1
|
Pellon A, Palacios A, Abecia L, Rodríguez H, Anguita J. Friends to remember: innate immune memory regulation by the microbiota. Trends Microbiol 2025; 33:510-520. [PMID: 39794207 DOI: 10.1016/j.tim.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
Innate immune memory (IIM) is the process by which, upon a primary challenge, innate immune cells alter their epigenetic, transcriptional, and immunometabolic profiles, resulting in modified secondary responses. Unlike infections or other immune-system-related diseases, the role of IIM in nonpathogenic contexts is less understood. An increasing body of research has shown that normal microbiota members or their metabolic byproducts induce alternative memory phenotypes, suggesting that memory cells contribute to homeostasis in mucosal areas. In this review, we discuss the newest insights in the emerging field of IIM to the microbiota and the potential of manipulating these long-term responses to promote better mucosal health.
Collapse
Affiliation(s)
- Aize Pellon
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain.
| | - Ainhoa Palacios
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain; Present address: Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza; Galdakao, Spain and Cell Therapy, Stem Cells and Tissues Group, BioBizkaia Health Research Institute; Barakaldo, Spain
| | - Leticia Abecia
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain; Department of Immunology, Microbiology, and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Héctor Rodríguez
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
2
|
Das S, Lavine KJ. Role of Trained Immunity in Heath and Disease. Curr Cardiol Rep 2025; 27:18. [PMID: 39804563 DOI: 10.1007/s11886-024-02167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 05/02/2025]
Abstract
PURPOSE OF REVIEW This review aims to explore the role of immune memory and trained immunity, focusing on how innate immune cells like monocytes, macrophages, and natural killer cells undergo long-term epigenetic and metabolic rewiring. Specifically, it examines the mechanisms by which trained immunity, often triggered by infection or vaccination, could impact cardiac processes and contribute to both protective and pathological responses within the cardiovascular system. RECENT FINDINGS Recent research demonstrates that vaccination and infection not only activate immune responses in circulating monocytes and tissue macrophages but also affect immune progenitor cells within the bone marrow environment, conferring lasting protection against heterologous infections. These protective effects are attributed to epigenetic and metabolic reprogramming, which enable a heightened immune response upon subsequent encounters with pathogens. However, while trained immunity is beneficial in combating infections, it has been linked to exacerbated inflammation, which may increase susceptibility to cardiovascular diseases, including atherosclerosis and heart failure. Our review highlights the dual nature of trained immunity: while it offers protective advantages against infections, it also poses potential risks for cardiovascular health by promoting chronic inflammation. Understanding the molecular mechanisms underlying immune memory's impact on cardiac processes could lead to new therapeutic strategies to mitigate cardiovascular diseases, such as atherosclerosis, heart failure, and diabetes. These insights build the grounds for future research to balance the benefits of trained immunity with its potential risks in cardiovascular disease management.
Collapse
Affiliation(s)
- Shibali Das
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8086, St. Louis, MO, 63110, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8086, St. Louis, MO, 63110, USA.
| |
Collapse
|
3
|
Kumaresan V, Hung CY, Hermann BP, Seshu J. Role of Dual Specificity Phosphatase 1 (DUSP1) in influencing inflammatory pathways in macrophages modulated by Borrelia burgdorferi lipoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624562. [PMID: 39605372 PMCID: PMC11601599 DOI: 10.1101/2024.11.20.624562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Borrelia burgdorferi (Bb), the spirochetal agent of Lyme disease, has a large array of lipoproteins that play a significant role in mediating host-pathogen interactions within ticks and vertebrates. Although there is substantial information on the effects of B. burgdorferi lipoproteins (BbLP) on immune modulatory pathways, the application of multi-omics methodologies to decode the transcriptional and proteomic patterns associated with host cell responses induced by lipoproteins in murine bone marrow-derived macrophages (BMDMs) has identified additional effectors and pathways. Single-cell RNA-Seq (scRNA-Seq) performed on BMDMs treated with various concentrations of borrelial lipoproteins revealed macrophage subsets within the BMDMs. Differential expression analysis showed that genes encoding various receptors, type I IFN-stimulated genes, signaling chemokines, and mitochondrial genes are altered in BMDMs in response to lipoproteins. Unbiased proteomics analysis of lysates of BMDMs treated with lipoproteins corroborated several of these findings. Notably, dual specificity phosphatase 1 (Dusp1) gene was upregulated during the early stages of BMDM exposure to BbLP. Pre-treatment with benzylidene-3-cyclohexylamino-1-indanone hydrochloride (BCI), an inhibitor of both DUSP1 and 6 prior to exposure to BbLP, demonstrated that DUSP1 negatively regulates NLRP3-mediated pro-inflammatory signaling and positively regulates the expression of interferon-stimulated genes and those encoding Ccl5, Il1b, and Cd274. Moreover, DUSP1, IkB kinase complex and MyD88 also modulate mitochondrial changes in BMDMs treated with borrelial lipoproteins. These findings advance the potential for exploiting DUSP1 as a therapeutic target to regulate host responses in reservoir hosts to limit survival of B. burgdorferi during its infectious cycle between ticks and mammalian hosts.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX-78249
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX-78249
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX-78249
| | - J. Seshu
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX-78249
| |
Collapse
|
4
|
Badami GD, Tamburini B, Mohammadnezhad L, Vaz-Rodrigues R, La Barbera L, de la Fuente J, Sireci G. Netosis and trained immunity in tick-borne diseases: a possible pathogenetic role. Cell Immunol 2024; 405-406:104881. [PMID: 39368167 DOI: 10.1016/j.cellimm.2024.104881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Various types of pathogens transmitted by ticks elicit distinct immune responses just like the emerging α-Gal syndrome that is associated with allergic reactions to tick bites. The mechanisms of Neutrophil Extracellular Traps release (called NETosis) and trained immunity in response to tick-borne microbes have not been extensively investigated. In our paper, we explored the intricate interplay of NETosis and trained immunity within the realm of infectious diseases triggered by tick bites and their possible pathogenetic role in autoimmunity. We conducted an extensive literature search to identify studies for this review, considering articles and reviews published in English within the last years. Additionally, we scrutinized the references of all included papers and relevant review articles to ensure comprehensive coverage. We shed light on a plausible correlation between these innate immune responses and their potential implication in certain pathological conditions, with a specific focus on some autoimmune diseases. These findings offer new perspectives for a more profound comprehension of the immunopathogenesis of certain autoimmune-like signs where clinicians should include Tick-Borne Diseases (TBDs) in their differential diagnoses, in those geographical areas of tick infestation.
Collapse
Affiliation(s)
- Giusto Davide Badami
- CLADIBIOR, Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy
| | - Bartolo Tamburini
- CLADIBIOR, Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy
| | - Leila Mohammadnezhad
- CLADIBIOR, Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy
| | - Rita Vaz-Rodrigues
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Lidia La Barbera
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater OK 74078, USA
| | - Guido Sireci
- CLADIBIOR, Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
5
|
Bourgeois JS, Hu LT. Hitchhiker's Guide to Borrelia burgdorferi. J Bacteriol 2024; 206:e0011624. [PMID: 39140751 PMCID: PMC11411949 DOI: 10.1128/jb.00116-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Don't Panic. In the nearly 50 years since the discovery of Lyme disease, Borrelia burgdorferi has emerged as an unlikely workhorse of microbiology. Interest in studying host-pathogen interactions fueled significant progress in making the fastidious microbe approachable in laboratory settings, including the development of culture methods, animal models, and genetic tools. By developing these systems, insight has been gained into how the microbe is able to survive its enzootic cycle and cause human disease. Here, we discuss the discovery of B. burgdorferi and its development as a model organism before diving into the critical lessons we have learned about B. burgdorferi biology at pivotal stages of its lifecycle: gene expression changes during the tick blood meal, colonization of a new vertebrate host, and developing a long-lasting infection in that vertebrate until a new tick feeds. Our goal is to highlight the advancements that have facilitated B. burgdorferi research and identify gaps in our current understanding of the microbe.
Collapse
Affiliation(s)
- Jeffrey S. Bourgeois
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Maher S, Scott L, Zhang S, Baranchuk A. Animal models of Lyme carditis. Understanding how to study a complex disease. Curr Probl Cardiol 2024; 49:102468. [PMID: 38369203 DOI: 10.1016/j.cpcardiol.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Lyme carditis, a well-established manifestation of Lyme disease, has been studied in animal models to improve understanding of its pathogenesis. This review synthesizes existing literature on these models and associated disease mechanisms. Searches in MEDLINE, Embase, BIOSIS, and Web of Science yielded 53 articles (47 mice models and 6 other animal models). Key findings include: 1) Onset of carditis correlates with spirochete localization in the heart; 2) Carditis occurs within 10 days of infection, progressing to peak inflammation within 30 days; 3) Infiltrates were predominantly composed of Mac-1+ macrophages and were associated with increases in TNF-α, IL-1 and IL-12 cytokines; 4) Resolution of inflammation was primarily mediated by lymphocytes; 5) Immune system is a double-edged sword: it can play a role in the progression and severity of carditis, but can also have a protective effect. Animal models offer valuable insights into the evolution and pathophysiologic mechanisms of Lyme carditis.
Collapse
Affiliation(s)
- Samer Maher
- Division of Cardiology, Queen's University, Kingston Health Sciences Center, Kingtson, Ontario, Canada
| | - Laura Scott
- Division of Cardiology, Queen's University, Kingston Health Sciences Center, Kingtson, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- Division of Cardiology, Queen's University, Kingston Health Sciences Center, Kingtson, Ontario, Canada.
| |
Collapse
|
7
|
Castelo J, Araujo-Aris S, Barriales D, Tanner Pasco S, Seoane I, Peña-Cearra A, Palacios A, Simó C, Garcia-Cañas V, Khamwong M, Martín-Ruiz I, Gonzalez-Lopez M, Barcena L, Martín Rodríguez JE, Lavín JL, Gutiez N, Marcos R, Atondo E, Cobela A, Plaza-Vinuesa L, Plata A, Santos-Fernandez E, Fernandez-Tejada A, Villarán MC, Mancheño JM, Maria Flores J, María Aransay A, Pellón A, de Las Rivas B, Muñoz R, Margolles A, Ruas-Madiedo P, Victoria Selma M, Gomez de Agüero M, Abecia L, Anguita J, Rodríguez H. The microbiota metabolite, phloroglucinol, confers long-term protection against inflammation. Gut Microbes 2024; 16:2438829. [PMID: 39676480 DOI: 10.1080/19490976.2024.2438829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/16/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Phloroglucinol is a key byproduct of gut microbial metabolism that has been widely used as a treatment for irritable bowel syndrome. Here, we demonstrate that phloroglucinol tempers macrophage responses to pro-inflammatory pathogens and stimuli. In vivo, phloroglucinol administration decreases gut and extraintestinal inflammation in murine models of inflammatory bowel disease and systemic infection. The metabolite induces modest modifications in the microbiota. However, the presence of an active microbiota is required to preserve its anti-inflammatory activity. Remarkably, the protective effect of phloroglucinol lasts partially at least 6 months. Single-cell transcriptomic analysis of bone marrow progenitors demonstrates the capacity of the metabolite to induce long-lasting innate immune training in hematopoietic lineages, at least partially through the participation of the receptor and transcription factor, aryl hydrocarbon receptor (AhR). Phloroglucinol induces alterations in metabolic and epigenetic pathways that are most prevalent in upstream progenitors as hallmarks of central trained immunity. These data identify phloroglucinol as a dietary-derived compound capable of inducing central trained immunity and modulating the response of the host to inflammatory insults.
Collapse
Affiliation(s)
- Janire Castelo
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sarai Araujo-Aris
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Diego Barriales
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Iratxe Seoane
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Ainize Peña-Cearra
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Ainhoa Palacios
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Carolina Simó
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC), Madrid, Spain
| | - Virginia Garcia-Cañas
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC), Madrid, Spain
| | - Muthita Khamwong
- Würzburg Institute of Systems Immunology, Max-Planck Research Group at the Julius-Maximilians Universität, Würzburg, Germany
| | - Itziar Martín-Ruiz
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Laura Barcena
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - José Luís Lavín
- Applied Mathematics Department - Bioinformatics Unit, NEIKER-BRTA, Derio, Spain
| | - Naiara Gutiez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Raquel Marcos
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, CSIC, Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Estibaliz Atondo
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Arantza Cobela
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Laura Plaza-Vinuesa
- Departamento de PRocesos Tecnológicos y Biotecnología, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Adrián Plata
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Alberto Fernandez-Tejada
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | | | - José Miguel Mancheño
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera (IQF), CSIC, Madrid, Spain
| | - Juana Maria Flores
- Department of Animal Medicine and Surgery, Veterinary Faculty, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana María Aransay
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Aize Pellón
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Blanca de Las Rivas
- Departamento de PRocesos Tecnológicos y Biotecnología, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Rosario Muñoz
- Departamento de PRocesos Tecnológicos y Biotecnología, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Abelardo Margolles
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, CSIC, Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Patricia Ruas-Madiedo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, CSIC, Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Maria Victoria Selma
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain
| | - Mercedes Gomez de Agüero
- Würzburg Institute of Systems Immunology, Max-Planck Research Group at the Julius-Maximilians Universität, Würzburg, Germany
| | - Leticia Abecia
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Juan Anguita
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Héctor Rodríguez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
8
|
Kumaresan V, Ingle TM, Kilgore N, Zhang G, Hermann BP, Seshu J. Cellular and transcriptome signatures unveiled by single-cell RNA-Seq following ex vivo infection of murine splenocytes with Borrelia burgdorferi. Front Immunol 2023; 14:1296580. [PMID: 38149246 PMCID: PMC10749944 DOI: 10.3389/fimmu.2023.1296580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Lyme disease, the most common tick-borne infectious disease in the US, is caused by a spirochetal pathogen Borrelia burgdorferi (Bb). Distinct host responses are observed in susceptible and resistant strains of inbred of mice following infection with Bb reflecting a subset of inflammatory responses observed in human Lyme disease. The advent of post-genomic methodologies and genomic data sets enables dissecting the host responses to advance therapeutic options for limiting the pathogen transmission and/or treatment of Lyme disease. Methods In this study, we used single-cell RNA-Seq analysis in conjunction with mouse genomics exploiting GFP-expressing Bb to sort GFP+ splenocytes and GFP- bystander cells to uncover novel molecular and cellular signatures that contribute to early stages of immune responses against Bb. Results These data decoded the heterogeneity of splenic neutrophils, macrophages, NK cells, B cells, and T cells in C3H/HeN mice in response to Bb infection. Increased mRNA abundance of apoptosis-related genes was observed in neutrophils and macrophages clustered from GFP+ splenocytes. Moreover, complement-mediated phagocytosis-related genes such as C1q and Ficolin were elevated in an inflammatory macrophage subset, suggesting upregulation of these genes during the interaction of macrophages with Bb-infected neutrophils. In addition, the role of DUSP1 in regulating the expression of Casp3 and pro-inflammatory cytokines Cxcl1, Cxcl2, Il1b, and Ccl5 in Bb-infected neutrophils were identified. Discussion These findings serve as a growing catalog of cell phenotypes/biomarkers among murine splenocytes that can be exploited for limiting spirochetal burden to limit the transmission of the agent of Lyme disease to humans via reservoir hosts.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Taylor MacMackin Ingle
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Nathan Kilgore
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Janakiram Seshu
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
9
|
Petnicki-Ocwieja T, McCarthy JE, Powale U, Langston PK, Helble JD, Hu LT. Borrelia burgdorferi initiates early transcriptional re-programming in macrophages that supports long-term suppression of inflammation. PLoS Pathog 2023; 19:e1011886. [PMID: 38157387 PMCID: PMC10783791 DOI: 10.1371/journal.ppat.1011886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/11/2024] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Borrelia burgdorferi (Bb), the causative agent of Lyme disease, establishes a long-term infection and leads to disease manifestations that are the result of host immune responses to the pathogen. Inflammatory manifestations resolve spontaneously despite continued bacterial presence, suggesting inflammatory cells become less responsive over time. This is mimicked by in vitro repeated stimulations, resulting in tolerance, a phenotypic subset of innate immune memory. We performed comparative transcriptional analysis of macrophages in acute and memory states and identified sets of Tolerized, Hyper-Induced, Secondary-Induced and Hyper-Suppressed genes resulting from memory induction, revealing previously unexplored networks of genes affected by cellular re-programming. Tolerized gene families included inflammatory mediators and interferon related genes as would be predicted by the attenuation of inflammation over time. To better understand how cells mediate inflammatory hypo-responsiveness, we focused on genes that could mediate maintenance of suppression, such as Hyper-Induced genes which are up-regulated in memory states. These genes were notably enriched in stress pathways regulated by anti-inflammatory modulators. We examined one of the most highly expressed negative regulators of immune pathways during primary stimulation, Aconitate decarboxylase 1 (Acod1), and tested its effects during in vivo infection with Bb. As predicted by our in vitro model, we show its inflammation-suppressive downstream effects are sustained during in vivo long-term infection with Bb, with a specific role in Lyme carditis.
Collapse
Affiliation(s)
- Tanja Petnicki-Ocwieja
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Julie E. McCarthy
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Urmila Powale
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts, United States of America
| | - P. Kent Langston
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, Massachusetts, United States of America
| | - Jennifer D. Helble
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Momčilović S, Jovanović A. Editorial commentary: Lyme carditis - "a ray of light revealed in a dark story" of dilated cardiomyopathy. Trends Cardiovasc Med 2023; 33:537-539. [PMID: 35777596 DOI: 10.1016/j.tcm.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Stefan Momčilović
- Plastic and Reconstructive Surgery Clinic, University Clinical Center Niš, Blvd Zorana Djindjica 48, 18000 Niš, Serbia.
| | - Andriana Jovanović
- Clinic for Nephrology, University Clinical Center Niš, Blvd Zorana Djindjica 48, 18000 Niš, Serbia
| |
Collapse
|
11
|
Adkison H, Embers ME. Lyme disease and the pursuit of a clinical cure. Front Med (Lausanne) 2023; 10:1183344. [PMID: 37293310 PMCID: PMC10244525 DOI: 10.3389/fmed.2023.1183344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne illness in the United States. Many aspects of the disease are still topics of controversy within the scientific and medical communities. One particular point of debate is the etiology behind antibiotic treatment failure of a significant portion (10-30%) of Lyme disease patients. The condition in which patients with Lyme disease continue to experience a variety of symptoms months to years after the recommended antibiotic treatment is most recently referred to in the literature as post treatment Lyme disease syndrome (PTLDS) or just simply post treatment Lyme disease (PTLD). The most commonly proposed mechanisms behind treatment failure include host autoimmune responses, long-term sequelae from the initial Borrelia infection, and persistence of the spirochete. The aims of this review will focus on the in vitro, in vivo, and clinical evidence that either validates or challenges these mechanisms, particularly with regard to the role of the immune response in disease and resolution of the infection. Next generation treatments and research into identifying biomarkers to predict treatment responses and outcomes for Lyme disease patients are also discussed. It is essential that definitions and guidelines for Lyme disease evolve with the research to translate diagnostic and therapeutic advances to patient care.
Collapse
Affiliation(s)
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| |
Collapse
|
12
|
Dagenais A, Villalba-Guerrero C, Olivier M. Trained immunity: A “new” weapon in the fight against infectious diseases. Front Immunol 2023; 14:1147476. [PMID: 36993966 PMCID: PMC10040606 DOI: 10.3389/fimmu.2023.1147476] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Innate immune cells can potentiate the response to reinfection through an innate form of immunological memory known as trained immunity. The potential of this fast-acting, nonspecific memory compared to traditional adaptive immunological memory in prophylaxis and therapy has been a topic of great interest in many fields, including infectious diseases. Amidst the rise of antimicrobial resistance and climate change—two major threats to global health—, harnessing the advantages of trained immunity compared to traditional forms of prophylaxis and therapy could be game-changing. Here, we present recent works bridging trained immunity and infectious disease that raise important discoveries, questions, concerns, and novel avenues for the modulation of trained immunity in practice. By exploring the progress in bacterial, viral, fungal, and parasitic diseases, we equally highlight future directions with a focus on particularly problematic and/or understudied pathogens.
Collapse
Affiliation(s)
- Amy Dagenais
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Carlos Villalba-Guerrero
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- *Correspondence: Martin Olivier,
| |
Collapse
|