1
|
Kaletsky R, Moore RS, Sengupta T, Seto R, Ceballos-Llera B, Murphy CT. Molecular requirements for C. elegans transgenerational epigenetic inheritance of pathogen avoidance. eLife 2025; 14:RP105673. [PMID: 40372780 PMCID: PMC12080996 DOI: 10.7554/elife.105673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
Bacteria are Caenorhabditis elegans' food, and worms are naturally attracted to many bacteria, including pathogenic Pseudomonas, preferring PA14 over laboratory Escherichia coli (OP50). Despite this natural attraction to PA14, prior PA14 exposure causes the worms to instead avoid PA14. This behavioral switch can happen quickly - even within the duration of the choice assay. We show that accurate assessment of the animals' true first choice requires the use of a paralytic (azide) to trap the worms at their initial choice, preventing the switch from attraction to avoidance of PA14 within the assay period. We previously discovered that exposure of C. elegans to 25°C plate-grown PA14 at 20°C for 24 hr not only leads to PA14 avoidance, but also to four generations of naïve progeny avoiding PA14, while other PA14 paradigms only cause P0 and/or F1 avoidance. We also showed that the transgenerational (P0-F4) epigenetic avoidance is mediated by P11, a small RNA produced by PA14. P11 is both necessary and sufficient for TEI of learned avoidance. P11 is highly expressed in our standard growth conditions (25°C on surfaces), but not in other conditions, suggesting that the reported failure to observe F2-F4 avoidance is likely due to the absence of P11 expression in PA14 in the experimenters' growth conditions. Additionally, we tested ~35 genes for involvement in TEI of learned pathogen avoidance. The conservation of multiple components of this sRNA TEI mechanism across C. elegans strains and in multiple Pseudomonas species suggests that this TEI behavior is likely to be physiologically important in wild conditions.
Collapse
Affiliation(s)
- Rachel Kaletsky
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- LSI Genomics, Princeton UniversityPrincetonUnited States
| | - Rebecca S Moore
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- LSI Genomics, Princeton UniversityPrincetonUnited States
- Chronobiology and Sleep Institute, Department of NeurosciencePhiladelphiaUnited States
- Howard Hughes Medical Institute, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Titas Sengupta
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- LSI Genomics, Princeton UniversityPrincetonUnited States
| | - Renee Seto
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- LSI Genomics, Princeton UniversityPrincetonUnited States
| | - Borja Ceballos-Llera
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- LSI Genomics, Princeton UniversityPrincetonUnited States
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- LSI Genomics, Princeton UniversityPrincetonUnited States
| |
Collapse
|
2
|
Pender CL, Dishart JG, Gildea HK, Nauta KM, Page EM, Siddiqi TF, Cheung SS, Joe L, Burton NO, Dillin A. Perception of a pathogenic signature initiates intergenerational protection. Cell 2025; 188:594-605.e10. [PMID: 39721586 DOI: 10.1016/j.cell.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Transmission of immune responses from one generation to the next represents a powerful adaptive mechanism to protect an organism's descendants. Parental infection by the natural C. elegans pathogen Pseudomonas vranovensis induces a protective response in progeny, but the bacterial cues and intergenerational signal driving this response were previously unknown. Here, we find that animals activate a protective stress response program upon exposure to P. vranovensis-derived cyanide and that a metabolic byproduct of cyanide detoxification, β-cyanoalanine, acts as an intergenerational signal to protect progeny from infection. Remarkably, this mechanism does not require direct parental infection; rather, exposure to pathogen-derived volatiles is sufficient to enhance the survival of the next generation, indicating that parental surveillance of environmental cues can activate a protective intergenerational response. Therefore, the mere perception of a pathogen-derived toxin, in this case cyanide, can protect an animal's progeny from future pathogenic challenges.
Collapse
Affiliation(s)
- Corinne L Pender
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julian G Dishart
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Holly K Gildea
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kelsie M Nauta
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Emily M Page
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Talha F Siddiqi
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shannon S Cheung
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Larry Joe
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas O Burton
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Andrew Dillin
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Lin S, Fu H, Wang H, Xu Y, Zhao Y, Du S, Wei J, Qiu P, Shi S, Li C, Efferth T, Hong C. Free and Easy Wanderer Ameliorates Intestinal Bloating-Dependent Avoidance Behavior of Caenorhabditis elegans Through Gut-Germline-Neural Signaling. CNS Neurosci Ther 2025; 31:e70291. [PMID: 40008431 PMCID: PMC11862825 DOI: 10.1111/cns.70291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/18/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
PURPOSE The aim of this study was to investigate the protective effect of Free and Easy Wanderer (FAEW) on the avoidance behavior induced by feeding Heat-Killed Escherichia coli, and to elucidate the underlying mechanisms. METHODS Initially, the effects of FAEW on avoidance behavior, survival, neuroendocrine signaling gene expression, and intestinal bloating were examined. The impact of FAEW on gut-germline-neural signaling was assessed by monitoring H4K8ac expression and the avoidance behavior of par-5 RNAi animals and glp-1(e2141) mutants. RNA-sequencing was conducted to analyze potential signaling pathways. Finally, avoidance behavior was examined using daf-16(mu86) mutants and the rescued animals. RESULTS FAEW delayed avoidance behavior. FAEW significantly downregulated gene expression in the neuroendocrine signaling pathway and alleviated intestinal bloating of C. elegans. The levels of H4K8ac and par-5 in the germline decreased significantly with FAEW's treatment, and FAEW failed to affect the avoidance behavior of par-5 RNAi animals and glp-1(e2141) mutants. FAEW's effect on avoidance behavior diminished in daf-16(mu86) mutants but was restored in daf-16 rescued animals. FAEW has been observed to restore daf-16 levels. CONCLUSION FAEW protects against avoidance behavior of C. elegans through downregulating H4K8ac protein expression and activating DAF-16. This study provides crucial experimental evidence supporting FAEW as a promising candidate for protecting against avoidance behavior associated with PTSD.
Collapse
Affiliation(s)
- Siyi Lin
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Huangjie Fu
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Hanxiao Wang
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yingying Xu
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yu Zhao
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Shiyu Du
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Jiale Wei
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Ping Qiu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Senlin Shi
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Changyu Li
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical SciencesJohannes Gutenberg UniversityMainzGermany
| | - Chunlan Hong
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
4
|
Hajdú G, Szathmári C, Sőti C. Modeling Host-Pathogen Interactions in C. elegans: Lessons Learned from Pseudomonas aeruginosa Infection. Int J Mol Sci 2024; 25:7034. [PMID: 39000143 PMCID: PMC11241598 DOI: 10.3390/ijms25137034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Infections, such as that by the multiresistant opportunistic bacterial pathogen Pseudomonas aeruginosa, may pose a serious health risk, especially on vulnerable patient populations. The nematode Caenorhabditis elegans provides a simple organismal model to investigate both pathogenic mechanisms and the emerging role of innate immunity in host protection. Here, we review the virulence and infection strategies of P. aeruginosa and host defenses of C. elegans. We summarize the recognition mechanisms of patterns of pathogenesis, including novel pathogen-associated molecular patterns and surveillance immunity of translation, mitochondria, and lysosome-related organelles. We also review the regulation of antimicrobial and behavioral defenses by the worm's neuroendocrine system. We focus on how discoveries in this rich field align with well-characterized evolutionary conserved protective pathways, as well as on potential crossovers to human pathogenesis and innate immune responses.
Collapse
Affiliation(s)
- Gábor Hajdú
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csenge Szathmári
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
5
|
Lei M, Tan Y, Tu H, Tan W. Neuronal basis and diverse mechanisms of pathogen avoidance in Caenorhabditis elegans. Front Immunol 2024; 15:1353747. [PMID: 38751431 PMCID: PMC11094273 DOI: 10.3389/fimmu.2024.1353747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Pathogen avoidance behaviour has been observed across animal taxa as a vital host-microbe interaction mechanism. The nematode Caenorhabditis elegans has evolved multiple diverse mechanisms for pathogen avoidance under natural selection pressure. We summarise the current knowledge of the stimuli that trigger pathogen avoidance, including alterations in aerotaxis, intestinal bloating, and metabolites. We then survey the neural circuits involved in pathogen avoidance, transgenerational epigenetic inheritance of pathogen avoidance, signalling crosstalk between pathogen avoidance and innate immunity, and C. elegans avoidance of non-Pseudomonas bacteria. In this review, we highlight the latest advances in understanding host-microbe interactions and the gut-brain axis.
Collapse
Affiliation(s)
- Ming Lei
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yanheng Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Weihong Tan
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Otarigho B, Butts AF, Aballay A. Neuronal NPR-15 modulates molecular and behavioral immune responses via the amphid sensory neuron-intestinal axis in C. elegans. eLife 2024; 12:RP90051. [PMID: 38446031 PMCID: PMC10942643 DOI: 10.7554/elife.90051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
The survival of hosts during infections relies on their ability to mount effective molecular and behavioral immune responses. Despite extensive research on these defense strategies in various species, including the model organism Caenorhabditis elegans, the neural mechanisms underlying their interaction remain poorly understood. Previous studies have highlighted the role of neural G-protein-coupled receptors (GPCRs) in regulating both immunity and pathogen avoidance, which is particularly dependent on aerotaxis. To address this knowledge gap, we conducted a screen of mutants in neuropeptide receptor family genes. We found that loss-of-function mutations in npr-15 activated immunity while suppressing pathogen avoidance behavior. Through further analysis, NPR-15 was found to regulate immunity by modulating the activity of key transcription factors, namely GATA/ELT-2 and TFEB/HLH-30. Surprisingly, the lack of pathogen avoidance of npr-15 mutant animals was not influenced by oxygen levels. Moreover, our studies revealed that the amphid sensory neuron ASJ is involved in mediating the immune and behavioral responses orchestrated by NPR-15. Additionally, NPR-15 was found to regulate avoidance behavior via the TRPM (transient receptor potential melastatin) gene, GON-2, which may sense the intestinal distension caused by bacterial colonization to elicit pathogen avoidance. Our study contributes to a broader understanding of host defense strategies and mechanisms underlining the interaction between molecular and behavioral immune responses.
Collapse
Affiliation(s)
- Benson Otarigho
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Anna Frances Butts
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Alejandro Aballay
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealthHoustonUnited States
| |
Collapse
|
7
|
Sengupta T, St. Ange J, Kaletsky R, Moore RS, Seto RJ, Marogi J, Myhrvold C, Gitai Z, Murphy CT. A natural bacterial pathogen of C. elegans uses a small RNA to induce transgenerational inheritance of learned avoidance. PLoS Genet 2024; 20:e1011178. [PMID: 38547071 PMCID: PMC10977744 DOI: 10.1371/journal.pgen.1011178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/09/2024] [Indexed: 04/02/2024] Open
Abstract
C. elegans can learn to avoid pathogenic bacteria through several mechanisms, including bacterial small RNA-induced learned avoidance behavior, which can be inherited transgenerationally. Previously, we discovered that a small RNA from a clinical isolate of Pseudomonas aeruginosa, PA14, induces learned avoidance and transgenerational inheritance of that avoidance in C. elegans. Pseudomonas aeruginosa is an important human pathogen, and there are other Pseudomonads in C. elegans' natural habitat, but it is unclear whether C. elegans ever encounters PA14-like bacteria in the wild. Thus, it is not known if small RNAs from bacteria found in C. elegans' natural habitat can also regulate host behavior and produce heritable behavioral effects. Here we screened a set of wild habitat bacteria, and found that a pathogenic Pseudomonas vranovensis strain isolated from the C. elegans microbiota, GRb0427, regulates worm behavior: worms learn to avoid this pathogenic bacterium following exposure, and this learned avoidance is inherited for four generations. The learned response is entirely mediated by bacterially-produced small RNAs, which induce avoidance and transgenerational inheritance, providing further support that such mechanisms of learning and inheritance exist in the wild. We identified Pv1, a small RNA expressed in P. vranovensis, that has a 16-nucleotide match to an exon of the C. elegans gene maco-1. Pv1 is both necessary and sufficient to induce learned avoidance of Grb0427. However, Pv1 also results in avoidance of a beneficial microbiome strain, P. mendocina. Our findings suggest that bacterial small RNA-mediated regulation of host behavior and its transgenerational inheritance may be functional in C. elegans' natural environment, and that this potentially maladaptive response may favor reversal of the transgenerational memory after a few generations. Our data also suggest that different bacterial small RNA-mediated regulation systems evolved independently, but define shared molecular features of bacterial small RNAs that produce transgenerationally-inherited effects.
Collapse
Affiliation(s)
- Titas Sengupta
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jonathan St. Ange
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rachel Kaletsky
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rebecca S. Moore
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Renee J. Seto
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jacob Marogi
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Coleen T. Murphy
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
8
|
Montanari M, Manière G, Berthelot-Grosjean M, Dusabyinema Y, Gillet B, Grosjean Y, Kurz CL, Royet J. Larval microbiota primes the Drosophila adult gustatory response. Nat Commun 2024; 15:1341. [PMID: 38351056 PMCID: PMC10864365 DOI: 10.1038/s41467-024-45532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
The survival of animals depends, among other things, on their ability to identify threats in their surrounding environment. Senses such as olfaction, vision and taste play an essential role in sampling their living environment, including microorganisms, some of which are potentially pathogenic. This study focuses on the mechanisms of detection of bacteria by the Drosophila gustatory system. We demonstrate that the peptidoglycan (PGN) that forms the cell wall of bacteria triggers an immediate feeding aversive response when detected by the gustatory system of adult flies. Although we identify ppk23+ and Gr66a+ gustatory neurons as necessary to transduce fly response to PGN, we demonstrate that they play very different roles in the process. Time-controlled functional inactivation and in vivo calcium imaging demonstrate that while ppk23+ neurons are required in the adult flies to directly transduce PGN signal, Gr66a+ neurons must be functional in larvae to allow future adults to become PGN sensitive. Furthermore, the ability of adult flies to respond to bacterial PGN is lost when they hatch from larvae reared under axenic conditions. Recolonization of germ-free larvae, but not adults, with a single bacterial species, Lactobacillus brevis, is sufficient to restore the ability of adults to respond to PGN. Our data demonstrate that the genetic and environmental characteristics of the larvae are essential to make the future adults competent to respond to certain sensory stimuli such as PGN.
Collapse
Affiliation(s)
| | - Gérard Manière
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAe, Université Bourgogne, F-21000, Dijon, France
| | - Martine Berthelot-Grosjean
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAe, Université Bourgogne, F-21000, Dijon, France
| | - Yves Dusabyinema
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, F-69007, Lyon, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, F-69007, Lyon, France
| | - Yaël Grosjean
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAe, Université Bourgogne, F-21000, Dijon, France
| | - C Léopold Kurz
- Aix-Marseille Université, CNRS, IBDM, Marseille, France.
| | - Julien Royet
- Aix-Marseille Université, CNRS, IBDM, Marseille, France.
| |
Collapse
|
9
|
Otarigho B, Butts AF, Aballay A. Neuronal NPR-15 modulates molecular and behavioral immune responses via the amphid sensory neuron-intestinal axis in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.27.550570. [PMID: 37546751 PMCID: PMC10402133 DOI: 10.1101/2023.07.27.550570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The survival of hosts during infections relies on their ability to mount effective molecular and behavioral immune responses. Despite extensive research on these defense strategies in various species, including the model organism Caenorhabditis elegans, the neural mechanisms underlying their interaction remain poorly understood. Previous studies have highlighted the role of neural G protein-coupled receptors (GPCRs) in regulating both immunity and pathogen avoidance, which is particularly dependent on aerotaxis. To address this knowledge gap, we conducted a screen of mutants in neuropeptide receptor family genes. We found that loss-of-function mutations in npr-15 activated immunity while suppressing pathogen avoidance behavior. Through further analysis, NPR-15 was found to regulate immunity by modulating the activity of key transcription factors, namely GATA/ELT-2 and TFEB/HLH-30. Surprisingly, the lack of pathogen avoidance of npr-15 mutant animals was not influenced by oxygen levels. Moreover, our studies revealed that the amphid sensory neuron ASJ is involved in mediating the immune and behavioral responses orchestrated by NPR-15. Additionally, NPR-15 was found to regulate avoidance behavior via the TRPM gene, GON-2, which may sense the intestinal distension caused by bacterial colonization to elicit pathogen avoidance. Our study contributes to a broader understanding of host defense strategies and mechanisms underlining the interaction between molecular and behavioral immune responses.
Collapse
Affiliation(s)
- Benson Otarigho
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anna Frances Butts
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alejandro Aballay
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, TX
| |
Collapse
|
10
|
Sengupta T, St. Ange J, Moore R, Kaletsky R, Marogi J, Myhrvold C, Gitai Z, Murphy CT. A natural bacterial pathogen of C. elegans uses a small RNA to induce transgenerational inheritance of learned avoidance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549962. [PMID: 37503135 PMCID: PMC10370180 DOI: 10.1101/2023.07.20.549962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Previously, we discovered that a small RNA from a clinical isolate of Pseudomonas aeruginosa, PA14, induces learned avoidance and its transgenerational inheritance in C. elegans. Pseudomonas aeruginosa is an important human pathogen, and there are other Pseudomonads in C. elegans' natural habitat, but it is unclear whether C. elegans ever encounters PA14-like bacteria in the wild. Thus, it is not known if small RNAs from bacteria found in C. elegans' natural habitat can also regulate host behavior and produce heritable behavioral effects. Here we found that a pathogenic Pseudomonas vranovensis strain isolated from the C. elegans microbiota, GRb0427, like PA14, regulates worm behavior: worms learn to avoid this pathogenic bacterium following exposure to GRb0427, and this learned avoidance is inherited for four generations. The learned response is entirely mediated by bacterially-produced small RNAs, which induce avoidance and transgenerational inheritance, providing further support that such mechanisms of learning and inheritance exist in the wild. Using bacterial small RNA sequencing, we identified Pv1, a small RNA from GRb0427, that matches the sequence of C. elegans maco-1. We find that Pv1 is both necessary and sufficient to induce learned avoidance of Grb0427. However, Pv1 also results in avoidance of a beneficial microbiome strain, P. mendocina; this potentially maladaptive response may favor reversal of the transgenerational memory after a few generations. Our findings suggest that bacterial small RNA-mediated regulation of host behavior and its transgenerational inheritance are functional in C. elegans' natural environment, and that different bacterial small RNA-mediated regulation systems evolved independently but define shared molecular features of bacterial small RNAs that produce transgenerationally-inherited effects.
Collapse
Affiliation(s)
- Titas Sengupta
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jonathan St. Ange
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rebecca Moore
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rachel Kaletsky
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jacob Marogi
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T. Murphy
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
11
|
Xu Y, Wei S, Zhu L, Huang C, Yang T, Wang S, Zhang Y, Duan Y, Li X, Wang Z, Pan W. Low expression of the intestinal metabolite butyric acid and the corresponding memory pattern regulate HDAC4 to promote apoptosis in rat hippocampal neurons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114660. [PMID: 36812872 DOI: 10.1016/j.ecoenv.2023.114660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
After intensive research on the gut-brain axis, intestinal dysbiosis is considered to be one of the important pathways of cognitive decline. Microbiota transplantation has long been thought to reverse the behavioral changes in the brain caused by colony dysregulation, but in our study, microbiota transplantation seemed to improve only behavioral brain function, and there was no reasonable explanation for the high level of hippocampal neuron apoptosis that remained. Butyric acid is one of the short-chain fatty acids of intestinal metabolites and is mainly used as an edible flavoring. It is commonly used in butter, cheese and fruit flavorings, and is a natural product of bacterial fermentation of dietary fiber and resistant starch in the colon, acting similarly to the small-molecule HDAC inhibitor TSA. The effect of butyric acid on HDAC levels in hippocampal neurons in the brain remains unclear. Therefore, this study used rats with low bacterial abundance, conditional knockout mice, microbiota transplantation, 16S rDNA amplicon sequencing, and behavioral assays to demonstrate the regulatory mechanism of short-chain fatty acids on the acetylation of hippocampal histones. The results showed that disturbance of short-chain fatty acid metabolism led to high HDAC4 expression in the hippocampus and regulated H4K8ac, H4K12ac, and H4K16ac to promote increased neuronal apoptosis. However, microbiota transplantation did not change the pattern of low butyric acid expression, resulting in maintained high HDAC4 expression in hippocampal neurons with continued neuronal apoptosis. Overall, our study shows that low levels of butyric acid in vivo can promote HDAC4 expression through the gut-brain axis pathway, leading to hippocampal neuronal apoptosis, and demonstrates that butyric acid has great potential value for neuroprotection in the brain. In this regard, we suggest that patients with chronic dysbiosis should pay attention to changes in the levels of SCFAs in their bodies, and if deficiencies occur, they should be promptly supplemented through diet and other means to avoid affecting brain health.
Collapse
Affiliation(s)
- Yongjie Xu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Sijia Wei
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Liying Zhu
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Changyudong Huang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Tingting Yang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Shuang Wang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Yiqiong Zhang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Yunfeng Duan
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Xing Li
- Guizhou University of Traditional Chinese Medicine, Guiyang 550004, Guizhou, PR China.
| | - Zhengrong Wang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China.
| | - Wei Pan
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China.
| |
Collapse
|
12
|
Zhao Y, Chen J, Wang R, Pu X, Wang D. A review of transgenerational and multigenerational toxicology in the in vivo model animal Caenorhabditis elegans. J Appl Toxicol 2023; 43:122-145. [PMID: 35754092 DOI: 10.1002/jat.4360] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
A large number of pollutants existing in the environment can last for a long time, and their potential toxic effects can transfer from parents to their offspring. Thus, it is necessary to investigate the toxicity of environmental pollutants across multigenerations and the underlying mechanisms in organisms. Due to its short life cycle and sensitivity to environmental exposures, Caenorhabditis elegans is an important animal model for toxicity assessment of environmental pollutants across multigenerations. In this review, we introduced the transgenerational and multigenerational toxicity caused by various environmental pollutants in C. elegans. Moreover, we discussed the underlying mechanisms for the observed transgenerational and multigenerational toxicity of environmental contaminants in C. elegans.
Collapse
Affiliation(s)
- Yunli Zhao
- Medical School, Southeast University, Nanjing, China.,School of Public Health, Bengbu Medical College, Bengbu, China
| | - Jingya Chen
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Rui Wang
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Xiaoxiao Pu
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Stepanov AI, Besedovskaia ZV, Moshareva MA, Lukyanov KA, Putlyaeva LV. Studying Chromatin Epigenetics with Fluorescence Microscopy. Int J Mol Sci 2022; 23:ijms23168988. [PMID: 36012253 PMCID: PMC9409072 DOI: 10.3390/ijms23168988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Epigenetic modifications of histones (methylation, acetylation, phosphorylation, etc.) are of great importance in determining the functional state of chromatin. Changes in epigenome underlay all basic biological processes, such as cell division, differentiation, aging, and cancerous transformation. Post-translational histone modifications are mainly studied by immunoprecipitation with high-throughput sequencing (ChIP-Seq). It enables an accurate profiling of target modifications along the genome, but suffers from the high cost of analysis and the inability to work with living cells. Fluorescence microscopy represents an attractive complementary approach to characterize epigenetics. It can be applied to both live and fixed cells, easily compatible with high-throughput screening, and provide access to rich spatial information down to the single cell level. In this review, we discuss various fluorescent probes for histone modification detection. Various types of live-cell imaging epigenetic sensors suitable for conventional as well as super-resolution fluorescence microscopy are described. We also focus on problems and future perspectives in the development of fluorescent probes for epigenetics.
Collapse
Affiliation(s)
- Afanasii I. Stepanov
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
| | - Zlata V. Besedovskaia
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
| | - Maria A. Moshareva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklay St. 16/10, 117997 Moscow, Russia
| | - Konstantin A. Lukyanov
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
- Correspondence: (K.A.L.); (L.V.P.)
| | - Lidia V. Putlyaeva
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
- Correspondence: (K.A.L.); (L.V.P.)
| |
Collapse
|
14
|
Legüe M, Caneo M, Aguila B, Pollak B, Calixto A. Interspecies effectors of a transgenerational memory of bacterial infection in Caenorhabditis elegans. iScience 2022; 25:104627. [PMID: 35800768 PMCID: PMC9254006 DOI: 10.1016/j.isci.2022.104627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/16/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
The inheritance of memory is an adaptive trait. Microbes challenge the immunity of organisms and trigger behavioral adaptations that can be inherited, but how bacteria produce inheritance of a trait is unknown. We use Caenorhabditis elegans and its bacteria to study the transgenerational RNA dynamics of interspecies crosstalk leading to a heritable behavior. A heritable response of C. elegans to microbes is the pathogen-induced diapause (PIDF), a state of suspended animation to evade infection. We identify RsmY, a small RNA involved in quorum sensing in Pseudomonas aeruginosa as a trigger of PIDF. The histone methyltransferase (HMT) SET-18/SMYD3 and the argonaute HRDE-1, which promotes multi-generational silencing in the germline, are also needed for PIDF initiation. The HMT SET-25/EHMT2 is necessary for memory maintenance in the transgenerational lineage. Our work is a starting point to understanding microbiome-induced inheritance of acquired traits, and the transgenerational influence of microbes in health and disease.
Collapse
Affiliation(s)
- Marcela Legüe
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| | - Mauricio Caneo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| | - Blanca Aguila
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
- Programa de Doctorado en Microbiología, Universidad de Chile, Santiago de Chile, Chile
| | | | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| |
Collapse
|
15
|
Lalsiamthara J, Aballay A. The gut efflux pump MRP-1 exports oxidized glutathione as a danger signal that stimulates behavioral immunity and aversive learning. Commun Biol 2022; 5:422. [PMID: 35513700 PMCID: PMC9072357 DOI: 10.1038/s42003-022-03381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Innate immune surveillance, which monitors the presence of potentially harmful microorganisms and the perturbations of host physiology that occur in response to infections, is critical to distinguish pathogens from beneficial microbes. Here, we show that multidrug resistance-associated protein-1 (MRP-1) functions in the basolateral membrane of intestinal cells to transport byproducts of cellular redox reactions to control both molecular and behavioral immunity in Caenorhabditis elegans. Pseudomonas aeruginosa infection disrupts glutathione homeostasis, leading to the excess production of the MRP-1 substrate, oxidized glutathione (GSSG). Extracellular GSSG triggers pathogen avoidance behavior and primes naïve C. elegans to induce aversive learning behavior via neural NMDA class glutamate receptor-1 (NMR-1). Our results indicate that MRP-1 transports GSSG, which acts as a danger signal capable of warning C. elegans of changes in intestinal homeostasis, thereby initiating a gut neural signal that elicits an appropriate host defense response. The multidrug resistance-associated protein-1 (MRP-1) functions in the basolateral membrane of intestinal cells to transport byproducts of cellular redox reactions to control both molecular and behavioral immunity in C. elegans.
Collapse
Affiliation(s)
- Jonathan Lalsiamthara
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University Portland, Oregon, OR, 97239, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University Portland, Oregon, OR, 97239, USA.
| |
Collapse
|
16
|
Manterola M, Palominos MF, Calixto A. The Heritability of Behaviors Associated With the Host Gut Microbiota. Front Immunol 2021; 12:658551. [PMID: 34054822 PMCID: PMC8155505 DOI: 10.3389/fimmu.2021.658551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
What defines whether the interaction between environment and organism creates a genetic memory able to be transferred to subsequent generations? Bacteria and the products of their metabolism are the most ubiquitous biotic environments to which every living organism is exposed. Both microbiota and host establish a framework where environmental and genetic factors are integrated to produce adaptive life traits, some of which can be inherited. Thus, the interplay between host and microbe is a powerful model to study how phenotypic plasticity is inherited. Communication between host and microbe can occur through diverse molecules such as small RNAs (sRNAs) and the RNA interference machinery, which have emerged as mediators and carriers of heritable environmentally induced responses. Notwithstanding, it is still unclear how the organism integrates sRNA signaling between different tissues to orchestrate a systemic bacterially induced response that can be inherited. Here we discuss current evidence of heritability produced by the intestinal microbiota from several species. Neurons and gut are the sensing systems involved in transmitting changes through transcriptional and post-transcriptional modifications to the gonads. Germ cells express inflammatory receptors, and their development and function are regulated by host and bacterial metabolites and sRNAs thus suggesting that the dynamic interplay between host and microbe underlies the host's capacity to transmit heritable behaviors. We discuss how the host detects changes in the microbiota that can modulate germ cells genomic functions. We also explore the nature of the interactions that leave permanent or long-term memory in the host and propose mechanisms by which the microbiota can regulate the development and epigenetic reprogramming of germ cells, thus influencing the inheritance of the host. We highlight the vast contribution of the bacterivore nematode C. elegans and its commensal and pathogenic bacteria to the understanding on how behavioral adaptations can be inter and transgenerational inherited.
Collapse
Affiliation(s)
- Marcia Manterola
- Programa de Genética Humana, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - M. Fernanda Palominos
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- Programa de Doctorado en Ciencias, mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|