1
|
Deng Y, Etheridge K, Ran X, Maurais HE, Sarpeshkar R. Growth-coupled continuous directed evolution by MutaT7 enables efficient and automated enzyme engineering. Appl Environ Microbiol 2025; 91:e0249124. [PMID: 40145755 PMCID: PMC12016552 DOI: 10.1128/aem.02491-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Traditional directed evolution is limited by labor-intensive iterative steps and low-throughput selection and screening. To address these challenges, we developed a growth-coupled continuous directed evolution (GCCDE) approach, enabling automated and efficient enzyme engineering. By linking enzyme activity to bacterial growth and utilizing the MutaT7 system, GCCDE combines in vivo mutagenesis and high-throughput selection of superior enzyme variants in a single process. To validate this approach, we evolved the thermostable enzyme CelB from Pyrococcus furiosus to enhance its β-galactosidase activity at lower temperatures while maintaining thermal stability. CelB activity was coupled to the growth of E. coli, allowing variants with improved activity to utilize lactose more efficiently and promote faster growth in a minimal medium. Using a continuous culture system, we achieved automated high-throughput mutagenesis and simultaneous real-time selection of over 10⁹ variants per culture. Integrating in vitro and in vivo mutagenesis further increased genetic diversity, yielding CelB variants with significantly enhanced low-temperature activity compared to the wild type while preserving thermostability. DNA sequencing identified key mutations likely responsible for improved substrate binding and catalytic turnover. This GCCDE approach is broadly applicable for optimizing diverse enzymes, demonstrating the potential of automated continuous evolution for industrial and research applications. IMPORTANCE Enzyme engineering aims to develop enzymes with improved or novel traits, but traditional methods are slow and require repetitive manual steps. This study presents a faster, automated protein engineering approach. We utilized an in vivo mutagenesis technique, MutaT7 tools, to induce mutations in living bacteria and established a direct link between enzyme activity and bacterial growth. A continuous culture setup enables automated mutagenesis and growth-coupled selection of better-performing variants in real time. Bacteria with improved enzymes grew faster, selecting superior variants without manual intervention. Using this method, we engineered CelB with better performance at lower temperatures while maintaining thermal stability. By combining high-throughput mutagenesis and selection in a single process, this system bypasses iterative cycles of error-prone PCR, transformation, and screening. Our approach is adaptable to various enzymes, providing a faster and more efficient solution for enzyme engineering.
Collapse
Affiliation(s)
- Yijie Deng
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Kai Etheridge
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Xinping Ran
- Department of Biochemical Engineering, Duke University, Durham, North Carolina, USA
| | - Hannah E. Maurais
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Rahul Sarpeshkar
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Departments of Engineering, Microbiology & Immunology, Physics, and Molecular and Systems Biology, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
2
|
Droghetti R, Fuchs P, Iuliani I, Firmano V, Tallarico G, Calabrese L, Grilli J, Sclavi B, Ciandrini L, Cosentino Lagomarsino M. Incoherent feedback from coupled amino acids and ribosome pools generates damped oscillations in growing E. coli. Nat Commun 2025; 16:3063. [PMID: 40157904 PMCID: PMC11954927 DOI: 10.1038/s41467-025-57789-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/28/2025] [Indexed: 04/01/2025] Open
Abstract
Current theories of bacterial growth physiology demonstrate impressive predictive power but are often phenomenological, lacking mechanistic detail. Incorporating such details would significantly enhance our ability to predict and control bacterial growth under varying environmental conditions. The "Flux Controlled Regulation" (FCR) model serves as a reference framework, linking ribosome allocation to translation efficiency through a steady-state assumption. However, it neglects ppGpp-mediated nutrient sensing and transcriptional regulation of ribosomal operons. Here, we propose a mechanistic model that extends the FCR framework by incorporating three key components: (i) the amino acid pool, (ii) ppGpp sensing of translation elongation rate, and (iii) transcriptional regulation of protein allocation by ppGpp-sensitive promoters. Our model aligns with observed steady-state growth laws and makes testable predictions for unobserved quantities. We show that during environmental changes, the incoherent feedback between sensing and regulation generates oscillatory relaxation dynamics, a behavior that we support by new and existing experimental data.
Collapse
Affiliation(s)
| | - Philippe Fuchs
- Centre de Biologie Structurale (CBS), Universitè de Montpellier, CNRS, INSERM, Montpellier, France
| | - Ilaria Iuliani
- Sorbonne Université, CNRS, Laboratory of Computational, Quantitative and Synthetic Biology, CQSB, Paris, France
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Valerio Firmano
- Dipartimento di Fisica, Università degli Studi di Milano, Milan, Italy
| | - Giorgio Tallarico
- IFOM - Istituto Fondazione di Oncologia Molecolare, Milan, Italy
- Dipartimento di Fisica, Università degli Studi di Milano, Milan, Italy
- Pazmany Peter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Ludovico Calabrese
- IFOM - Istituto Fondazione di Oncologia Molecolare, Milan, Italy
- Biozentrum, University of Basel, Basel, Switzerland
| | - Jacopo Grilli
- Quantitative Life Science, The Abdus Salam International Center for Theoretical Physics, Trieste, Italy
| | - Bianca Sclavi
- Sorbonne Université, CNRS, Laboratory of Computational, Quantitative and Synthetic Biology, CQSB, Paris, France
| | - Luca Ciandrini
- Centre de Biologie Structurale (CBS), Universitè de Montpellier, CNRS, INSERM, Montpellier, France
- Institut Universitaire de France, Montpellier, France
| | - Marco Cosentino Lagomarsino
- IFOM - Istituto Fondazione di Oncologia Molecolare, Milan, Italy.
- Dipartimento di Fisica, Università degli Studi di Milano, Milan, Italy.
- INFN - Istituto Nazionale Fisica Nucleare sezione di Milano, Milan, Italy.
| |
Collapse
|
3
|
Deng Y, Maurais HE, Etheridge K, Sarpeshkar R. Gene syntaxes modulate gene expression and circuit behavior on plasmids. J Biol Eng 2025; 19:25. [PMID: 40148941 PMCID: PMC11951768 DOI: 10.1186/s13036-025-00493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Achieving consistent and predictable gene expression from plasmids remains challenging. While much attention has focused on intra-genetic elements like promoters and ribosomal binding sites, the spatial arrangement of genes within plasmids-referred to as gene syntax-also plays a crucial role in shaping gene expression dynamics. This study addresses the largely overlooked impact of gene syntaxes on gene expression variability and accuracy. Utilizing a dual-fluorescent protein system, we systematically investigated how different gene orientations and orders affect expression profiles including mean levels, relative expression ratios, and cell-to-cell variations. We found that arbitrary gene placement on a plasmid can cause significantly different expression means and ratios. Genes aligned in the same direction as a plasmid's origin of replication (Ori) typically exhibit higher expression levels; adjacent genes in the divergent orientation tend to suppress each other's expression; altering gene order without changing orientation can yield varied expression. Despite unchanged total cell-to-cell variation across different syntaxes, gene syntaxes can also influence intrinsic and extrinsic noise. Interestingly, cell-to-cell variation appears to depend on the reporter proteins, with RFP consistently showing higher variation than GFP. Moreover, the effects of gene syntax can propagate to downstream circuits, strongly affecting the performance of incoherent feedforward loops and contributing to unpredictable outcomes in genetic networks. Our findings reveal that gene syntaxes on plasmids modulate gene expression and circuit behavior, providing valuable insights for the rational design of plasmids and genetic circuits.
Collapse
Affiliation(s)
- Yijie Deng
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
| | - Hannah E Maurais
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Kai Etheridge
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Rahul Sarpeshkar
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
- Departments of Engineering, Microbiology & Immunology, Physics, and Molecular and Systems Biology, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
4
|
Lee TA, Morlock J, Allan J, Steel H. Directing microbial co-culture composition using cybernetic control. CELL REPORTS METHODS 2025; 5:101009. [PMID: 40132542 PMCID: PMC12049730 DOI: 10.1016/j.crmeth.2025.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
We demonstrate a cybernetic approach to control the composition of a P. putida and E. coli co-culture that does not rely on genetic engineering to interface cells with computers. We first show how composition information can be extracted from different bioreactor measurements and then combined with a system model using an extended Kalman filter to generate accurate estimates of a noisy system. We then demonstrate that adjusting the culture temperature can drive the composition due to the species' different optimal temperatures. Using a proportional-integral control algorithm, we are able to track dynamic references with real-time noise rejection and independence from starting conditions such as inoculation ratio. We stabilize the co-culture for 7 days (∼250 generations) with the experiment ending before the cells could adapt out of the control. This cybernetic framework is broadly applicable, with different microbes' unique characteristics enabling robust control over diverse co-cultures.
Collapse
Affiliation(s)
- Ting An Lee
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Jan Morlock
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - John Allan
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Harrison Steel
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK.
| |
Collapse
|
5
|
Alhafiz HA, Di Bisceglie F, Meier HPF, Weickardt I, González IAC, Navarro JG, Schoenmakers P, Oyen SJ, Lettau E, Lombard E, Cordero PRF, Konarzycka-Bessler M, Gorret N, Schmidt S, Schillberg S, Mann M, Guillouet SE, Kratzer R, Lauterbach L. Cupriavidus necator as a model organism for CO 2-based biotechnology. Methods Enzymol 2025; 714:163-194. [PMID: 40288837 DOI: 10.1016/bs.mie.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Cupriavidus necator H16 is a chemolithoautotrophic model organism that can grow in a simple mineral medium supplemented with the gases H2, O2 and CO2. This unique metabolic capability makes it a promising organism for sustainable biotechnology applications such as the production of bioplastics, single cell proteins and bulk chemicals from renewable resources. However, gas fermentation, particularly with explosive gas mixtures like H2 and O2, poses considerable technical and safety challenges. Effective control of gas mixtures, pressurized environments, mass transfer from gas to liquid and gas solubility is essential to ensure both reproducibility and safety in bioprocessing systems. This chapter describes a detailed methodology for the cultivation of C. necator across various micro, small- and medium-scale setups, while emphasizing safety protocols. The chapter also outlines analytical techniques for the quantification of polyhydroxybutyrate (PHB), single cell protein and isopropanol as product examples for gas fermentation.
Collapse
Affiliation(s)
- Halima Aliyu Alhafiz
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria; Institute for Biotechnology and Biochemical Engineering, TU Graz, NAWI Graz, Graz, Austria; Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany.
| | - Federico Di Bisceglie
- Institute for Biotechnology and Biochemical Engineering, TU Graz, NAWI Graz, Graz, Austria; TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Hannah Pia Franziska Meier
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany; Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Isabell Weickardt
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany; TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Itzel Andrea Castro González
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany; TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Javier García Navarro
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria; Institute for Biotechnology and Biochemical Engineering, TU Graz, NAWI Graz, Graz, Austria; TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Sven Jerome Oyen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Elisabeth Lettau
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | - Eric Lombard
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Paul R F Cordero
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | | | - Nathalie Gorret
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany; Institute of Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Marcel Mann
- Chair of Biotechnology, AVT.BioVT, RWTH Aachen University, Aachen, Germany
| | | | - Regina Kratzer
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria; Institute for Biotechnology and Biochemical Engineering, TU Graz, NAWI Graz, Graz, Austria
| | - Lars Lauterbach
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
6
|
Wenk S, Rainaldi V, Schann K, He H, Bouzon M, Döring V, Lindner SN, Bar-Even A. Evolution-assisted engineering of E. coli enables growth on formic acid at ambient CO 2 via the Serine Threonine Cycle. Metab Eng 2025; 88:14-24. [PMID: 39447836 DOI: 10.1016/j.ymben.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
Atmospheric CO2 poses a major threat to life on Earth by causing global warming and climate change. On the other hand, it can be considered as a resource that is scalable enough to establish a circular carbon economy. Accordingly, technologies to capture and convert CO2 into reduced one-carbon (C1) compounds (e.g. formic acid) are developing and improving fast. Driven by the idea of creating sustainable bioproduction platforms, natural and synthetic C1-utilization pathways are engineered into industrially relevant microbes. The realization of synthetic C1-assimilation cycles in living organisms is a promising but challenging endeavour. Here, we engineer the Serine Threonine Cycle, a synthetic C1-assimilation cycle in Escherichia coli to achieve growth on formic acid. Our stepwise engineering approach in tailored selection strains combined with adaptive laboratory evolution experiments enabled formatotrophic growth of the organism. Whole genome sequencing and reverse engineering allowed us to determine the key mutations linked to pathway activity. The Serine Threonine Cycle strains created in this work use formic acid as sole carbon and energy source and can grow at ambient CO2 cultivation conditions. This work sets an example for the engineering of complex C1-assimilation cycles in heterotrophic microbes.
Collapse
Affiliation(s)
- Sebastian Wenk
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Vittorio Rainaldi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Karin Schann
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Hai He
- Max Planck Institute of Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Madeleine Bouzon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay-4, 91057, Evry-Courcouronnes, France
| | - Volker Döring
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay-4, 91057, Evry-Courcouronnes, France
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Department of Biochemistry, Charité Universitätsmedizin, Virchowweg 6, 10117, Berlin, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
7
|
Harmer ZP, McClean MN. The Yeast Optogenetic Toolkit (yOTK) for Spatiotemporal Control of Gene Expression in Budding Yeast. Methods Mol Biol 2025; 2840:19-36. [PMID: 39724341 DOI: 10.1007/978-1-0716-4047-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Optogenetic systems utilize genetically encoded light-sensitive proteins to control cellular processes such as gene expression and protein localization. Like most synthetic systems, generation of an optogenetic system with desirable properties requires multiple design-test-build cycles. A yeast optogenetic toolkit (yOTK) allows rapid assembly of optogenetic constructs using Modular Cloning, or MoClo. In this protocol, we describe how to assemble, integrate, and test optogenetic systems in the budding yeast Saccharomyces cerevisiae. Generating an optogenetic system requires the user to first define the structure of the final construct and identify all basic parts and vectors required for the construction strategy, including light-sensitive proteins that need to be domesticated into the toolkit. The assembly is then defined following a set of standard rules. Multigene constructs are assembled using a series of one-pot assembly steps with the identified parts and vectors and transformed into yeast. Screening of the transformants allows optogenetic systems with optimal properties to be selected.
Collapse
Affiliation(s)
- Zachary P Harmer
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Megan N McClean
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
8
|
Park JH, Holló G, Schaerli Y. From resonance to chaos by modulating spatiotemporal patterns through a synthetic optogenetic oscillator. Nat Commun 2024; 15:7284. [PMID: 39179558 PMCID: PMC11343849 DOI: 10.1038/s41467-024-51626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Oscillations are a recurrent phenomenon in biological systems across scales, but deciphering their fundamental principles is very challenging. Here, we tackle this challenge by redesigning the wellcharacterised synthetic oscillator known as "repressilator" in Escherichia coli and controlling it using optogenetics, creating the "optoscillator". Bacterial colonies manifest oscillations as spatial ring patterns. When we apply periodic light pulses, the optoscillator behaves as a forced oscillator and we systematically investigate the properties of the rings under various light conditions. Combining experiments with mathematical modeling, we demonstrate that this simple oscillatory circuit can generate complex dynamics that are transformed into distinct spatial patterns. We report the observation of synchronisation, resonance, subharmonic resonance and period doubling. Furthermore, we present evidence of a chaotic regime. This work highlights the intricate spatiotemporal patterns accessible by synthetic oscillators and underscores the potential of our approach in revealing fundamental principles of biological oscillations.
Collapse
Affiliation(s)
- Jung Hun Park
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Gábor Holló
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Denton MR, Murphy NP, Norton-Baker B, Lua M, Steel H, Beckham GT. Integration of pH Control into Chi.Bio Reactors and Demonstration with Small-Scale Enzymatic Poly(ethylene terephthalate) Hydrolysis. Biochemistry 2024; 63:1599-1607. [PMID: 38907702 PMCID: PMC11223484 DOI: 10.1021/acs.biochem.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/24/2024]
Abstract
Small-scale bioreactors that are affordable and accessible would be of major benefit to the research community. In previous work, an open-source, automated bioreactor system was designed to operate up to the 30 mL scale with online optical monitoring, stirring, and temperature control, and this system, dubbed Chi.Bio, is now commercially available at a cost that is typically 1-2 orders of magnitude less than commercial bioreactors. In this work, we further expand the capabilities of the Chi.Bio system by enabling continuous pH monitoring and control through hardware and software modifications. For hardware modifications, we sourced low-cost, commercial pH circuits and made straightforward modifications to the Chi.Bio head plate to enable continuous pH monitoring. For software integration, we introduced closed-loop feedback control of the pH measured inside the Chi.Bio reactors and integrated a pH-control module into the existing Chi.Bio user interface. We demonstrated the utility of pH control through the small-scale depolymerization of the synthetic polyester, poly(ethylene terephthalate) (PET), using a benchmark cutinase enzyme, and compared this to 250 mL bioreactor hydrolysis reactions. The results in terms of PET conversion and rate, measured both by base addition and product release profiles, are statistically equivalent, with the Chi.Bio system allowing for a 20-fold reduction of purified enzyme required relative to the 250 mL bioreactor setup. Through inexpensive modifications, the ability to conduct pH control in Chi.Bio reactors widens the potential slate of biochemical reactions and biological cultivations for study in this system, and may also be adapted for use in other bioreactor platforms.
Collapse
Affiliation(s)
- Mackenzie
C. R. Denton
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- BOTTLE
Consortium, Golden, Colorado 80401, United States
| | - Natasha P. Murphy
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- BOTTLE
Consortium, Golden, Colorado 80401, United States
| | - Brenna Norton-Baker
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- BOTTLE
Consortium, Golden, Colorado 80401, United States
| | - Mauro Lua
- Catalytic
Carbon Transformation and Scale-up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Harrison Steel
- Department
of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K.
| | - Gregg T. Beckham
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- BOTTLE
Consortium, Golden, Colorado 80401, United States
| |
Collapse
|
10
|
Chen YC, Destouches L, Cook A, Fedorec AJH. Synthetic microbial ecology: engineering habitats for modular consortia. J Appl Microbiol 2024; 135:lxae158. [PMID: 38936824 DOI: 10.1093/jambio/lxae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
Microbiomes, the complex networks of micro-organisms and the molecules through which they interact, play a crucial role in health and ecology. Over at least the past two decades, engineering biology has made significant progress, impacting the bio-based industry, health, and environmental sectors; but has only recently begun to explore the engineering of microbial ecosystems. The creation of synthetic microbial communities presents opportunities to help us understand the dynamics of wild ecosystems, learn how to manipulate and interact with existing microbiomes for therapeutic and other purposes, and to create entirely new microbial communities capable of undertaking tasks for industrial biology. Here, we describe how synthetic ecosystems can be constructed and controlled, focusing on how the available methods and interaction mechanisms facilitate the regulation of community composition and output. While experimental decisions are dictated by intended applications, the vast number of tools available suggests great opportunity for researchers to develop a diverse array of novel microbial ecosystems.
Collapse
Affiliation(s)
- Yue Casey Chen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Louie Destouches
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Alice Cook
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Alex J H Fedorec
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
11
|
Sitompul SN, Diaz Garcia LA, Price J, Tee KL, Wong TS. Fast-track adaptive laboratory evolution of Cupriavidus necator H16 with divalent metal cations. Biotechnol J 2024; 19:e2300577. [PMID: 38987216 DOI: 10.1002/biot.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Microbial strain improvement through adaptive laboratory evolution (ALE) has been a key strategy in biotechnology for enhancing desired phenotypic traits. In this Biotech Method paper, we present an accelerated ALE (aALE) workflow and its successful implementation in evolving Cupriavidus necator H16 for enhanced tolerance toward elevated glycerol concentrations. The method involves the deliberate induction of genetic diversity through controlled exposure to divalent metal cations, enabling the rapid identification of improved variants. Through this approach, we observed the emergence of robust variants capable of growing in high glycerol concentration environments, demonstrating the efficacy of our aALE workflow. When cultivated in 10% v/v glycerol, the adapted variant Mn-C2-B11, selected through aALE, achieved a final OD600 value of 56.0 and a dry cell weight of 15.2 g L-1, compared to the wild type (WT) strain's final OD600 of 39.1 and dry cell weight of 8.4 g L-1. At an even higher glycerol concentration of 15% v/v, Mn-C2-B11 reached a final OD600 of 48.9 and a dry cell weight of 12.7 g L-1, in contrast to the WT strain's final OD600 of 9.0 and dry cell weight of 3.1 g L-1. Higher glycerol consumption by Mn-C2-B11 was also confirmed by high-performance liquid chromatography (HPLC) analysis. This adapted variant consumed 34.5 times more glycerol compared to the WT strain at 10% v/v glycerol. Our method offers several advantages over other reported ALE approaches, including its independence from genetically modified strains, specialized genetic tools, and potentially carcinogenic DNA-modifying agents. By utilizing divalent metal cations as mutagens, we offer a safer, more efficient, and cost-effective alternative for expansion of genetic diversity. With its ability to foster rapid microbial evolution, aALE serves as a valuable addition to the ALE toolbox, holding significant promise for the advancement of microbial strain engineering and bioprocess optimization.
Collapse
Affiliation(s)
| | | | - Joseph Price
- Evolutor Ltd, The Innovation Centre, Sheffield, UK
| | - Kang Lan Tee
- Department of Chemical & Biological Engineering, University of Sheffield, Sheffield, UK
- Evolutor Ltd, The Innovation Centre, Sheffield, UK
| | - Tuck Seng Wong
- Department of Chemical & Biological Engineering, University of Sheffield, Sheffield, UK
- Evolutor Ltd, The Innovation Centre, Sheffield, UK
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science & Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
- School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, Indonesia
| |
Collapse
|
12
|
Olivi L, Bagchus C, Pool V, Bekkering E, Speckner K, Offerhaus H, Wu W, Depken M, Martens KA, Staals RJ, Hohlbein J. Live-cell imaging reveals the trade-off between target search flexibility and efficiency for Cas9 and Cas12a. Nucleic Acids Res 2024; 52:5241-5256. [PMID: 38647045 PMCID: PMC11109954 DOI: 10.1093/nar/gkae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
CRISPR-Cas systems have widely been adopted as genome editing tools, with two frequently employed Cas nucleases being SpyCas9 and LbCas12a. Although both nucleases use RNA guides to find and cleave target DNA sites, the two enzymes differ in terms of protospacer-adjacent motif (PAM) requirements, guide architecture and cleavage mechanism. In the last years, rational engineering led to the creation of PAM-relaxed variants SpRYCas9 and impLbCas12a to broaden the targetable DNA space. By employing their catalytically inactive variants (dCas9/dCas12a), we quantified how the protein-specific characteristics impact the target search process. To allow quantification, we fused these nucleases to the photoactivatable fluorescent protein PAmCherry2.1 and performed single-particle tracking in cells of Escherichia coli. From our tracking analysis, we derived kinetic parameters for each nuclease with a non-targeting RNA guide, strongly suggesting that interrogation of DNA by LbdCas12a variants proceeds faster than that of SpydCas9. In the presence of a targeting RNA guide, both simulations and imaging of cells confirmed that LbdCas12a variants are faster and more efficient in finding a specific target site. Our work demonstrates the trade-off of relaxing PAM requirements in SpydCas9 and LbdCas12a using a powerful framework, which can be applied to other nucleases to quantify their DNA target search.
Collapse
Affiliation(s)
- Lorenzo Olivi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Cleo Bagchus
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Victor Pool
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Ezra Bekkering
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Konstantin Speckner
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Hidde Offerhaus
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Wen Y Wu
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Martin Depken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Koen J A Martens
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands
- Microspectroscopy Research Facility, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
13
|
Kinet R, Richelle A, Colle M, Demaegd D, von Stosch M, Sanders M, Sehrt H, Delvigne F, Goffin P. Giving the cells what they need when they need it: Biosensor-based feeding control. Biotechnol Bioeng 2024; 121:1271-1283. [PMID: 38258490 DOI: 10.1002/bit.28657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
"Giving the cells exactly what they need, when they need it" is the core idea behind the proposed bioprocess control strategy: operating bioprocess based on the physiological behavior of the microbial population rather than exclusive monitoring of environmental parameters. We are envisioning to achieve this through the use of genetically encoded biosensors combined with online flow cytometry (FCM) to obtain a time-dependent "physiological fingerprint" of the population. We developed a biosensor based on the glnA promoter (glnAp) and applied it for monitoring the nitrogen-related nutritional state of Escherichia coli. The functionality of the biosensor was demonstrated through multiple cultivation runs performed at various scales-from microplate to 20 L bioreactor. We also developed a fully automated bioreactor-FCM interface for on-line monitoring of the microbial population. Finally, we validated the proposed strategy by performing a fed-batch experiment where the biosensor signal is used as the actuator for a nitrogen feeding feedback control. This new generation of process control, -based on the specific needs of the cells, -opens the possibility of improving process development on a short timescale and therewith, the robustness and performance of fermentation processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hannah Sehrt
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Frank Delvigne
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Philippe Goffin
- Molecular and Cellular Biology, University of Brussels, Brussels, Belgium
| |
Collapse
|
14
|
Gyorgy A. Competition and evolutionary selection among core regulatory motifs in gene expression control. Nat Commun 2023; 14:8266. [PMID: 38092759 PMCID: PMC10719253 DOI: 10.1038/s41467-023-43327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Gene products that are beneficial in one environment may become burdensome in another, prompting the emergence of diverse regulatory schemes that carry their own bioenergetic cost. By ensuring that regulators are only expressed when needed, we demonstrate that autoregulation generally offers an advantage in an environment combining mutation and time-varying selection. Whether positive or negative feedback emerges as dominant depends primarily on the demand for the target gene product, typically to ensure that the detrimental impact of inevitable mutations is minimized. While self-repression of the regulator curbs the spread of these loss-of-function mutations, self-activation instead facilitates their propagation. By analyzing the transcription network of multiple model organisms, we reveal that reduced bioenergetic cost may contribute to the preferential selection of autoregulation among transcription factors. Our results not only uncover how seemingly equivalent regulatory motifs have fundamentally different impact on population structure, growth dynamics, and evolutionary outcomes, but they can also be leveraged to promote the design of evolutionarily robust synthetic gene circuits.
Collapse
Affiliation(s)
- Andras Gyorgy
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
15
|
Delaney O, Letten AD, Engelstädter J. Frequent, infinitesimal bottlenecks maximize the rate of microbial adaptation. Genetics 2023; 225:iyad185. [PMID: 37804525 PMCID: PMC10697810 DOI: 10.1093/genetics/iyad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/09/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023] Open
Abstract
Serial passaging is a fundamental technique in experimental evolution. The choice of bottleneck severity and frequency poses a dilemma: longer growth periods allow beneficial mutants to arise and grow over more generations, but simultaneously necessitate more severe bottlenecks with a higher risk of those same mutations being lost. Short growth periods require less severe bottlenecks, but come at the cost of less time between transfers for beneficial mutations to establish. The standard laboratory protocol of 24-h growth cycles with severe bottlenecking has logistical advantages for the experimenter but limited theoretical justification. Here we demonstrate that contrary to standard practice, the rate of adaptive evolution is maximized when bottlenecks are frequent and small, indeed infinitesimally so in the limit of continuous culture. This result derives from revising key assumptions underpinning previous theoretical work, notably changing the metric of optimization from adaptation per serial transfer to per experiment runtime. We also show that adding resource constraints and clonal interference to the model leaves the qualitative results unchanged. Implementing these findings will require liquid-handling robots to perform frequent bottlenecks, or chemostats for continuous culture. Further innovation in and adoption of these technologies has the potential to accelerate the rate of discovery in experimental evolution.
Collapse
Affiliation(s)
- Oscar Delaney
- School of the Environment, The University of Queensland, Queensland 4072, Australia
| | - Andrew D Letten
- School of the Environment, The University of Queensland, Queensland 4072, Australia
| | - Jan Engelstädter
- School of the Environment, The University of Queensland, Queensland 4072, Australia
| |
Collapse
|
16
|
Benman W, Datta S, Gonzalez-Martinez D, Lee G, Hooper J, Qian G, Leavitt G, Salloum L, Ho G, Mhatre S, Magaraci MS, Patterson M, Mannickarottu SG, Malani S, Avalos JL, Chow BY, Bugaj LJ. High-throughput feedback-enabled optogenetic stimulation and spectroscopy in microwell plates. Commun Biol 2023; 6:1192. [PMID: 38001175 PMCID: PMC10673842 DOI: 10.1038/s42003-023-05532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The ability to perform sophisticated, high-throughput optogenetic experiments has been greatly enhanced by recent open-source illumination devices that allow independent programming of light patterns in single wells of microwell plates. However, there is currently a lack of instrumentation to monitor such experiments in real time, necessitating repeated transfers of the samples to stand-alone analytical instruments, thus limiting the types of experiments that could be performed. Here we address this gap with the development of the optoPlateReader (oPR), an open-source, solid-state, compact device that allows automated optogenetic stimulation and spectroscopy in each well of a 96-well plate. The oPR integrates an optoPlate illumination module with a module called the optoReader, an array of 96 photodiodes and LEDs that allows 96 parallel light measurements. The oPR was optimized for stimulation with blue light and for measurements of optical density and fluorescence. After calibration of all device components, we used the oPR to measure growth and to induce and measure fluorescent protein expression in E. coli. We further demonstrated how the optical read/write capabilities of the oPR permit computer-in-the-loop feedback control, where the current state of the sample can be used to adjust the optical stimulation parameters of the sample according to pre-defined feedback algorithms. The oPR will thus help realize an untapped potential for optogenetic experiments by enabling automated reading, writing, and feedback in microwell plates through open-source hardware that is accessible, customizable, and inexpensive.
Collapse
Affiliation(s)
- William Benman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Saachi Datta
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Gloria Lee
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Juliette Hooper
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Grace Qian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gabrielle Leavitt
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lana Salloum
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gabrielle Ho
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sharvari Mhatre
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael S Magaraci
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael Patterson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Saurabh Malani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Jose L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
- The Andlinger Center for Energy and the Environment, Princeton, NJ, 08544, USA
- High Meadows Environmental Institute, Princeton, NJ, 08544, USA
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Kumar S, Anastassov S, Aoki SK, Falkenstein J, Chang CH, Frei T, Buchmann P, Argast P, Khammash M. Diya - A universal light illumination platform for multiwell plate cultures. iScience 2023; 26:107862. [PMID: 37810238 PMCID: PMC10551653 DOI: 10.1016/j.isci.2023.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Recent progress in protein engineering has established optogenetics as one of the leading external non-invasive stimulation strategies, with many optogenetic tools being designed for in vivo operation. Characterization and optimization of these tools require a high-throughput and versatile light delivery system targeting micro-titer culture volumes. Here, we present a universal light illumination platform - Diya, compatible with a wide range of cell culture plates and dishes. Diya hosts specially designed features ensuring active thermal management, homogeneous illumination, and minimal light bleedthrough. It offers light induction programming via a user-friendly custom-designed GUI. Through extensive characterization experiments with multiple optogenetic tools in diverse model organisms (bacteria, yeast, and human cell lines), we show that Diya maintains viable conditions for cell cultures undergoing light induction. Finally, we demonstrate an optogenetic strategy for in vivo biomolecular controller operation. With a custom-designed antithetic integral feedback circuit, we exhibit robust perfect adaptation and light-controlled set-point variation using Diya.
Collapse
Affiliation(s)
- Sant Kumar
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Stanislav Anastassov
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Stephanie K. Aoki
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Johannes Falkenstein
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Ching-Hsiang Chang
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Timothy Frei
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Peter Buchmann
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Paul Argast
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
18
|
Delvigne F, Martinez JA. Advances in automated and reactive flow cytometry for synthetic biotechnology. Curr Opin Biotechnol 2023; 83:102974. [PMID: 37515938 DOI: 10.1016/j.copbio.2023.102974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/31/2023]
Abstract
Automated flow cytometry (FC) has been initially considered for bioprocess monitoring and optimization. More recently, new physical and software interfaces have been made available, facilitating the access to this technology for labs and industries. It also comes with new capabilities, such as being able to act on the cultivation conditions based on population data. This approach, known as reactive FC, extended the range of applications of automated FC to bioprocess control and the stabilization of cocultures, but also to the broad field of synthetic and systems biology for the characterization of gene circuits. However, several issues must be addressed before automated and reactive FC can be considered standard and modular technologies.
Collapse
Affiliation(s)
- Frank Delvigne
- Terra Research and Teaching Center, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| | - Juan A Martinez
- Terra Research and Teaching Center, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
19
|
Naseri G. A roadmap to establish a comprehensive platform for sustainable manufacturing of natural products in yeast. Nat Commun 2023; 14:1916. [PMID: 37024483 PMCID: PMC10079933 DOI: 10.1038/s41467-023-37627-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Secondary natural products (NPs) are a rich source for drug discovery. However, the low abundance of NPs makes their extraction from nature inefficient, while chemical synthesis is challenging and unsustainable. Saccharomyces cerevisiae and Pichia pastoris are excellent manufacturing systems for the production of NPs. This Perspective discusses a comprehensive platform for sustainable production of NPs in the two yeasts through system-associated optimization at four levels: genetics, temporal controllers, productivity screening, and scalability. Additionally, it is pointed out critical metabolic building blocks in NP bioengineering can be identified through connecting multilevel data of the optimized system using deep learning.
Collapse
Affiliation(s)
- Gita Naseri
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany.
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany.
| |
Collapse
|
20
|
Pouzet S, Cruz-Ramón J, Le Bec M, Cordier C, Banderas A, Barral S, Castaño-Cerezo S, Lautier T, Truan G, Hersen P. Optogenetic control of beta-carotene bioproduction in yeast across multiple lab-scales. Front Bioeng Biotechnol 2023; 11:1085268. [PMID: 36814715 PMCID: PMC9939774 DOI: 10.3389/fbioe.2023.1085268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Optogenetics arises as a valuable tool to precisely control genetic circuits in microbial cell factories. Light control holds the promise of optimizing bioproduction methods and maximizing yields, but its implementation at different steps of the strain development process and at different culture scales remains challenging. In this study, we aim to control beta-carotene bioproduction using optogenetics in Saccharomyces cerevisiae and investigate how its performance translates across culture scales. We built four lab-scale illumination devices, each handling different culture volumes, and each having specific illumination characteristics and cultivating conditions. We evaluated optogenetic activation and beta-carotene production across devices and optimized them both independently. Then, we combined optogenetic induction and beta-carotene production to make a light-inducible beta-carotene producer strain. This was achieved by placing the transcription of the bifunctional lycopene cyclase/phytoene synthase CrtYB under the control of the pC120 optogenetic promoter regulated by the EL222-VP16 light-activated transcription factor, while other carotenogenic enzymes (CrtI, CrtE, tHMG) were expressed constitutively. We show that illumination, culture volume and shaking impact differently optogenetic activation and beta-carotene production across devices. This enabled us to determine the best culture conditions to maximize light-induced beta-carotene production in each of the devices. Our study exemplifies the stakes of scaling up optogenetics in devices of different lab scales and sheds light on the interplays and potential conflicts between optogenetic control and metabolic pathway efficiency. As a general principle, we propose that it is important to first optimize both components of the system independently, before combining them into optogenetic producing strains to avoid extensive troubleshooting. We anticipate that our results can help designing both strains and devices that could eventually lead to larger scale systems in an effort to bring optogenetics to the industrial scale.
Collapse
Affiliation(s)
- Sylvain Pouzet
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Jessica Cruz-Ramón
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Matthias Le Bec
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Céline Cordier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Alvaro Banderas
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Simon Barral
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Sara Castaño-Cerezo
- Toulouse Biotechnology Institute, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l′Agriculture, l′Alimentation et l′Environnement (INRAE), Institut National des Sciences Appliquées (INSA), Toulouse, France
| | - Thomas Lautier
- Toulouse Biotechnology Institute, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l′Agriculture, l′Alimentation et l′Environnement (INRAE), Institut National des Sciences Appliquées (INSA), Toulouse, France,CNRS@CREATE, Singapore Institute of Food and Biotechnology Innovation, Agency for Science Technology and Research, Singapore, Singapore
| | - Gilles Truan
- Toulouse Biotechnology Institute, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l′Agriculture, l′Alimentation et l′Environnement (INRAE), Institut National des Sciences Appliquées (INSA), Toulouse, France
| | - Pascal Hersen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France,*Correspondence: Pascal Hersen,
| |
Collapse
|
21
|
Wegner SA, Barocio-Galindo RM, Avalos JL. The bright frontiers of microbial metabolic optogenetics. Curr Opin Chem Biol 2022; 71:102207. [PMID: 36103753 DOI: 10.1016/j.cbpa.2022.102207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 01/27/2023]
Abstract
In recent years, light-responsive systems from the field of optogenetics have been applied to several areas of metabolic engineering with remarkable success. By taking advantage of light's high tunability, reversibility, and orthogonality to host endogenous processes, optogenetic systems have enabled unprecedented dynamical controls of microbial fermentations for chemical production, metabolic flux analysis, and population compositions in co-cultures. In this article, we share our opinions on the current state of this new field of metabolic optogenetics.We make the case that it will continue to impact metabolic engineering in increasingly new directions, with the potential to challenge existing paradigms for metabolic pathway and strain optimization as well as bioreactor operation.
Collapse
Affiliation(s)
| | | | - José L Avalos
- Department of Molecular Biology, USA; Department of Chemical and Biological Engineering, USA; The Andlinger Center for Energy and the Environment, USA; High Meadows Environmental Institute, Princeton University, Princeton NJ 08544, USA.
| |
Collapse
|
22
|
Joshi SHN, Yong C, Gyorgy A. Inducible plasmid copy number control for synthetic biology in commonly used E. coli strains. Nat Commun 2022; 13:6691. [PMID: 36335103 PMCID: PMC9637173 DOI: 10.1038/s41467-022-34390-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The ability to externally control gene expression has been paradigm shifting for all areas of biological research, especially for synthetic biology. Such control typically occurs at the transcriptional and translational level, while technologies enabling control at the DNA copy level are limited by either (i) relying on a handful of plasmids with fixed and arbitrary copy numbers; or (ii) require multiple plasmids for replication control; or (iii) are restricted to specialized strains. To overcome these limitations, we present TULIP (TUnable Ligand Inducible Plasmid): a self-contained plasmid with inducible copy number control, designed for portability across various Escherichia coli strains commonly used for cloning, protein expression, and metabolic engineering. Using TULIP, we demonstrate through multiple application examples that flexible plasmid copy number control accelerates the design and optimization of gene circuits, enables efficient probing of metabolic burden, and facilitates the prototyping and recycling of modules in different genetic contexts.
Collapse
Affiliation(s)
- Shivang Hina-Nilesh Joshi
- grid.440573.10000 0004 1755 5934Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Chentao Yong
- grid.440573.10000 0004 1755 5934Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates ,grid.137628.90000 0004 1936 8753Department of Chemical and Biomolecular Engineering, New York University, New York, NY USA
| | - Andras Gyorgy
- grid.440573.10000 0004 1755 5934Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
23
|
Ohlendorf R, Möglich A. Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives. Front Bioeng Biotechnol 2022; 10:1029403. [PMID: 36312534 PMCID: PMC9614035 DOI: 10.3389/fbioe.2022.1029403] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous photoreceptors and genetic circuits emerged over the past two decades and now enable the light-dependent i.e., optogenetic, regulation of gene expression in bacteria. Prompted by light cues in the near-ultraviolet to near-infrared region of the electromagnetic spectrum, gene expression can be up- or downregulated stringently, reversibly, non-invasively, and with precision in space and time. Here, we survey the underlying principles, available options, and prominent examples of optogenetically regulated gene expression in bacteria. While transcription initiation and elongation remain most important for optogenetic intervention, other processes e.g., translation and downstream events, were also rendered light-dependent. The optogenetic control of bacterial expression predominantly employs but three fundamental strategies: light-sensitive two-component systems, oligomerization reactions, and second-messenger signaling. Certain optogenetic circuits moved beyond the proof-of-principle and stood the test of practice. They enable unprecedented applications in three major areas. First, light-dependent expression underpins novel concepts and strategies for enhanced yields in microbial production processes. Second, light-responsive bacteria can be optogenetically stimulated while residing within the bodies of animals, thus prompting the secretion of compounds that grant health benefits to the animal host. Third, optogenetics allows the generation of precisely structured, novel biomaterials. These applications jointly testify to the maturity of the optogenetic approach and serve as blueprints bound to inspire and template innovative use cases of light-regulated gene expression in bacteria. Researchers pursuing these lines can choose from an ever-growing, versatile, and efficient toolkit of optogenetic circuits.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
- Bayreuth Center for Biochemistry and Molecular Biology, Universität Bayreuth, Bayreuth, Germany
- North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
24
|
Lee TA, Steel H. Cybergenetic control of microbial community composition. Front Bioeng Biotechnol 2022; 10:957140. [PMID: 36277404 PMCID: PMC9582452 DOI: 10.3389/fbioe.2022.957140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The use of bacterial communities in bioproduction instead of monocultures has potential advantages including increased productivity through division of labour, ability to utilise cheaper substrates, and robustness against perturbations. A key challenge in the application of engineered bacterial communities is the ability to reliably control the composition of the community in terms of its constituent species. This is crucial to prevent faster growing species from outcompeting others with a lower relative fitness, and to ensure that all species are present at an optimal ratio during different steps in a biotechnological process. In contrast to purely biological approaches such as synthetic quorum sensing circuits or paired auxotrophies, cybergenetic control techniques - those in which computers interface with living cells-are emerging as an alternative approach with many advantages. The community composition is measured through methods such as fluorescence intensity or flow cytometry, with measured data fed real-time into a computer. A control action is computed using a variety of possible control algorithms and then applied to the system, with actuation taking the form of chemical (e.g., inducers, nutrients) or physical (e.g., optogenetic, mechanical) inputs. Subsequent changes in composition are then measured and the cycle repeated, maintaining or driving the system to a desired state. This review discusses recent and future developments in methods for implementing cybergenetic control systems, contrasts their capabilities with those of traditional biological methods of population control, and discusses future directions and outstanding challenges for the field.
Collapse
Affiliation(s)
| | - Harrison Steel
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Kumar S, Khammash M. Platforms for Optogenetic Stimulation and Feedback Control. Front Bioeng Biotechnol 2022; 10:918917. [PMID: 35757811 PMCID: PMC9213687 DOI: 10.3389/fbioe.2022.918917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Harnessing the potential of optogenetics in biology requires methodologies from different disciplines ranging from biology, to mechatronics engineering, to control engineering. Light stimulation of a synthetic optogenetic construct in a given biological species can only be achieved via a suitable light stimulation platform. Emerging optogenetic applications entail a consistent, reproducible, and regulated delivery of light adapted to the application requirement. In this review, we explore the evolution of light-induction hardware-software platforms from simple illumination set-ups to sophisticated microscopy, microtiter plate and bioreactor designs, and discuss their respective advantages and disadvantages. Here, we examine design approaches followed in performing optogenetic experiments spanning different cell types and culture volumes, with induction capabilities ranging from single cell stimulation to entire cell culture illumination. The development of automated measurement and stimulation schemes on these platforms has enabled researchers to implement various in silico feedback control strategies to achieve computer-controlled living systems—a theme we briefly discuss in the last part of this review.
Collapse
Affiliation(s)
- Sant Kumar
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
| |
Collapse
|
26
|
Enhancing bioreactor arrays for automated measurements and reactive control with ReacSight. Nat Commun 2022; 13:3363. [PMID: 35690608 PMCID: PMC9188569 DOI: 10.1038/s41467-022-31033-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/31/2022] [Indexed: 12/19/2022] Open
Abstract
Small-scale, low-cost bioreactors provide exquisite control of environmental parameters of microbial cultures over long durations. Their use is gaining popularity in quantitative systems and synthetic biology. However, existing setups are limited in their measurement capabilities. Here, we present ReacSight, a strategy to enhance bioreactor arrays for automated measurements and reactive experiment control. ReacSight leverages low-cost pipetting robots for sample collection, handling and loading, and provides a flexible instrument control architecture. We showcase ReacSight capabilities on three applications in yeast. First, we demonstrate real-time optogenetic control of gene expression. Second, we explore the impact of nutrient scarcity on fitness and cellular stress using competition assays. Third, we perform dynamic control of the composition of a two-strain consortium. We combine custom or chi.bio reactors with automated cytometry. To further illustrate ReacSight's genericity, we use it to enhance plate-readers with pipetting capabilities and perform repeated antibiotic treatments on a bacterial clinical isolate.
Collapse
|
27
|
Tellechea-Luzardo J, Otero-Muras I, Goñi-Moreno A, Carbonell P. Fast biofoundries: coping with the challenges of biomanufacturing. Trends Biotechnol 2022; 40:831-842. [PMID: 35012773 DOI: 10.1016/j.tibtech.2021.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
Biofoundries are highly automated facilities that enable the rapid and efficient design, build, test, and learn cycle of biomanufacturing and engineering biology, which is applicable to both research and industrial production. However, developing a biofoundry platform can be expensive and time consuming. A biofoundry should grow organically, starting from a basic platform but with a vision for automation, equipment interoperability, and efficiency. By thinking about strategies early in the process through process planning, simulation, and optimization, bottlenecks can be identified and resolved. Here, we provide a survey of technological solutions in biofoundries and their advantages and limitations. We explore possible pathways towards the creation of a functional, early-phase biofoundry, and strategies towards long-term sustainability.
Collapse
Affiliation(s)
- Jonathan Tellechea-Luzardo
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politécnica de València (UPV), 46022 València, Spain
| | - Irene Otero-Muras
- Institute for Integrative Systems Biology I2SysBio, Universitat de València-CSIC, Catedrático Agustín Escardino Benlloch 9, Paterna, 46980 València, Spain
| | - Angel Goñi-Moreno
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politécnica de València (UPV), 46022 València, Spain.
| |
Collapse
|
28
|
Lindner F, Diepold A. Optogenetics in bacteria - applications and opportunities. FEMS Microbiol Rev 2021; 46:6427354. [PMID: 34791201 PMCID: PMC8892541 DOI: 10.1093/femsre/fuab055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Optogenetics holds the promise of controlling biological processes with superb temporal and spatial resolution at minimal perturbation. Although many of the light-reactive proteins used in optogenetic systems are derived from prokaryotes, applications were largely limited to eukaryotes for a long time. In recent years, however, an increasing number of microbiologists use optogenetics as a powerful new tool to study and control key aspects of bacterial biology in a fast and often reversible manner. After a brief discussion of optogenetic principles, this review provides an overview of the rapidly growing number of optogenetic applications in bacteria, with a particular focus on studies venturing beyond transcriptional control. To guide future experiments, we highlight helpful tools, provide considerations for successful application of optogenetics in bacterial systems, and identify particular opportunities and challenges that arise when applying these approaches in bacteria.
Collapse
Affiliation(s)
- Florian Lindner
- Max-Planck-Institute for Terrestrial Microbiology, Department of Ecophysiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Andreas Diepold
- Max-Planck-Institute for Terrestrial Microbiology, Department of Ecophysiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.,SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany
| |
Collapse
|
29
|
Nowrouzi B, Rios-Solis L. Redox metabolism for improving whole-cell P450-catalysed terpenoid biosynthesis. Crit Rev Biotechnol 2021; 42:1213-1237. [PMID: 34749553 DOI: 10.1080/07388551.2021.1990210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The growing preference for producing cytochrome P450-mediated natural products in microbial systems stems from the challenging nature of the organic chemistry approaches. The P450 enzymes are redox-dependent proteins, through which they source electrons from reducing cofactors to drive their activities. Widely researched in biochemistry, most of the previous studies have extensively utilised expensive cell-free assays to reveal mechanistic insights into P450 functionalities in presence of commercial redox partners. However, in the context of microbial bioproduction, the synergic activity of P450- reductase proteins in microbial systems have not been largely investigated. This is mainly due to limited knowledge about their mutual interactions in the context of complex systems. Hence, manipulating the redox potential for natural product synthesis in microbial chassis has been limited. As the potential of redox state as crucial regulator of P450 biocatalysis has been greatly underestimated by the scientific community, in this review, we re-emphasize their pivotal role in modulating the in vivo P450 activity through affecting the product profile and yield. Particularly, we discuss the applications of widely used in vivo redox engineering methodologies for natural product synthesis to provide further suggestions for patterning on P450-based terpenoids production in microbial platforms.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
30
|
Chen JX, Lim B, Steel H, Song Y, Ji M, Huang WE. Redesign of ultrasensitive and robust RecA gene circuit to sense DNA damage. Microb Biotechnol 2021; 14:2481-2496. [PMID: 33661573 PMCID: PMC8601168 DOI: 10.1111/1751-7915.13767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/10/2023] Open
Abstract
SOS box of the recA promoter, PVRecA from Vibrio natriegens was characterized, cloned and expressed in a probiotic strain E. coli Nissle 1917. This promoter was then rationally engineered according to predicted interactions between LexA repressor and PVRecA . The redesigned PVRecA-AT promoter showed a sensitive and robust response to DNA damage induced by UV and genotoxic compounds. Rational design of PVRecA coupled to an amplification gene circuit increased circuit output amplitude 4.3-fold in response to a DNA damaging compound mitomycin C. A TetR-based negative feedback loop was added to the PVRecA-AT amplifier to achieve a robust SOS system, resistant to environmental fluctuations in parameters including pH, temperature, oxygen and nutrient conditions. We found that E. coli Nissle 1917 with optimized PVRecA-AT adapted to UV exposure and increased SOS response 128-fold over 40 h cultivation in turbidostat mini-reactor. We also showed the potential of this PVRecA-AT system as an optogenetic actuator, which can be controlled spatially through UV radiation. We demonstrated that the optimized SOS responding gene circuits were able to detect carcinogenic biomarker molecules with clinically relevant concentrations. The ultrasensitive SOS gene circuits in probiotic E. coli Nissle 1917 would be potentially useful for bacterial diagnosis.
Collapse
Affiliation(s)
- Jack X. Chen
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Boon Lim
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Harrison Steel
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Yizhi Song
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Mengmeng Ji
- Oxford Suzhou Centre for Advanced ResearchSuzhou215123China
| | - Wei E. Huang
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| |
Collapse
|
31
|
Munro LJ, Kell DB. Intelligent host engineering for metabolic flux optimisation in biotechnology. Biochem J 2021; 478:3685-3721. [PMID: 34673920 PMCID: PMC8589332 DOI: 10.1042/bcj20210535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Optimising the function of a protein of length N amino acids by directed evolution involves navigating a 'search space' of possible sequences of some 20N. Optimising the expression levels of P proteins that materially affect host performance, each of which might also take 20 (logarithmically spaced) values, implies a similar search space of 20P. In this combinatorial sense, then, the problems of directed protein evolution and of host engineering are broadly equivalent. In practice, however, they have different means for avoiding the inevitable difficulties of implementation. The spare capacity exhibited in metabolic networks implies that host engineering may admit substantial increases in flux to targets of interest. Thus, we rehearse the relevant issues for those wishing to understand and exploit those modern genome-wide host engineering tools and thinking that have been designed and developed to optimise fluxes towards desirable products in biotechnological processes, with a focus on microbial systems. The aim throughput is 'making such biology predictable'. Strategies have been aimed at both transcription and translation, especially for regulatory processes that can affect multiple targets. However, because there is a limit on how much protein a cell can produce, increasing kcat in selected targets may be a better strategy than increasing protein expression levels for optimal host engineering.
Collapse
Affiliation(s)
- Lachlan J. Munro
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Douglas B. Kell
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K
- Mellizyme Biotechnology Ltd, IC1, Liverpool Science Park, 131 Mount Pleasant, Liverpool L3 5TF, U.K
| |
Collapse
|
32
|
Pen UY, Nunn CJ, Goyal S. An Automated Tabletop Continuous Culturing System with Multicolor Fluorescence Monitoring for Microbial Gene Expression and Long-Term Population Dynamics. ACS Synth Biol 2021; 10:766-777. [PMID: 33819013 DOI: 10.1021/acssynbio.0c00574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Real-time monitoring of gene expression dynamics and population levels in a multispecies microbial community could enable the study of the role of changing gene expression patterns on eco-evolutionary outcomes. Here we report the design and validation of a unique experimental platform with an in situ fluorescence measurement system that has high dynamic range and temporal resolution and is capable of monitoring multiple fluorophores for long-term gene expression and population dynamics experiments. We demonstrate the capability of our system to capture gene expression dynamics in response to external perturbations in two synthetic genetic systems: a simple inducible genetic circuit and a bistable toggle switch. Finally, in exploring the population dynamics of a two species microbial community, we show that our system can capture the switch between competitive exclusion and long-term coexistence in response to different nutrient conditions.
Collapse
|
33
|
Pouzet S, Banderas A, Le Bec M, Lautier T, Truan G, Hersen P. The Promise of Optogenetics for Bioproduction: Dynamic Control Strategies and Scale-Up Instruments. Bioengineering (Basel) 2020; 7:E151. [PMID: 33255280 PMCID: PMC7712799 DOI: 10.3390/bioengineering7040151] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
Progress in metabolic engineering and synthetic and systems biology has made bioproduction an increasingly attractive and competitive strategy for synthesizing biomolecules, recombinant proteins and biofuels from renewable feedstocks. Yet, due to poor productivity, it remains difficult to make a bioproduction process economically viable at large scale. Achieving dynamic control of cellular processes could lead to even better yields by balancing the two characteristic phases of bioproduction, namely, growth versus production, which lie at the heart of a trade-off that substantially impacts productivity. The versatility and controllability offered by light will be a key element in attaining the level of control desired. The popularity of light-mediated control is increasing, with an expanding repertoire of optogenetic systems for novel applications, and many optogenetic devices have been designed to test optogenetic strains at various culture scales for bioproduction objectives. In this review, we aim to highlight the most important advances in this direction. We discuss how optogenetics is currently applied to control metabolism in the context of bioproduction, describe the optogenetic instruments and devices used at the laboratory scale for strain development, and explore how current industrial-scale bioproduction processes could be adapted for optogenetics or could benefit from existing photobioreactor designs. We then draw attention to the steps that must be undertaken to further optimize the control of biological systems in order to take full advantage of the potential offered by microbial factories.
Collapse
Affiliation(s)
- Sylvain Pouzet
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 26 rue d’Ulm, 75005 Paris, France; (A.B.); (M.L.B.)
- Sorbonne Université, 75005 Paris, France
- Laboratoire MSC, UMR7057, Université Paris Diderot-CNRS, 75013 Paris, France
| | - Alvaro Banderas
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 26 rue d’Ulm, 75005 Paris, France; (A.B.); (M.L.B.)
- Sorbonne Université, 75005 Paris, France
- Laboratoire MSC, UMR7057, Université Paris Diderot-CNRS, 75013 Paris, France
| | - Matthias Le Bec
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 26 rue d’Ulm, 75005 Paris, France; (A.B.); (M.L.B.)
- Sorbonne Université, 75005 Paris, France
- Laboratoire MSC, UMR7057, Université Paris Diderot-CNRS, 75013 Paris, France
| | - Thomas Lautier
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, 31400 Toulouse, France; (T.L.); (G.T.)
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science Technology and Research, Singapore 138673, Singapore
| | - Gilles Truan
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, 31400 Toulouse, France; (T.L.); (G.T.)
| | - Pascal Hersen
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 26 rue d’Ulm, 75005 Paris, France; (A.B.); (M.L.B.)
- Sorbonne Université, 75005 Paris, France
- Laboratoire MSC, UMR7057, Université Paris Diderot-CNRS, 75013 Paris, France
| |
Collapse
|
34
|
Forman CJ. Controlling control-A primer in open-source experimental control systems. PLoS Biol 2020; 18:e3000858. [PMID: 32911492 PMCID: PMC7508385 DOI: 10.1371/journal.pbio.3000858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
Biological systems are composed of countless interlocking feedback loops. Reactor control systems—such as Chi-Bio (https://chi.bio/), recently published in PLOS Biology—enable biologists to drive multiple processes within living biological samples, using a single experimental framework. Consequently, the dynamic relationships between many biological variables can be explored simultaneously in situ. Similar multivariable experimental reactors are employed beyond biology in the study of active matter and non-equilibrium chemical reactions, in which physical systems are maintained far from equilibrium through the continuous introduction of energy or matter. Inexpensive state-of-the-art components enable open-source implementation of such multiparameter architectures, which represent a move away from expensive systems optimised for single measurements, towards affordable and reconfigurable multi-measurement systems. The transfer of well-understood engineering knowledge into the hands of biological and chemical specialists via open-source channels allows rapid cycles of experimental development and heralds a change in experimental capability that is driving increased theoretical and practical understanding of out-of-equilibrium systems across a wide range of scientific fields. Closed loop experimental configurations can drive chemical systems to become more lifelike by pushing them out of equilibrium; similar experimental arrangements can be applied to biological research. This Primer uses the recently published Chi-Bio system to explores the emerging trend in building open source libraries of hardware which has enabled some excellent science as well as bringing the price tag down.
Collapse
Affiliation(s)
- Christopher James Forman
- Department of Chemistry, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|