1
|
Zhao J, Chen C, Lan XD, Qin X, Li D, Zheng Y. Facial Rejuvenation Strategy in Asian Women with Autologous Fat Transplantation. Aesthetic Plast Surg 2025; 49:1797-1807. [PMID: 39496964 DOI: 10.1007/s00266-024-04482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024]
Abstract
OBJECTIVE To explore the clinical strategy of autologous fat transplantation in facial rejuvenation. METHODS From September 2016 to May 2023, 2715 female patients with facial filling by autologous fat were retrospectively analysed. After treatment, they were followed up for 3-6 months to summarize the relationship between aesthetic design and treatment outcomes. RESULTS In total, 2306 patients were followed up and completed the questionnaires of satisfactory. Most patients (97%, 2237 cases) achieved satisfactory results after one operation, and about 3% (69 cases) achieved satisfactory results after secondary filling. CONCLUSION Autologous fat granule transplantation in the treatment of facial rejuvenation can achieve an excellent therapeutic outcome. Customized design according to the different lineaments, age, and other factors, and extensive use of various treatment methods can achieve better results. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Jianhui Zhao
- Department of Critical Care Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Chen Chen
- Department of Burn and Plastic Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Xiao Dong Lan
- Department of Burn and Plastic Surgery, Chengdu Second People's Hospital, Chengdu, China
| | - Xiao Qin
- Department of Medical Plastic and Cosmetic Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| | - Dan Li
- Department of Medical Plastic and Cosmetic Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| | - Yan Zheng
- Department of Medical Plastic and Cosmetic Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China.
| |
Collapse
|
2
|
Liu H, Liu L, Rosen CJ. Bone Marrow Adipocytes as Novel Regulators of Metabolic Homeostasis: Clinical Consequences of Bone Marrow Adiposity. Curr Obes Rep 2025; 14:9. [PMID: 39808256 DOI: 10.1007/s13679-024-00594-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE OF REVIEW Bone marrow adipose tissue is a distinctive fat depot located within the skeleton, with the potential to influence both local and systemic metabolic processes. Although significant strides have been made in understanding bone marrow adipose tissue over the past decade, many questions remain regarding their precise lineage and functional roles. RECENT FINDINGS Recent studies have highlighted bone marrow adipose tissue's involvement in continuous cross-talk with other organs and systems, exerting both endocrine and paracrine functions that play a crucial role in metabolic homeostasis, skeletal remodeling, hematopoiesis, and the progression of bone metastases. The advancement of imaging techniques, particularly cross-sectional imaging, has profoundly expanded our understanding of the complexities beyond the traditional view of bone marrow adipose tissue as an inert depot. Notably, marrow adipocytes are anatomically and functionally distinct from brown, beige, and classic white adipocytes. Emerging evidence suggests that bone marrow adipocytes, bone marrow adipose tissue originate from the differentiation of bone marrow mesenchymal stromal cells; however, they appear to be a heterogeneous population with varying metabolic profiles, lipid compositions, secretory properties, and functional responses depending on their specific location within the bone marrow. This review provides an up-to-date synthesis of current knowledge on bone marrow adipocytes, emphasizing the relationships between bone marrow adipogenesis and factors such as aging, osteoporosis, obesity, and bone marrow tumors or metastases, thereby elucidating the mechanisms underlying musculoskeletal pathophysiology.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Linyi Liu
- Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA.
| |
Collapse
|
3
|
Mori H, Peterson SK, Simmermon RC, Overmyer KA, Nishii A, Paulsson E, Li Z, Jen A, Uranga RM, Maung JN, Yacawych WT, Lewis KT, Schill RL, Hetrick T, Seino R, Inoki K, Coon JJ, MacDougald OA. Scd1 and monounsaturated lipids are required for autophagy and survival of adipocytes. Mol Metab 2024; 83:101916. [PMID: 38492843 PMCID: PMC10975504 DOI: 10.1016/j.molmet.2024.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVE Exposure of adipocytes to 'cool' temperatures often found in the periphery of the body induces expression of Stearoyl-CoA Desaturase-1 (Scd1), an enzyme that converts saturated fatty acids to monounsaturated fatty acids. The goal of this study is to further investigate the roles of Scd in adipocytes. METHOD In this study, we employed Scd1 knockout cells and mouse models, along with pharmacological Scd1 inhibition to dissect the enzyme's function in adipocyte physiology. RESULTS Our study reveals that production of monounsaturated lipids by Scd1 is necessary for fusion of autophagosomes to lysosomes and that with a Scd1-deficiency, autophagosomes accumulate. In addition, Scd1-deficiency impairs lysosomal and autolysosomal acidification resulting in vacuole accumulation and eventual cell death. Blocking autophagosome formation or supplementation with monounsaturated fatty acids maintains vitality of Scd1-deficient adipocytes. CONCLUSION This study demonstrates the indispensable role of Scd1 in adipocyte survival, with its inhibition in vivo triggering autophagy-dependent cell death and its depletion in vivo leading to the loss of bone marrow adipocytes.
Collapse
Affiliation(s)
- Hiroyuki Mori
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Sydney K Peterson
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rachel C Simmermon
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Akira Nishii
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Emma Paulsson
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ziru Li
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA; Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Romina M Uranga
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jessica N Maung
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Warren T Yacawych
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kenneth T Lewis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rebecca L Schill
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Taryn Hetrick
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ryo Seino
- Dojindo Molecular Technologies, Inc., Rockville, MD, USA
| | - Ken Inoki
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA; Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Gómez-Hernández A, de las Heras N, Gálvez BG, Fernández-Marcelo T, Fernández-Millán E, Escribano Ó. New Mediators in the Crosstalk between Different Adipose Tissues. Int J Mol Sci 2024; 25:4659. [PMID: 38731880 PMCID: PMC11083914 DOI: 10.3390/ijms25094659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Adipose tissue is a multifunctional organ that regulates many physiological processes such as energy homeostasis, nutrition, the regulation of insulin sensitivity, body temperature, and immune response. In this review, we highlight the relevance of the different mediators that control adipose tissue activity through a systematic review of the main players present in white and brown adipose tissues. Among them, inflammatory mediators secreted by the adipose tissue, such as classical adipokines and more recent ones, elements of the immune system infiltrated into the adipose tissue (certain cell types and interleukins), as well as the role of intestinal microbiota and derived metabolites, have been reviewed. Furthermore, anti-obesity mediators that promote the activation of beige adipose tissue, e.g., myokines, thyroid hormones, amino acids, and both long and micro RNAs, are exhaustively examined. Finally, we also analyze therapeutic strategies based on those mediators that have been described to date. In conclusion, novel regulators of obesity, such as microRNAs or microbiota, are being characterized and are promising tools to treat obesity in the future.
Collapse
Affiliation(s)
- Almudena Gómez-Hernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Natalia de las Heras
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain;
| | - Beatriz G. Gálvez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Tamara Fernández-Marcelo
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Elisa Fernández-Millán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Óscar Escribano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
5
|
Li Z, Rosen CJ. The Multifaceted Roles of Bone Marrow Adipocytes in Bone and Hematopoietic Homeostasis. J Clin Endocrinol Metab 2023; 108:e1465-e1472. [PMID: 37315208 DOI: 10.1210/clinem/dgad355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Bone marrow adipose tissue (BMAT) makes up a significant portion of the marrow space, ranging from 50% to 70%, in healthy adults. It expands with aging, obesity, anorexia nervosa, and irradiation, which are conditions associated with skeletal complications or hematopoietic disorders. Therefore, BMAT has been viewed as a negative component of the bone marrow niche for decades, although the mechanisms and causative relationships have not been well-addressed. Of note, recent studies have revealed that BMAT is a multifaceted tissue that can serve as an energy reservoir to fuel osteoblasts and hematopoietic cells under stressful situations, and also acts as an endocrine/paracrine organ to suppress bone formation and support hematopoiesis at steady-state conditions. In this review, we summarize the uniqueness of BMAT, the complex findings of previous studies, and update our understanding of the physiological roles of BMAT in bone and hematopoietic metabolism based on a newly established bone marrow adipocyte-specific mouse model.
Collapse
Affiliation(s)
- Ziru Li
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA
| | - Clifford J Rosen
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA
| |
Collapse
|
6
|
Mori H, Peterson SK, Simmermon R, Overmyer KA, Nishii A, Paulsson E, Li Z, Jen A, Uranga RM, Maung J, Yacawych WT, Lewis KT, Schill RL, Hetrick T, Seino R, Inoki K, Coon JJ, MacDougald OA. SCD1 and monounsaturated lipids are required for autophagy and survival of adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564376. [PMID: 37961537 PMCID: PMC10634865 DOI: 10.1101/2023.10.27.564376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Exposure of adipocytes to 'cool' temperatures often found in the periphery of the body induces expression of Stearoyl-CoA Desaturase-1 (SCD1), an enzyme that converts saturated fatty acids to monounsaturated fatty acids. In this study, we employed Scd1 knockout cells and mouse models, along with pharmacological SCD1 inhibition, to investigate further the roles of SCD1 in adipocytes. Our study reveals that production of monounsaturated lipids by SCD1 is necessary for fusion of autophagosomes to lysosomes and that with a SCD1-deficiency, autophagosomes accumulate. In addition, SCD1-deficiency impairs lysosomal and autolysosomal acidification resulting in vacuole accumulation and eventual cell death. Blocking autophagosome formation or supplementation with monounsaturated fatty acids maintains vitality of SCD1-deficient adipocytes. Taken together, our results demonstrate that in vitro inhibition of SCD1 in adipocytes leads to autophagy-dependent cell death, and in vivo depletion leads to loss of bone marrow adipocytes.
Collapse
|
7
|
Kasza I, Cuncannan C, Michaud J, Nelson D, Yen CLE, Jain R, Simcox J, MacDougald OA, Parks BW, Alexander CM. "Humanizing" mouse environments: Humidity, diurnal cycles and thermoneutrality. Biochimie 2023; 210:82-98. [PMID: 36372307 PMCID: PMC10172392 DOI: 10.1016/j.biochi.2022.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
Thermoneutral housing has been shown to promote more accurate and robust development of several pathologies in mice. Raising animal housing temperatures a few degrees may create a relatively straightforward opportunity to improve translatability of mouse models. In this commentary, we discuss the changes of physiology induced in mice housed at thermoneutrality, and review techniques for measuring systemic thermogenesis, specifically those affecting storage and mobilization of lipids in adipose depots. Environmental cues are a component of the information integrated by the brain to calculate food consumption and calorie deposition. We show that relative humidity is one of those cues, inducing a rapid sensory response that is converted to a more chronic susceptibility to obesity. Given high inter-institutional variability in the regulation of relative humidity, study reproducibility may be improved by consideration of this factor. We evaluate a "humanized" environmental cycling protocol, where mice sleep in warm temperature housing, and are cool during the wake cycle. We show that this protocol suppresses adaptation to cool exposure, with consequence for adipose-associated lipid storage. To evaluate systemic cues in mice housed at thermoneutral temperatures, we characterized the circulating lipidome, and show that sera are highly depleted in some HDL-associated phospholipids, specifically phospholipids containing the essential fatty acid, 18:2 linoleic acid, and its derivative, arachidonic acid (20:4) and related ether-phospholipids. Given the role of these fatty acids in inflammatory responses, we propose they may underlie the differences in disease progression observed at thermoneutrality.
Collapse
Affiliation(s)
- Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Colleen Cuncannan
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Julian Michaud
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Dave Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Chi-Liang E Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, United States
| | - Judi Simcox
- Department of Biochemistry, University of Wisconsin-Madison, United States
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan, United States
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States.
| |
Collapse
|
8
|
Muehlbauer LK, Jen A, Zhu Y, He Y, Shishkova E, Overmyer KA, Coon JJ. Rapid Multi-Omics Sample Preparation for Mass Spectrometry. Anal Chem 2023; 95:659-667. [PMID: 36594155 PMCID: PMC10026941 DOI: 10.1021/acs.analchem.2c02042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Multi-omics analysis is a powerful and increasingly utilized approach to gain insight into complex biological systems. One major hindrance with multi-omics, however, is the lengthy and wasteful sample preparation process. Preparing samples for mass spectrometry (MS)-based multi-omics involves extraction of metabolites and lipids with organic solvents, precipitation of proteins, and overnight digestion of proteins. These existing workflows are disparate and laborious. Here, we present a simple, efficient, and unified approach to prepare lipids, metabolites, and proteins for MS analysis. Our approach, termed the Bead-enabled Accelerated Monophasic Multi-omics (BAMM) method, combines an n-butanol-based monophasic extraction with unmodified magnetic beads and accelerated protein digestion. We demonstrate that the BAMM method affords comparable depth, quantitative reproducibility, and recovery of biomolecules as state-of-the-art multi-omics methods (e.g., Matyash extraction and overnight protein digestion). However, the BAMM method only requires about 3 h to perform, which saves 11 steps and 19 h on average compared to published multi-omics methods. Furthermore, we validate the BAMM method for multiple sample types and formats (biofluid, culture plate, and pellet) and show that in all cases, it produces high biomolecular coverage and data quality.
Collapse
Affiliation(s)
- Laura K. Muehlbauer
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yunyun Zhu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yuchen He
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katherine A. Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
9
|
Li Z, Bagchi DP, Zhu J, Bowers E, Yu H, Hardij J, Mori H, Granger K, Skjaerlund J, Mandair G, Abrishami S, Singer K, Hankenson KD, Rosen CJ, MacDougald OA. Constitutive bone marrow adipocytes suppress local bone formation. JCI Insight 2022; 7:160915. [PMID: 36048537 PMCID: PMC9675472 DOI: 10.1172/jci.insight.160915] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
BM adipocytes (BMAd) are a unique cell population derived from BM mesenchymal progenitors and marrow adipogenic lineage precursors. Although they have long been considered to be a space filler within bone cavities, recent studies have revealed important physiological roles in hematopoiesis and bone metabolism. To date, the approaches used to study BMAd function have been confounded by contributions by nonmarrow adipocytes or by BM stromal cells. To address this gap in the field, we have developed a BMAd-specific Cre mouse model to deplete BMAds by expression of diphtheria toxin A (DTA) or by deletion of peroxisome proliferator-activated receptor gamma (Pparg). We found that DTA-induced loss of BMAds results in decreased hematopoietic stem and progenitor cell numbers and increased bone mass in BMAd-enriched locations, including the distal tibiae and caudal vertebrae. Elevated bone mass appears to be secondary to enhanced endosteal bone formation, suggesting a local effect caused by depletion of BMAd. Augmented bone formation with BMAd depletion protects mice from bone loss induced by caloric restriction or ovariectomy, and it facilitates the bone-healing process after fracture. Finally, ablation of Pparg also reduces BMAd numbers and largely recapitulates high-bone mass phenotypes observed with DTA-induced BMAd depletion.
Collapse
Affiliation(s)
- Ziru Li
- Department of Molecular & Integrative Physiology and
| | | | - Junxiong Zhu
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Emily Bowers
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hui Yu
- Department of Molecular & Integrative Physiology and
| | - Julie Hardij
- Department of Molecular & Integrative Physiology and
| | - Hiroyuki Mori
- Department of Molecular & Integrative Physiology and
| | | | - Jon Skjaerlund
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gurjit Mandair
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Simin Abrishami
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kanakadurga Singer
- Department of Molecular & Integrative Physiology and
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kurt D. Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Ormond A. MacDougald
- Department of Molecular & Integrative Physiology and
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Li Z, Bowers E, Zhu J, Yu H, Hardij J, Bagchi DP, Mori H, Lewis KT, Granger K, Schill RL, Romanelli SM, Abrishami S, Hankenson KD, Singer K, Rosen CJ, MacDougald OA. Lipolysis of bone marrow adipocytes is required to fuel bone and the marrow niche during energy deficits. eLife 2022; 11:e78496. [PMID: 35731039 PMCID: PMC9273217 DOI: 10.7554/elife.78496] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
To investigate roles for bone marrow adipocyte (BMAd) lipolysis in bone homeostasis, we created a BMAd-specific Cre mouse model in which we knocked out adipose triglyceride lipase (ATGL, Pnpla2 gene). BMAd-Pnpla2-/- mice have impaired BMAd lipolysis, and increased size and number of BMAds at baseline. Although energy from BMAd lipid stores is largely dispensable when mice are fed ad libitum, BMAd lipolysis is necessary to maintain myelopoiesis and bone mass under caloric restriction. BMAd-specific Pnpla2 deficiency compounds the effects of caloric restriction on loss of trabecular bone in male mice, likely due to impaired osteoblast expression of collagen genes and reduced osteoid synthesis. RNA sequencing analysis of bone marrow adipose tissue reveals that caloric restriction induces dramatic elevations in extracellular matrix organization and skeletal development genes, and energy from BMAd is required for these adaptations. BMAd-derived energy supply is also required for bone regeneration upon injury, and maintenance of bone mass with cold exposure.
Collapse
Affiliation(s)
- Ziru Li
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Emily Bowers
- University of Michigan Medical School, Department of PediatricsAnn ArborUnited States
| | - Junxiong Zhu
- Department of Orthopedic Surgery, University of Michigan Medical SchoolAnn ArborUnited States
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Hui Yu
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Julie Hardij
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Devika P Bagchi
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Hiroyuki Mori
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Kenneth T Lewis
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Katrina Granger
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Rebecca L Schill
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Steven M Romanelli
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Simin Abrishami
- University of Michigan Medical School, Department of PediatricsAnn ArborUnited States
| | - Kurt D Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical SchoolAnn ArborUnited States
| | - Kanakadurga Singer
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
- University of Michigan Medical School, Department of PediatricsAnn ArborUnited States
| | | | - Ormond A MacDougald
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
- University of Michigan Medical School, Department of Internal MedicineAnn ArborUnited States
| |
Collapse
|
11
|
Matsushita Y, Ono W, Ono N. Toward Marrow Adipocytes: Adipogenic Trajectory of the Bone Marrow Stromal Cell Lineage. Front Endocrinol (Lausanne) 2022; 13:882297. [PMID: 35528017 PMCID: PMC9075612 DOI: 10.3389/fendo.2022.882297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Bone marrow contains precursor cells for osteoblasts and adipocytes in the stromal compartment. Bone marrow adipose tissue (BMAT) is an important constituent of the bone marrow that is particularly abundant in adults. BMAT is composed of the proximal "regulated" BMAT containing individual adipocytes interspersed within actively hematopoietic marrow, and the distal "constitutive" BMAT containing large adipocytes in the area of low hematopoiesis. Historically, bone marrow adipocytes were regarded as one of the terminal states of skeletal stem cells, which stand at the pinnacle of the lineage and possess trilineage differentiation potential into osteoblasts, chondrocytes and adipocytes. Recent single-cell RNA-sequencing studies uncover a discrete group of preadipocyte-like cells among bone marrow stromal cells (BMSCs), and recent mouse genetic lineage-tracing studies reveal that these adipocyte precursor cells possess diverse functions in homeostasis and regeneration. These adipogenic subsets of BMSCs are abundant in the central marrow space and can directly convert not only into lipid-laden adipocytes but also into skeletal stem cell-like cells and osteoblasts under regenerative conditions. It remains determined whether there are distinct adipocyte precursor cell types contributing to two types of BMATs. In this short review, we discuss the functions of the recently identified subsets of BMSCs and their trajectory toward marrow adipocytes, which is influenced by multiple modes of cell-autonomous and non-cell autonomous regulations.
Collapse
|
12
|
Romanelli SM, Lewis KT, Nishii A, Rupp AC, Li Z, Mori H, Schill RL, Learman BS, Rhodes CJ, MacDougald OA. BAd-CRISPR: Inducible gene knockout in interscapular brown adipose tissue of adult mice. J Biol Chem 2021; 297:101402. [PMID: 34774798 PMCID: PMC8661024 DOI: 10.1016/j.jbc.2021.101402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9 has enabled inducible gene knockout in numerous tissues; however, its use has not been reported in brown adipose tissue (BAT). Here, we developed the brown adipocyte CRISPR (BAd-CRISPR) methodology to rapidly interrogate the function of one or multiple genes. With BAd-CRISPR, an adeno-associated virus (AAV8) expressing a single guide RNA (sgRNA) is administered directly to BAT of mice expressing Cas9 in brown adipocytes. We show that the local administration of AAV8-sgRNA to interscapular BAT of adult mice robustly transduced brown adipocytes and ablated expression of adiponectin, adipose triglyceride lipase, fatty acid synthase, perilipin 1, or stearoyl-CoA desaturase 1 by >90%. Administration of multiple AAV8 sgRNAs led to simultaneous knockout of up to three genes. BAd-CRISPR induced frameshift mutations and suppressed target gene mRNA expression but did not lead to substantial accumulation of off-target mutations in BAT. We used BAd-CRISPR to create an inducible uncoupling protein 1 (Ucp1) knockout mouse to assess the effects of UCP1 loss on adaptive thermogenesis in adult mice. Inducible Ucp1 knockout did not alter core body temperature; however, BAd-CRISPR Ucp1 mice had elevated circulating concentrations of fibroblast growth factor 21 and changes in BAT gene expression consistent with heat production through increased peroxisomal lipid oxidation. Other molecular adaptations predict additional cellular inefficiencies with an increase in both protein synthesis and turnover, and mitochondria with reduced reliance on mitochondrial-encoded gene expression and increased expression of nuclear-encoded mitochondrial genes. These data suggest that BAd-CRISPR is an efficient tool to speed discoveries in adipose tissue biology.
Collapse
Affiliation(s)
- Steven M Romanelli
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kenneth T Lewis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Akira Nishii
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alan C Rupp
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ziru Li
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hiroyuki Mori
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rebecca L Schill
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brian S Learman
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
13
|
Scheller EL, McGee-Lawrence ME, Lecka-Czernik B. Report From the 6 th International Meeting on Bone Marrow Adiposity (BMA2020). Front Endocrinol (Lausanne) 2021; 12:712088. [PMID: 34335478 PMCID: PMC8323480 DOI: 10.3389/fendo.2021.712088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
The 6th International Meeting on Bone Marrow Adiposity (BMA) entitled "Marrow Adiposity: Bone, Aging, and Beyond" (BMA2020) was held virtually on September 9th and 10th, 2020. The mission of this meeting was to facilitate communication and collaboration among scientists from around the world who are interested in different aspects of bone marrow adiposity in health and disease. The BMA2020 meeting brought together 198 attendees from diverse research and clinical backgrounds spanning fields including bone biology, endocrinology, stem cell biology, metabolism, oncology, aging, and hematopoiesis. The congress featured an invited keynote address by Ormond MacDougald and ten invited speakers, in addition to 20 short talks, 35 posters, and several training and networking sessions. This report summarizes and highlights the scientific content of the meeting and the progress of the working groups of the BMA society (http://bma-society.org/).
Collapse
Affiliation(s)
- Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, MO, United States
| | - Meghan E. McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Beata Lecka-Czernik
- Departments of Orthopaedic Surgery, Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, United States
| |
Collapse
|