1
|
Pfanner N, den Brave F, Becker T. Mitochondrial protein import stress. Nat Cell Biol 2025; 27:188-201. [PMID: 39843636 DOI: 10.1038/s41556-024-01590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025]
Abstract
Mitochondria have to import a large number of precursor proteins from the cytosol. Chaperones keep these proteins in a largely unfolded state and guide them to the mitochondrial import sites. Premature folding, mitochondrial stress and import defects can cause clogging of import sites and accumulation of non-imported precursors, representing a critical burden for cellular proteostasis. Here we discuss how cells respond to mitochondrial protein import stress by regenerating clogged import sites and inducing stress responses. The mitochondrial protein import machinery has a dual role by serving as sensor for detecting mitochondrial dysfunction and inducing stress-response pathways. The production of chaperones that fold or sequester precursor proteins in deposits is induced and the proteasomal activity is increased to remove the excess precursor proteins. Together, these pathways reveal how mitochondria are tightly integrated into a cellular proteostasis and stress response network to maintain cell viability.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMB, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Wang Q, Liang M, Xiao Y, Li Z, Chen X, Cheng P, Qi B, Yu Y, Lei T, Huang Z. In silico and in vivo discovery of antioxidant sea cucumber peptides with antineurodegenerative properties. Food Funct 2024; 15:5972-5986. [PMID: 38739010 DOI: 10.1039/d4fo01542h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Since oxidative stress is often associated with neurodegenerative diseases, antioxidants are likely to confer protection against neurodegeneration. Despite an increasing number of food-derived peptides being identified as antioxidants, their antineurodegenerative potentials remain largely unexplored. Here, a sea cucumber peptide preparation - the peptide-rich fraction of <3 kDa (UF<3K) obtained by ultrafiltration from Apostichopus japonicus protein hydrolyzate - was found to protect PC12 cells and Caenorhabditis elegans from neurodegeneration by reducing oxidative stress and apoptosis, demonstrating its in vitro and in vivo neuroprotective effects. As many food-originated peptides are cryptides (cryptic peptides - short amino acid sequences encrypted in parent proteins) released in quantities by protein hydrolysis, UF<3K was subjected to sequencing analysis. As expected, a large repertoire of peptides were identified in UF<3K, establishing a sea cucumber cryptome (1238 peptides in total). Then 134 peptides were randomly selected from the cryptome (>10%) and analyzed for their antioxidant activities using a number of in silico bioinformatic programs as well as in vivo experimental assays in C. elegans. From these results, a novel antioxidant peptide - HoloPep#362 (FETLMPLWGNK) - was shown to not only inhibit aggregation of neurodegeneration-associated polygluatmine proteins but also ameliorate behavioral deficits in proteotoxicity nematodes. Proteomic analysis revealed an increased expression of several lysosomal proteases by HoloPep#362, suggesting proteostasis maintenance as a mechanism for its antineurodegenerative action. These findings provide an insight into the health-promoting potential of sea cucumber peptides as neuroprotective nutraceuticals and also into the importance of training in silico peptide bioactivity prediction programs with in vivo experimental data.
Collapse
Affiliation(s)
- Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Ming Liang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- Research and Development Center, Infinitus (China) Company Ltd, Guangzhou 510405, China
| | - Yue Xiao
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Zhenhua Li
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaohe Chen
- Rehabilitation Department, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Center, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China.
| | - Peng Cheng
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bing Qi
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Yu
- Research and Development Center, Infinitus (China) Company Ltd, Guangzhou 510405, China
| | - Tao Lei
- Rehabilitation Department, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Center, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China.
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
3
|
Krakowczyk M, Lenkiewicz AM, Sitarz T, Malinska D, Borrero M, Mussulini BHM, Linke V, Szczepankiewicz AA, Biazik JM, Wydrych A, Nieznanska H, Serwa RA, Chacinska A, Bragoszewski P. OMA1 protease eliminates arrested protein import intermediates upon mitochondrial depolarization. J Cell Biol 2024; 223:e202306051. [PMID: 38530280 PMCID: PMC10964989 DOI: 10.1083/jcb.202306051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/28/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
Most mitochondrial proteins originate from the cytosol and require transport into the organelle. Such precursor proteins must be unfolded to pass through translocation channels in mitochondrial membranes. Misfolding of transported proteins can result in their arrest and translocation failure. Arrested proteins block further import, disturbing mitochondrial functions and cellular proteostasis. Cellular responses to translocation failure have been defined in yeast. We developed the cell line-based translocase clogging model to discover molecular mechanisms that resolve failed import events in humans. The mechanism we uncover differs significantly from these described in fungi, where ATPase-driven extraction of blocked protein is directly coupled with proteasomal processing. We found human cells to rely primarily on mitochondrial factors to clear translocation channel blockage. The mitochondrial membrane depolarization triggered proteolytic cleavage of the stalled protein, which involved mitochondrial protease OMA1. The cleavage allowed releasing the protein fragment that blocked the translocase. The released fragment was further cleared in the cytosol by VCP/p97 and the proteasome.
Collapse
Affiliation(s)
- Magda Krakowczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna M. Lenkiewicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Sitarz
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dominika Malinska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Mayra Borrero
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Ben Hur Marins Mussulini
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Vanessa Linke
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | | | - Joanna M. Biazik
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- University of New South Wales, Sydney, Australia
| | - Agata Wydrych
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hanna Nieznanska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Remigiusz A. Serwa
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Chacinska
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Bragoszewski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Salcedo-Tacuma D, Asad N, Howells G, Anderson R, Smith DM. Proteasome hyperactivation rewires the proteome enhancing stress resistance, proteostasis, lipid metabolism and ERAD in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588128. [PMID: 38617285 PMCID: PMC11014606 DOI: 10.1101/2024.04.04.588128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Proteasome dysfunction is implicated in the pathogenesis of neurodegenerative diseases and age-related proteinopathies. Using a C. elegans model, we demonstrate that 20S proteasome hyperactivation, facilitated by 20S gate-opening, accelerates the targeting of intrinsically disordered proteins. This leads to increased protein synthesis, extensive rewiring of the proteome and transcriptome, enhanced oxidative stress defense, accelerated lipid metabolism, and peroxisome proliferation. It also promotes ER-associated degradation (ERAD) of aggregation-prone proteins, such as alpha-1 antitrypsin (ATZ) and various lipoproteins. Notably, our results reveal that 20S proteasome hyperactivation suggests a novel role in ERAD with broad implications for proteostasis-related disorders, simultaneously affecting lipid homeostasis and peroxisome proliferation. Furthermore, the enhanced cellular capacity to mitigate proteostasis challenges, alongside unanticipated acceleration of lipid metabolism is expected to contribute to the longevity phenotype of this mutant. Remarkably, the mechanism of longevity induced by 20S gate opening appears unique, independent of known longevity and stress-resistance pathways. These results support the therapeutic potential of 20S proteasome activation in mitigating proteostasis-related disorders broadly and provide new insights into the complex interplay between proteasome activity, cellular health, and aging.
Collapse
Affiliation(s)
- David Salcedo-Tacuma
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - Nadeeem. Asad
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - Giovanni Howells
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - Raymond Anderson
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - David M. Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
5
|
Shan Z, Li S, Gao Y, Jian C, Ti X, Zuo H, Wang Y, Zhao G, Wang Y, Zhang Q. mtDNA extramitochondrial replication mediates mitochondrial defect effects. iScience 2024; 27:108970. [PMID: 38322987 PMCID: PMC10844862 DOI: 10.1016/j.isci.2024.108970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/09/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
A high ratio of severe mitochondrial defects causes multiple human mitochondrial diseases. However, until now, the in vivo rescue signal of such mitochondrial defect effects has not been clear. Here, we built fly mitochondrial defect models by knocking down the essential mitochondrial genes dMterf4 and dMrps23. Following genome-wide RNAi screens, we found that knockdown of Med8/Tfb4/mtSSB/PolG2/mtDNA-helicase rescued dMterf4/dMrps23 RNAi-mediated mitochondrial defect effects. Extremely surprisingly, they drove mtDNA replication outside mitochondria through the Med8/Tfb4-mtSSB/PolG2/mtDNA-helicase axis to amplify cytosolic mtDNA, leading to activation of the cGAS-Sting-like IMD pathway to partially mediate dMterf4/dMrps23 RNAi-triggered effects. Moreover, we found that the Med8/Tfb4-mtSSB/PolG2/mtDNA-helicase axis also mediated other fly mitochondrial gene defect-triggered dysfunctions and Drosophila aging. Overall, our study demarcates the Med8/Tfb4-mtSSB/PolG2/mtDNA-helicase axis as a candidate mechanism to mediate mitochondrial defect effects through driving mtDNA extramitochondrial replication; dysfunction of this axis might be used for potential treatments for many mitochondrial and age-related diseases.
Collapse
Affiliation(s)
- Zhaoliang Shan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Shengnan Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Yuxue Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Chunhua Jian
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Xiuxiu Ti
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Hui Zuo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Guochun Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Yan Wang
- Department of Cardiovascular Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| |
Collapse
|
6
|
Mukhtar M, Thakkur K, Chacinska A, Bragoszewski P. Mechanisms of stress management in mitochondrial protein import. Biochem Soc Trans 2023; 51:2117-2126. [PMID: 37987513 DOI: 10.1042/bst20230377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Mitochondria are vital to the functions of eukaryotic cells. Most mitochondrial proteins are transported into the organelle following their synthesis by cytoplasmic ribosomes. However, precise protein targeting is complex because the two diverse lipid membranes encase mitochondria. Efficient protein translocation across membranes and accurate sorting to specific sub-compartments require the cooperation of multiple factors. Any failure in mitochondrial protein import can disrupt organelle fitness. Proteins intended for mitochondria make up a significant portion of all proteins produced in the cytosol. Therefore, import defects causing their mislocalization can significantly stress cellular protein homeostasis. Recognition of this phenomenon has increased interest in molecular mechanisms that respond to import-related stress and restore proteostasis, which is the focus of this review. Significantly, disruptions in protein homeostasis link strongly to the pathology of several degenerative disorders highly relevant in ageing societies. A comprehensive understanding of protein import quality control will allow harnessing this machinery in therapeutic approaches.
Collapse
Affiliation(s)
- Maryam Mukhtar
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Krutika Thakkur
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Piotr Bragoszewski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Kim M, Serwa RA, Samluk L, Suppanz I, Kodroń A, Stępkowski TM, Elancheliyan P, Tsegaye B, Oeljeklaus S, Wasilewski M, Warscheid B, Chacinska A. Immunoproteasome-specific subunit PSMB9 induction is required to regulate cellular proteostasis upon mitochondrial dysfunction. Nat Commun 2023; 14:4092. [PMID: 37433777 DOI: 10.1038/s41467-023-39642-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Perturbed cellular protein homeostasis (proteostasis) and mitochondrial dysfunction play an important role in neurodegenerative diseases, however, the interplay between these two phenomena remains unclear. Mitochondrial dysfunction leads to a delay in mitochondrial protein import, causing accumulation of non-imported mitochondrial proteins in the cytosol and challenging proteostasis. Cells respond by increasing proteasome activity and molecular chaperones in yeast and C. elegans. Here, we demonstrate that in human cells mitochondrial dysfunction leads to the upregulation of a chaperone HSPB1 and, interestingly, an immunoproteasome-specific subunit PSMB9. Moreover, PSMB9 expression is dependent on the translation elongation factor EEF1A2. These mechanisms constitute a defense response to preserve cellular proteostasis under mitochondrial stress. Our findings define a mode of proteasomal activation through the change in proteasome composition driven by EEF1A2 and its spatial regulation, and are useful to formulate therapies to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Minji Kim
- IMol Polish Academy of Sciences, Warsaw, Poland
| | - Remigiusz A Serwa
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz Samluk
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ida Suppanz
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Agata Kodroń
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz M Stępkowski
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Silke Oeljeklaus
- Department of Biochemistry, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Department of Biochemistry, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Agnieszka Chacinska
- IMol Polish Academy of Sciences, Warsaw, Poland.
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
8
|
Lionaki E, Gkikas I, Tavernarakis N. Mitochondrial protein import machinery conveys stress signals to the cytosol and beyond. Bioessays 2023; 45:e2200160. [PMID: 36709422 DOI: 10.1002/bies.202200160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 01/30/2023]
Abstract
Mitochondria hold diverse and pivotal roles in fundamental processes that govern cell survival, differentiation, and death, in addition to organismal growth, maintenance, and aging. The mitochondrial protein import system is a major contributor to mitochondrial biogenesis and lies at the crossroads between mitochondrial and cellular homeostasis. Recent findings highlight the mitochondrial protein import system as a signaling hub, receiving inputs from other cellular compartments and adjusting its function accordingly. Impairment of protein import, in a physiological, or disease context, elicits adaptive responses inside and outside mitochondria. In this review, we discuss recent developments, relevant to the mechanisms of mitochondrial protein import regulation, with a particular focus on quality control, proteostatic and metabolic cellular responses, triggered upon impairment of mitochondrial protein import.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
9
|
Anderson RT, Bradley TA, Smith DM. Hyperactivation of the proteasome in Caenorhabditis elegans protects against proteotoxic stress and extends lifespan. J Biol Chem 2022; 298:102415. [PMID: 36007615 PMCID: PMC9486566 DOI: 10.1016/j.jbc.2022.102415] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Virtually all age-related neurodegenerative diseases (NDs) can be characterized by the accumulation of proteins inside and outside the cell that are thought to significantly contribute to disease pathogenesis. One of the cell’s primary systems for the degradation of misfolded/damaged proteins is the ubiquitin proteasome system (UPS), and its impairment is implicated in essentially all NDs. Thus, upregulating this system to combat NDs has garnered a great deal of interest in recent years. Various animal models have focused on stimulating 26S activity and increasing 20S proteasome levels, but thus far, none have targeted intrinsic activation of the 20S proteasome itself. Therefore, we constructed an animal model that endogenously expresses a hyperactive, open gate proteasome in Caenorhabditis elegans. The gate-destabilizing mutation that we introduced into the nematode germline yielded a viable nematode population with enhanced proteasomal activity, including peptide, unstructured protein, and ubiquitin-dependent degradation activities. We determined these nematodes showed a significantly increased lifespan and substantial resistance to oxidative and proteotoxic stress but a significant decrease in fecundity. Our results show that introducing a constitutively active proteasome into a multicellular organism is feasible and suggests targeting the proteasome gating mechanism as a valid approach for future age-related disease research efforts in mammals.
Collapse
Affiliation(s)
- Raymond T Anderson
- Department of Biochemistry, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV 26506
| | - Thomas A Bradley
- Department of Biochemistry, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV 26506
| | - David M Smith
- Department of Biochemistry, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV 26506.
| |
Collapse
|
10
|
Pessoa J. Shifting metabolism to increase lifespan. Trends Endocrinol Metab 2022; 33:533-535. [PMID: 35597712 DOI: 10.1016/j.tem.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
Lionaki et al. report that reducing mitochondrial protein import increases Caenorhabditis elegans lifespan, through a metabolic shift that enhances the conversion of glucose into serine. Here, I discuss the promise held by these findings in the framework of therapeutic approaches to metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- João Pessoa
- Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
11
|
Zhang WH, Koyuncu S, Vilchez D. Insights Into the Links Between Proteostasis and Aging From C. elegans. FRONTIERS IN AGING 2022; 3:854157. [PMID: 35821832 PMCID: PMC9261386 DOI: 10.3389/fragi.2022.854157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 04/20/2023]
Abstract
Protein homeostasis (proteostasis) is maintained by a tightly regulated and interconnected network of biological pathways, preventing the accumulation and aggregation of damaged or misfolded proteins. Thus, the proteostasis network is essential to ensure organism longevity and health, while proteostasis failure contributes to the development of aging and age-related diseases that involve protein aggregation. The model organism Caenorhabditis elegans has proved invaluable for the study of proteostasis in the context of aging, longevity and disease, with a number of pivotal discoveries attributable to the use of this organism. In this review, we discuss prominent findings from C. elegans across the many key aspects of the proteostasis network, within the context of aging and disease. These studies collectively highlight numerous promising therapeutic targets, which may 1 day facilitate the development of interventions to delay aging and prevent age-associated diseases.
Collapse
Affiliation(s)
- William Hongyu Zhang
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
12
|
Chojnacka KJ, Elancheliyan P, Mussulini BHM, Mohanraj K, Callegari S, Gosk A, Banach T, Góral T, Szczepanowska K, Rehling P, Serwa RA, Chacińska A. Ovarian carcinoma immunoreactive antigen-like protein 2 (OCIAD2) is a novel complex III specific assembly factor in mitochondria. Mol Biol Cell 2022; 33:ar29. [PMID: 35080992 PMCID: PMC9250361 DOI: 10.1091/mbc.e21-03-0143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Assembly of the dimeric complex III (CIII2) in the mitochondrial inner membrane is an intricate process in which several accessory proteins are involved as assembly factors. Despite numerous studies, this process has yet to be fully understood. Here we report the identification of human OCIAD2 (ovarian carcinoma immunoreactive antigen–like protein 2) as an assembly factor for CIII2. OCIAD2 was found to be deregulated in several carcinomas and also in some neurogenerative disorders; however, its nonpathological role had not been elucidated. We have shown that OCIAD2 localizes to mitochondria and interacts with electron transport chain (ETC) proteins. Complete loss of OCIAD2 using gene editing in HEK293 cells resulted in abnormal mitochondrial morphology, a substantial decrease of both CIII2 and supercomplex III2+IV, and a reduction in CIII enzymatic activity. Identification of OCIAD2 as a protein required for assembly of functional CIII2 provides a new insight into the biogenesis and architecture of the ETC. Elucidating the mechanism of OCIAD2 action is important both for the understanding of cellular metabolism and for an understanding of its role in malignant transformation.
Collapse
Affiliation(s)
| | | | | | - Karthik Mohanraj
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Sylvie Callegari
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Cellular Biochemistry, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Aleksandra Gosk
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Tomasz Banach
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Góral
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Karolina Szczepanowska
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Germany.,Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Remigiusz Adam Serwa
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Chacińska
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
13
|
Nowicka U, Kim MJ, Chacinska A. Suppressing toxic aggregates: let MIA do it! EMBO J 2021; 40:e109001. [PMID: 34287997 DOI: 10.15252/embj.2021109001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial activity is becoming an inherent aspect of cellular protein homeostasis (proteostasis). In this issue, Schlagowski et al (2021) report on the attractive notion that modulating mitochondrial protein import activity stimulates protein aggregate clearance in the cytosol, thereby affecting cytosolic proteostasis and its collapse observed in neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Min-Ji Kim
- IMol Polish Academy of Sciences, Warsaw, Poland.,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Agnieszka Chacinska
- IMol Polish Academy of Sciences, Warsaw, Poland.,Centre of New Technologies, University of Warsaw, Warsaw, Poland.,ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
| |
Collapse
|