships remain elusive. Here, we compared wing and fore tibia lengths (the latter as a proxy of body size) in Drosophila melanogaster, Drosophila simulans, Drosophila ananassae and Drosophila virilis, and show that the first three of these species have roughly a similar wing-to-tibia scaling behavior. In contrast, D. virilis exhibits much smaller wings relative to their body size compared with the other species and this is reflected in the intercept of the wing-to-tibia allometry. We then asked whether the evolution of this relationship could be explained by changes in a specific cis-regulatory region or enhancer that drives expression of the wing selector gene, vestigial (vg), whose function is broadly conserved in insects and contributes to wing size. To test this hypothesis directly, we used CRISPR/Cas9 to replace the DNA sequence of the predicted Quadrant Enhancer (vgQE) from D. virilis for the corresponding vgQE sequence in the genome of D. melanogaster. Strikingly, we discovered that D. melanogaster flies carrying the D. virilis vgQE sequence have wings that are significantly smaller with respect to controls, partially shifting the intercept of the wing-to-tibia scaling relationship towards that observed in D. virilis. We conclude that a single cis-regulatory element in D. virilis contributes to constraining wing size in this species, supporting the hypothesis that scaling could evolve through genetic variations in cis-regulatory elements.
Collapse
Affiliation(s)
- Keity J. Farfán-Pira
- Department of Physiology, Biophysics and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City 07360, Mexico
| | - Teresa I. Martínez-Cuevas
- Department of Physiology, Biophysics and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City 07360, Mexico
| | - Timothy A. Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Marcos Nahmad
- Department of Physiology, Biophysics and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City 07360, Mexico
| |
Collapse
|
9
|
Wilcox AS, Vea IM, Frankino WA, Shingleton AW. Genetic variation of morphological scaling in Drosophila melanogaster. Heredity (Edinb) 2023; 130:302-311. [PMID: 36878946 PMCID: PMC10162999 DOI: 10.1038/s41437-023-00603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Morphological scaling relationships between the sizes of individual traits and the body captures the characteristic shape of a species, and their evolution is the primary mechanism of morphological diversification. However, we have almost no knowledge of the genetic variation of scaling, which is critical if we are to understand how scaling evolves. Here we explore the genetics of population scaling relationships (scaling relationships fit to multiple genetically-distinct individuals in a population) by describing the distribution of individual scaling relationships (genotype-specific scaling relationships that are unseen or cryptic). These individual scaling relationships harbor the genetic variation in the developmental mechanisms that regulate trait growth relative to body growth, and theoretical studies suggest that their distribution dictates how the population scaling relationship will respond to selection. Using variation in nutrition to generate size variation within 197 isogenic lineages of Drosophila melanogaster, we reveal extensive variation in the slopes of the wing-body and leg-body individual scaling relationships among genotypes. This variation reflects variation in the nutritionally-induced size plasticity of the wing, leg, and body. Surprisingly, we find that variation in the slope of individual scaling relationships primarily results from variation in nutritionally-induced plasticity of body size, not leg or wing size. These data allow us to predict how different selection regimes affect scaling in Drosophila, and is the first step in identifying the genetic targets of such selection. More generally, our approach provides a framework for understanding the genetic variation of scaling, an important prerequisite to explaining how selection changes scaling and morphology.
Collapse
Affiliation(s)
- Austin S Wilcox
- Department of Biological Sciences, University of Illinois Chicago, 840 W Taylor St, Chicago, IL, 60607, USA
| | - Isabelle M Vea
- Department of Biological Sciences, University of Illinois Chicago, 840 W Taylor St, Chicago, IL, 60607, USA
| | - W Anthony Frankino
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Alexander W Shingleton
- Department of Biological Sciences, University of Illinois Chicago, 840 W Taylor St, Chicago, IL, 60607, USA.
| |
Collapse
|
10
|
Paloma Álvarez-Rendón J, Manuel Murillo-Maldonado J, Rafael Riesgo-Escovar J. The insulin signaling pathway a century after its discovery: Sexual dimorphism in insulin signaling. Gen Comp Endocrinol 2023; 330:114146. [PMID: 36270337 DOI: 10.1016/j.ygcen.2022.114146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Since practically a century ago, the insulin pathway was discovered in both vertebrates and invertebrates, implying an evolutionarily ancient origin. After a century of research, it is now clear that the insulin signal transduction pathway is a critical, flexible and pleiotropic pathway, evolving into multiple anabolic functions besides glucose homeostasis. It regulates paramount aspects of organismal well-being like growth, longevity, intermediate metabolism, and reproduction. Part of this diversification has been attained by duplications and divergence of both ligands and receptors riding on a common general signal transduction system. One of the aspects that is strikingly different is its usage in reproduction, particularly in male versus female development and fertility within the same species. This review highlights sexual divergence in metabolism and reproductive tract differences, the occurrence of sexually "exaggerated" traits, and sex size differences that are due to the sexes' differential activity/response to the insulin signaling pathway.
Collapse
Affiliation(s)
- Jéssica Paloma Álvarez-Rendón
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Juan Manuel Murillo-Maldonado
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Juan Rafael Riesgo-Escovar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Mexico.
| |
Collapse
|
11
|
Veenstra JA. Differential expression of some termite neuropeptides and insulin/IGF-related hormones and their plausible functions in growth, reproduction and caste determination. PeerJ 2023; 11:e15259. [PMID: 37128206 PMCID: PMC10148640 DOI: 10.7717/peerj.15259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023] Open
Abstract
Background Insulin-like growth factor (IGF) and other insulin-like peptides (ilps) are important hormones regulating growth and development in animals. Whereas most animals have a single female and male adult phenotype, in some insect species the same genome may lead to different final forms. Perhaps the best known example is the honeybee where females can either develop into queens or workers. More extreme forms of such polyphenism occur in termites, where queens, kings, workers and soldiers coexist. Both juvenile hormone and insulin-like peptides are known to regulate growth and reproduction as well as polyphenism. In termites the role of juvenile hormone in reproduction and the induction of the soldier caste is well known, but the role of IGF and other ilps in these processes remains largely unknown. Here the various termite ilps are identified and hypotheses regarding their functions suggested. Methods Genome assemblies and transcriptome short read archives (SRAs) were used to identify insulin-like peptides and neuropeptides in termites and to determine their expression in different species, tissues and castes. Results and Discussion Termites have seven different ilps, i.e. gonadulin, IGF and an ortholog of Drosophila insulin-like peptide 7 (dilp7), which are commonly present in insects, and four smaller peptides, that have collectively been called short IGF-related peptides (sirps) and individually atirpin, birpin, cirpin and brovirpin. Gonadulin is lost from the higher termites which have however amplified the brovirpin gene, of which they often have two or three paralogs. Based on differential expression of these genes it seems likely that IGF is a growth hormone and atirpin an autocrine tissue factor that is released when a tissue faces metabolic stress. Birpin seems to be responsible for growth and in the absence of juvenile hormone this may lead to reproductive adults or, when juvenile hormone is present, to soldiers. Brovirpin is expressed both by the brain and the ovary and likely stimulates vitellogenesis, while the function of cirpin is less clear.
Collapse
|
12
|
Jiao Y, Palli SR. Mitochondria dysfunction impairs Tribolium castaneum wing development during metamorphosis. Commun Biol 2022; 5:1252. [PMID: 36380075 PMCID: PMC9666433 DOI: 10.1038/s42003-022-04185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
The disproportionate growth of insect appendages such as facultative growth of wings and exaggeration of beetle horns are examples of phenotypic plasticity. Insect metamorphosis is the critical stage for development of pupal and adult structures and degeneration of the larval cells. How the disproportionate growth of external appendages is regulated during tissue remodeling remains unanswered. Tribolium castaneum is used as a model to study the function of mitochondria in metamorphosis. Mitochondrial dysfunction is achieved by the knockdown of key mitochondrial regulators. Here we show that mitochondrial function is not required for metamorphosis except that severe mitochondrial dysfunction blocks ecdysis. Surprisingly, various abnormal wing growth, including short and wingless phenotypes, are induced after knocking down mitochondrial regulators. Mitochondrial activity is regulated by IIS (insulin/insulin-like growth factor signaling)/FOXO (forkhead box, sub-group O) pathway through TFAM (transcription factor A, mitochondrial). RNA sequencing and differential gene expression analysis show that wing-patterning and insect hormone response genes are downregulated, while programmed cell death and immune response genes are upregulated in insect wing discs with mitochondrial dysfunction. These studies reveal that mitochondria play critical roles in regulating insect wing growth by targeting wing development during metamorphosis, thus showing a novel molecular mechanism underlying developmental plasticity.
Collapse
Affiliation(s)
- Yaoyu Jiao
- grid.266539.d0000 0004 1936 8438Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546 USA
| | - Subba Reddy Palli
- grid.266539.d0000 0004 1936 8438Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546 USA
| |
Collapse
|
13
|
Ohtsu I, Chikami Y, Umino T, Gotoh H. Evaluation of Body Size Indicators for Morphological Analyses in Two Sister Species of Genus Dorcus (Coleoptera, Lucanidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:7. [PMID: 36130316 PMCID: PMC9492273 DOI: 10.1093/jisesa/ieac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 06/15/2023]
Abstract
The relationship between trait and body size, i.e., the scaling relationship or static allometry, is an essential concept for investigating trait size. However, usage of an inappropriate body size indicator can lead to misinterpretation of morphology. In this study, we examined several possible body size indicators in two closely related stag beetle species, Dorcus rectus and Dorcus amamianus. We raised animals in captivity and used pupal weight as a measure of true, or overall body size, and then evaluated six adult morphological traits to test whether these traits could be reliably used as body size indicators in static scaling relationship comparisons. We analyzed two comparisons, between sexes in same species and between species in same sex. We showed that the most appropriate body size indicators differ depending on the comparisons. Our results indicated that the scaling relationship of focal traits could be over- or under-estimated depending on which body size indicators are used.
Collapse
Affiliation(s)
- Itsuki Ohtsu
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yasuhiko Chikami
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan
| | - Taichi Umino
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Ueda, Nagano, 386-2204, Japan
| | | |
Collapse
|
14
|
Zhang X, Zhu X, Bi X, Huang J, Zhou L. The Insulin Receptor: An Important Target for the Development of Novel Medicines and Pesticides. Int J Mol Sci 2022; 23:7793. [PMID: 35887136 PMCID: PMC9325136 DOI: 10.3390/ijms23147793] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
The insulin receptor (IR) is a transmembrane protein that is activated by ligands in insulin signaling pathways. The IR has been considered as a novel therapeutic target for clinical intervention, considering the overexpression of its protein and A-isoform in multiple cancers, Alzheimer's disease, and Type 2 diabetes mellitus in humans. Meanwhile, it may also serve as a potential target in pest management due to its multiple physiological influences in insects. In this review, we provide an overview of the structural and molecular biology of the IR, functions of IRs in humans and insects, physiological and nonpeptide small molecule modulators of the IR, and the regulating mechanisms of the IR. Xenobiotic compounds and the corresponding insecticidal chemicals functioning on the IR are also discussed. This review is expected to provide useful information for a better understanding of human IR-related diseases, as well as to facilitate the development of novel small-molecule activators and inhibitors of the IR for use as medicines or pesticides.
Collapse
Affiliation(s)
| | | | | | - Jiguang Huang
- Key Laboratory of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.Z.); (X.B.)
| | - Lijuan Zhou
- Key Laboratory of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.Z.); (X.B.)
| |
Collapse
|
15
|
Kong X, Li ZX, Gao YQ, Liu FH, Chen ZZ, Tian HG, Liu TX, Xu YY, Kang ZW. Genome-Wide Identification of Neuropeptides and Their Receptors in an Aphid Endoparasitoid Wasp, Aphidius gifuensi. INSECTS 2021; 12:insects12080745. [PMID: 34442310 PMCID: PMC8397052 DOI: 10.3390/insects12080745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
In insects, neuropeptides and their receptors not only play a critical role in insect physiology and behavior but also are the potential targets for novel pesticide discoveries. Aphidius gifuensis is one of the most important and widespread aphid parasitoids, and has been successfully used to control aphid. In the present work, we systematically identified neuropeptides and their receptors from the genome and head transcriptome of A. gifuensis. A total of 35 neuropeptide precursors and 49 corresponding receptors were identified. The phylogenetic analyses demonstrated that 35 of these receptors belong to family-A, four belong to family-B, two belong to leucine-rich repeat-containing GPCRs, four belong to receptor guanylyl cyclases, and four belong to receptor tyrosine kinases. Oral ingestion of imidacloprid significantly up-regulated five neuropeptide precursors and four receptors whereas three neuropeptide precursors and eight receptors were significantly down-regulated, which indicated that these neuropeptides and their receptors are potential targets of some commercial insecticides. The RT-qPCR results showed that dopamine receptor 1, dopamine receptor 2, octopamine receptor, allatostatin-A receptor, neuropeptides capa receptor, SIFamide receptor, FMRFamide receptor, tyramine receptor and short neuropeptide F predominantly were expressed in the head whilst the expression of ion transport peptide showed widespread distribution in various tissues. The high expression levels of these genes suggest their important roles in the central nervous system. Taken together, our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in the regulation of the physiology and behavior of solitary wasps. Furthermore, this information could also aid in the design and discovery of specific and environment-friendly insecticides.
Collapse
Affiliation(s)
- Xue Kong
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Zhen-Xiang Li
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Yu-Qing Gao
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Fang-Hua Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Zhen-Zhen Chen
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Hong-Gang Tian
- State Key Laboratory of Crop Stress Biology for the Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling 712100, China;
| | - Tong-Xian Liu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
| | - Yong-Yu Xu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
- Correspondence: (Y.-Y.X.); (Z.-W.K.)
| | - Zhi-Wei Kang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
- State Key Laboratory of Crop Stress Biology for the Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling 712100, China;
- Correspondence: (Y.-Y.X.); (Z.-W.K.)
| |
Collapse
|
16
|
Iwanami T, Yu P, Hayashi F. Defensive spray by a semiaquatic osmylid larva (Insecta: Neuroptera) for both aquatic and terrestrial predators. J ETHOL 2021. [DOI: 10.1007/s10164-021-00714-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractChemical secretions are an effective means by which insects can deter potential enemies. Several terrestrial insects spray these liquids directionally toward enemies, but little is known about spraying behavior in aquatic and semiaquatic insects. The larvae of Osmylus hyalinatus (Neuroptera: Osmylidae) are semiaquatic, inhabiting the edges of small streams and ponds where they encounter multiple enemies on land and in water. The larvae of this osmylid sprayed a hyaline liquid from the anal opening if disturbed in either air and water, although the spray appeared slightly viscous in water. The liquid was stored in the posterior half of the hindgut and sprayed directionally toward an artificial stimulus. Spraying allowed the larvae to escape biting by ants, and to repel them in 90% of encounters. Spraying caused the regurgitation of 71% and 60% of all larvae swallowed by terrestrial frogs and aquatic newts, respectively. Aquatic fishfly larvae released 30% of captured larvae due to spraying. Most of the larvae that repelled ants or were regurgitated by amphibians survived, but those released by fishfly larvae were killed by heavy biting with the mandibles. This is the first report of effective liquid spraying by insects in water, and also within the order Neuroptera.
Collapse
|
17
|
Bertram SM, Yaremchuk DD, Reifer ML, Villarreal A, Muzzatti MJ, Kolluru GR. Tests of the positive and functional allometry hypotheses for sexually selected traits in the Jamaican field cricket. Behav Processes 2021; 188:104413. [PMID: 33957236 DOI: 10.1016/j.beproc.2021.104413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
Sexually selected traits, including threat signals, have been shown to scale steeply positively with body size because their exaggeration maximizes honest signalling. However, the functional allometry hypothesis makes the opposite prediction for some weapons: because the biomechanics of force applied in their use may favor relatively smaller size, sexually selected weapons may exhibit negative allometry. Tests of these ideas in insects have largely focused on holometabolous species, whose adult body size is entirely dependent on nutrients acquired during the larval stage. In contrast, hemimetabolous insects may exhibit different patterns of allometry development because they forage throughout development, between successive moults. Here, we tested complementary and competing predictions made by the positive and functional allometry hypotheses, regarding intrasexually selected trait allometry in a hemimetabolous insect, the Jamaican field cricket (Gryllus assimilis). As expected, head width (a dominance and/or combat trait) was more positively allometric than non-sexually selected traits. In contrast, and consistent with the functional allometry hypothesis, mouthparts (weapons) were either isometric or negatively allometric. We also tested whether trait allometry responded to rearing diet by raising males on either a high protein diet or a high carbohydrate diet; we predicted stronger positive allometry under the high protein diet. However, diet did not influence allometry in the predicted manner. Overall, our results support the functional allometry hypothesis regarding sexually selected trait allometry and raise intriguing possibilities for integrating these ideas with recent paradigms for classifying intrasexually selected traits.
Collapse
Affiliation(s)
- Susan M Bertram
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
| | - Danya D Yaremchuk
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Mykell L Reifer
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Amy Villarreal
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Matthew J Muzzatti
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Gita R Kolluru
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, 93407, United States
| |
Collapse
|
18
|
Gotoh H, Adachi H, Matsuda K, Lavine LC. Epithelial folding determines the final shape of beetle horns. Curr Opin Genet Dev 2021; 69:122-128. [PMID: 33848957 DOI: 10.1016/j.gde.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 11/18/2022]
Abstract
The elaborate ornaments and weapons of sexual selection, such as the vast array of horns observed in scarab beetles, are some of the most striking outcomes of evolution. How these novel traits have arisen, develop, and respond to condition is governed by a complex suite of interactions that require coordination between the environment, whole-animal signals, cell-cell signals, and within-cell signals. Endocrine factors, developmental patterning genes, and sex-specific gene expression have been shown to regulate beetle horn size, shape, and location, yet no overarching mechanism of horn shape has been described. Recent advances in microscopy and computational analyses combined with a functional genetic approach have revealed that patterning genes combined with intricate epithelial folding and movement are responsible for the final shape of a beetle head horn.
Collapse
Affiliation(s)
- Hiroki Gotoh
- Ecological Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, 401-8540, Japan
| | - Haruhiko Adachi
- Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Keisuke Matsuda
- Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka, 565-0871, Japan; Osaka University Hospital, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Laura C Lavine
- Department of Entomology, Washington State University, Pullman, WA, 99163 USA.
| |
Collapse
|
19
|
Evolution of sexual development and sexual dimorphism in insects. Curr Opin Genet Dev 2021; 69:129-139. [PMID: 33848958 DOI: 10.1016/j.gde.2021.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022]
Abstract
Most animal species consist of two distinct sexes. At the morphological, physiological, and behavioral levels the differences between males and females are numerous and dramatic, yet at the genomic level they are often slight or absent. This disconnect is overcome because simple genetic differences or environmental signals are able to direct the sex-specific expression of a shared genome. A canonical picture of how this process works in insects emerged from decades of work on Drosophila. But recent years have seen an explosion of molecular-genetic and developmental work on a broad range of insects. Drawing these studies together, we describe the evolution of sexual dimorphism from a comparative perspective and argue that insect sex determination and differentiation systems are composites of rapidly evolving and highly conserved elements.
Collapse
|
20
|
Smýkal V, Pivarči M, Provazník J, Bazalová O, Jedlička P, Lukšan O, Horák A, Vaněčková H, Beneš V, Fiala I, Hanus R, Doležel D. Complex Evolution of Insect Insulin Receptors and Homologous Decoy Receptors, and Functional Significance of Their Multiplicity. Mol Biol Evol 2021; 37:1775-1789. [PMID: 32101294 PMCID: PMC7253209 DOI: 10.1093/molbev/msaa048] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Evidence accumulates that the functional plasticity of insulin and insulin-like growth factor signaling in insects could spring, among others, from the multiplicity of insulin receptors (InRs). Their multiple variants may be implemented in the control of insect polyphenism, such as wing or caste polyphenism. Here, we present a comprehensive phylogenetic analysis of insect InR sequences in 118 species from 23 orders and investigate the role of three InRs identified in the linden bug, Pyrrhocoris apterus, in wing polymorphism control. We identified two gene clusters (Clusters I and II) resulting from an ancestral duplication in a late ancestor of winged insects, which remained conserved in most lineages, only in some of them being subject to further duplications or losses. One remarkable yet neglected feature of InR evolution is the loss of the tyrosine kinase catalytic domain, giving rise to decoys of InR in both clusters. Within the Cluster I, we confirmed the presence of the secreted decoy of insulin receptor in all studied Muscomorpha. More importantly, we described a new tyrosine kinase-less gene (DR2) in the Cluster II, conserved in apical Holometabola for ∼300 My. We differentially silenced the three P. apterus InRs and confirmed their participation in wing polymorphism control. We observed a pattern of Cluster I and Cluster II InRs impact on wing development, which differed from that postulated in planthoppers, suggesting an independent establishment of insulin/insulin-like growth factor signaling control over wing development, leading to idiosyncrasies in the co-option of multiple InRs in polyphenism control in different taxa.
Collapse
Affiliation(s)
- Vlastimil Smýkal
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Martin Pivarči
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jan Provazník
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Olga Bazalová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Pavel Jedlička
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondřej Lukšan
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Hana Vaněčková
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Vladimír Beneš
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ivan Fiala
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Robert Hanus
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Doležel
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Department of Molecular Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
21
|
Veenstra JA, Leyria J, Orchard I, Lange AB. Identification of Gonadulin and Insulin-Like Growth Factor From Migratory Locusts and Their Importance in Reproduction in Locusta migratoria. Front Endocrinol (Lausanne) 2021; 12:693068. [PMID: 34177814 PMCID: PMC8220825 DOI: 10.3389/fendo.2021.693068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Many insect species have several genes coding for insulin-related peptides (IRPs), but so far only a single IRP gene has been identified in migratory locusts. Here, we report and characterize two other genes coding for peptides that are related to insulin, namely gonadulin and arthropod insulin-like growth factor (aIGF); peptides postulated to be orthologs of Drosophila melanogaster insulin-like peptides 8 and 6 respectively. In Locusta migratoria the aIGF transcript is expressed in multiple tissues as was previously reported for IRP in both L. migratoria and Schistocerca gregaria, but there are significant differences in expression patterns between the two species. The gonadulin transcript, however, seems specific to the ovary, whereas its putative receptor transcript is expressed most abundantly in the ovary, fat body and the central nervous system. Since the central nervous system-fat body-ovary axis is essential for successful reproduction, we studied the influence of gonadulin on vitellogenesis and oocyte growth. A reduction in the gonadulin transcript (via RNA interference) led to a significant reduction in vitellogenin mRNA levels in the fat body and a strong oocyte growth inhibition, thus suggesting an important role for gonadulin in reproduction in this species.
Collapse
Affiliation(s)
- Jan A. Veenstra
- INCIA UMR 5287 CNRS, University of Bordeaux, Pessac, France
- *Correspondence: Jan A. Veenstra, ; Jimena Leyria,
| | - Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- *Correspondence: Jan A. Veenstra, ; Jimena Leyria,
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B. Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
22
|
Del Sol JF, Hongo Y, Boisseau RP, Berman GH, Allen CE, Emlen DJ. Population differences in the strength of sexual selection match relative weapon size in the Japanese rhinoceros beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae)†. Evolution 2020; 75:394-413. [PMID: 33009663 DOI: 10.1111/evo.14101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/07/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Exaggerated weapons of sexual selection often diverge more rapidly and dramatically than other body parts, suggesting that relevant agents of selection may be discernible in contemporary populations. We examined the ecology, reproductive behavior, and strength of sexual selection on horn length in five recently diverged rhinoceros beetle (Trypoxylus dichotomus) populations that differ in relative horn size. Males with longer horns were better at winning fights in all locations, but the link between winning fights and mating success differed such that selection favored large males with long horns at the two long-horned populations, but was relaxed or nonexistent at the populations with relatively shorter horns. Observations of local habitat conditions and breeding ecology point to shifts in the relative abundance of feeding territories as the most likely cause of population differences in selection on male weapon size in this species. Comparisons of ecological conditions and selection strength across populations offer critical first steps toward meaningfully linking mating system dynamics, selection patterns, and diversity in sexually selected traits.
Collapse
Affiliation(s)
- Jillian F Del Sol
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Yoshihito Hongo
- Department of Life Sciences, Ritsumeikan University, Kyoto, 603-8577, Japan
| | - Romain P Boisseau
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Gabriella H Berman
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Cerisse E Allen
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Douglas J Emlen
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| |
Collapse
|
23
|
Veenstra JA. Gonadulins, the fourth type of insulin-related peptides in decapods. Gen Comp Endocrinol 2020; 296:113528. [PMID: 32526328 DOI: 10.1016/j.ygcen.2020.113528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Accepted: 06/03/2020] [Indexed: 12/30/2022]
Abstract
Insulin and related peptides play important roles in the regulation of growth and reproduction. Until recently three different types of insulin-related peptides had been identified from decapod crustaceans. The identification of two novel insulin-related peptides from Sagmariasus verreauxi and Cherax quadricarinatus suggested that there might a fourth type. Publicly available short read archives show that orthologs of these peptides are commonly present in these animals. Most decapods have two genes coding such peptides, but Penaeus species have likely only one and some palaemonids have three. Interestingly, expression levels can vary more than thousand-fold in the gonads of Portunus trituberculatus, where gonadulin 1 is expressed by the testis and gonadulin 2 by the ovary. Although these peptides are also expressed in other tissues, the occasionally very high expression in the gonads led to them being called gonadulins.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, University of Bordeaux, Pessac, France.
| |
Collapse
|
24
|
Veenstra JA. Arthropod IGF, relaxin and gonadulin, putative orthologs of Drosophila insulin-like peptides 6, 7 and 8, likely originated from an ancient gene triplication. PeerJ 2020; 8:e9534. [PMID: 32728497 PMCID: PMC7357564 DOI: 10.7717/peerj.9534] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Insects have several genes coding for insulin-like peptides and they have been particularly well studied in Drosophila. Some of these hormones function as growth hormones and are produced by the fat body and the brain. These act through a typical insulin receptor tyrosine kinase. Two other Drosophila insulin-like hormones are either known or suspected to act through a G-protein coupled receptor. Although insulin-related peptides are known from other insect species, Drosophila insulin-like peptide 8, one that uses a G-protein coupled receptor, has so far only been identified from Drosophila and other flies. However, its receptor is widespread within arthropods and hence it should have orthologs. Such putative orthologs were recently identified in decapods and have been called gonadulins. METHODOLOGY In an effort to identify gonadulins in other arthropods public genome assemblies and short-read archives from insects and other arthropods were explored for the presence of genes and transcripts coding insulin-like peptides and their putative receptors. RESULTS Gonadulins were detected in a number of arthropods. In those species for which transcriptome data from the gonads is available insect gonadulin genes are expressed in the ovaries and at least in some species also in the testes. In some insects differences in gonadulin expression in the ovary between actively reproducing and non-reproducing females differs more than 100-fold. Putative orthologs of Drosophila ilp 6 were also identified. In several non-Dipteran insects these peptides have C-terminally extensions that are alternatively spliced. The predicted peptides have been called arthropod insulin-like growth factors. In cockroaches, termites and stick insects genes coding for the arthropod insulin-like growth factors, gonadulin and relaxin, a third insulin-like peptide, are encoded by genes that are next to one another suggesting that they are the result of a local gene triplication. Such a close chromosomal association was also found for the arthropod insulin-like growth factor and gonadulin genes in spiders. Phylogenetic tree analysis of the typical insulin receptor tyrosine kinases from insects, decapods and chelicerates shows that the insulin signaling pathway evolved differently in these three groups. The G-protein coupled receptors that are related to the Drosophila ilp 8 receptor similarly show significant differences between those groups. CONCLUSION A local gene triplication in an early ancestor likely yielded three genes coding gonadulin, arthropod insulin-like growth factor and relaxin. Orthologs of these genes are now commonly present in arthropods and almost certainly include the Drosophila insulin-like peptides 6, 7 and 8.
Collapse
|
25
|
Vea IM, Shingleton AW. Network-regulated organ allometry: The developmental regulation of morphological scaling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e391. [PMID: 32567243 DOI: 10.1002/wdev.391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/30/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022]
Abstract
Morphological scaling relationships, or allometries, describe how traits grow coordinately and covary among individuals in a population. The developmental regulation of scaling is essential to generate correctly proportioned adults across a range of body sizes, while the mis-regulation of scaling may result in congenital birth defects. Research over several decades has identified the developmental mechanisms that regulate the size of individual traits. Nevertheless, we still have poor understanding of how these mechanisms work together to generate correlated size variation among traits in response to environmental and genetic variation. Conceptually, morphological scaling can be generated by size-regulatory factors that act directly on multiple growing traits (trait-autonomous scaling), or indirectly via hormones produced by central endocrine organs (systemically regulated scaling), and there are a number of well-established examples of such mechanisms. There is much less evidence, however, that genetic and environmental variation actually acts on these mechanisms to generate morphological scaling in natural populations. More recent studies indicate that growing organs can themselves regulate the growth of other organs in the body. This suggests that covariation in trait size can be generated by network-regulated scaling mechanisms that respond to changes in the growth of individual traits. Testing this hypothesis, and one of the main challenges of understanding morphological scaling, requires connecting mechanisms elucidated in the laboratory with patterns of scaling observed in the natural world. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Comparative Development and Evolution > Organ System Comparisons Between Species.
Collapse
Affiliation(s)
- Isabelle M Vea
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alexander W Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|