1
|
Luo Y, Takau A, Li J, Fan T, Hopkins BR, Le Y, Ramirez SR, Matsuo T, Kopp A. Regulatory changes in the fatty acid elongase eloF underlie the evolution of sex-specific pheromone profiles in Drosophila prolongata. BMC Biol 2025; 23:117. [PMID: 40307835 PMCID: PMC12044895 DOI: 10.1186/s12915-025-02220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Pheromones play a key role in regulating sexual behavior throughout the animal kingdom. In Drosophila and other insects, many cuticular hydrocarbons (CHCs) are sexually dimorphic, and some are known to perform pheromonal functions. However, the genetic control of sex-specific CHC production is poorly understood outside of the model species D. melanogaster. A recent evolutionary change is found in D. prolongata, which, compared to its closest relatives, shows greatly increased sexual dimorphism in both CHCs and the chemosensory system responsible for their perception. A key transition involves a male-specific increase in the proportion of long-chain CHCs. RESULTS Perfuming D. prolongata females with the male-biased long-chain CHCs reduces copulation success, suggesting that these compounds function as sex pheromones. The evolutionary change in CHC profiles correlates with a male-specific increase in the expression of multiple genes involved in CHC biosynthesis, including fatty acid elongases, reductases and other key enzymes. In particular, elongase F, which is responsible for producing female-specific pheromones in D. melanogaster, is strongly upregulated in D. prolongata males compared both to females and to males of the sibling species. Mutations in eloF reduce the amount of long-chain CHCs, resulting in a partial feminization of pheromone profiles in D. prolongata males. Transgenic experiments show that sex-biased expression of eloF is caused in part by a putative transposable element honghaier insertion in its regulatory region. CONCLUSIONS These results show that cis-regulatory changes in the eloF gene, along with other changes in the CHC synthesis pathway, contribute to the evolution of sexual communication.
Collapse
Affiliation(s)
- Yige Luo
- Department of Evolution and Ecology, University of California, Davis, USA
| | - Ayumi Takau
- Department of Agricultural and Environmental Biology, The University of Tokyo, Tokyo, Japan
| | - Jiaxun Li
- Department of Evolution and Ecology, University of California, Davis, USA
- Georgia Institute of Technology, 225 North Avenue NW, Atlanta, GA, 30332, USA
| | - Tiezheng Fan
- Department of Evolution and Ecology, University of California, Davis, USA
| | - Ben R Hopkins
- Department of Evolution and Ecology, University of California, Davis, USA
| | - Yvonne Le
- Department of Evolution and Ecology, University of California, Davis, USA
- San Joaquin General Hospital, 500 W Hospital Road, French Camp, CA, 95231, USA
| | - Santiago R Ramirez
- Department of Evolution and Ecology, University of California, Davis, USA
| | - Takashi Matsuo
- Department of Agricultural and Environmental Biology, The University of Tokyo, Tokyo, Japan
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, USA.
| |
Collapse
|
2
|
Wang Z, Andika IP, Chung H. Regulation of insect cuticular hydrocarbon biosynthesis. CURRENT OPINION IN INSECT SCIENCE 2025; 67:101287. [PMID: 39461670 DOI: 10.1016/j.cois.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Cuticular hydrocarbons (CHCs) play pleiotropic roles in insect survival and reproduction. They prevent desiccation and function as pheromones influencing different behaviors. While the genes in the CHC biosynthesis pathway have been extensively studied, the regulatory mechanisms that lead to different CHC compositions received far less attention. In this review, we present an overview of how different hormones and transcriptional factors regulate CHC synthesis genes, leading to different CHC compositions. Future research focusing on the regulatory mechanisms underlying CHC biosynthesis can lead to a better understanding of how insects could produce dynamic chemical profiles in response to different stimuli.
Collapse
Affiliation(s)
- Zinan Wang
- Department of Entomology, Michigan State University, East Lansing, MI, United States; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, United States; Department of Entomology, University of Kentucky, Lexington, KY, United States.
| | - Ignatius P Andika
- Department of Entomology, Michigan State University, East Lansing, MI, United States; Department of Biology, Faculty of Biotechnology, University of Atma Jaya Yogyakarta, Indonesia
| | - Henry Chung
- Department of Entomology, Michigan State University, East Lansing, MI, United States; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
3
|
Barbosa-da-Silva HR, Pontes WJT, Lira AFA, Navarro DMAF, Salomão RP, Maia ACD. The role of intraspecific mechanical and chemical signaling for mate and sexual recognition in male Tityus pusillus (Scorpiones, Buthidae). ZOOLOGY 2025; 168:126235. [PMID: 39693864 DOI: 10.1016/j.zool.2024.126235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Hydrophobic compounds present in the cuticular wax layer (CWL) of terrestrial arthropods protect them from dehydration and are also involved in chemical communication. However, the role of CWL compounds in the behavioral ecology of scorpions has been studied less often, with most investigations focusing on their responses to mechanical stimuli. In this study, we aimed to characterize the CWL composition of Tityus pusillus (Scorpiones, Buthidae) and examine the influence of CWL solvent extracts and movement on intraspecific mate and sexual recognition by males of this species. We analyzed CWL hexane extracts of adult female and male T. pusillus by gas chromatography-mass spectrometry (GC-MS). In paired behavioral tests inside an experimental arena, we exposed adult males to i) live and intact dead conspecific females; ii) intact dead females and females without the CWL (removed with solvent washes); and iii) intact dead males with and without the CWL. Our results showed that CWL extracts of both female and male T. pusillus contained a series of linear alkanes (C21 - C34; > 54 % relative composition), as well as fatty acyls (> 9.5 %) and methyl-branched alkanes (> 9.1 %). Two unassigned C31 monomethyl-branched alkanes were exclusively identified in male CWL extracts (∼ 4.7 %), while female samples contained high relative concentrations (> 22.5 %) of sterol derivatives, present only as minor constituents in male samples. Male T. pusillus performed sexually-oriented behavioral acts when paired with both live and dead conspecific females, intact or without the CWL. However, they ignored conspecific dead males. Our results show that CWL compounds have a role in intraspecific sexual recognition by male T. pusillus but only the CWL compounds does not explain mate recognition.
Collapse
Affiliation(s)
- Hugo R Barbosa-da-Silva
- Programa de Pós-Graduação em Ecologia e Conservação, Instituto de Biociências, Universidade Federal do Mato Grosso do Sul, Campo Grande 79070-900, Brazil; Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil.
| | - Wendel J T Pontes
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - André F A Lira
- Colección Nacional de Arácnidos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Daniela M A F Navarro
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife 50740-560, Brazil
| | - Renato P Salomão
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | - Artur C D Maia
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil; Laboratory of Sciences for the Environment, University of Corsica, UMR 6134 SPE, Ajaccio 20000, France
| |
Collapse
|
4
|
Chen S, Qi H, Zhu X, Liu T, Fan Y, Su Q, Gong Q, Jia C, Liu T. Screening and identification of antimicrobial peptides from the gut microbiome of cockroach Blattella germanica. MICROBIOME 2024; 12:272. [PMID: 39709489 DOI: 10.1186/s40168-024-01985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The overuse of antibiotics has led to lethal multi-antibiotic-resistant microorganisms around the globe, with restricted availability of novel antibiotics. Compared to conventional antibiotics, evolutionarily originated antimicrobial peptides (AMPs) are promising alternatives to address these issues. The gut microbiome of Blattella germanica represents a previously untapped resource of naturally evolving AMPs for developing antimicrobial agents. RESULTS Using the in-house designed tool "AMPidentifier," AMP candidates were mined from the gut microbiome of B. germanica, and their activities were validated both in vitro and in vivo. Among filtered candidates, AMP1, derived from the symbiotic microorganism Blattabacterium cuenoti, demonstrated broad-spectrum antibacterial activity, low cytotoxicity towards mammalian cells, and a lack of hemolytic effects. Mechanistic studies revealed that AMP1 rapidly permeates the bacterial cell and accumulates intracellularly, resulting in a gradual and mild depolarization of the cell membrane during the initial incubation period, suggesting minimal direct impact on membrane integrity. Furthermore, observations from fluorescence microscopy and scanning electron microscopy indicated abnormalities in bacterial binary fission and compromised cell structure. These findings led to the hypothesis that AMP1 may inhibit bacterial cell wall synthesis. Furthermore, AMP1 showed potent antibacterial and wound healing effects in mice, with comparable performances of vancomycin. CONCLUSIONS This study exemplifies an interdisciplinary approach to screening safe and effective AMPs from natural biological tissues, and our identified AMP 1 holds promising potential for clinical application.
Collapse
Affiliation(s)
- Sizhe Chen
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- The Department of Medicine & Therapeutics, The Chinese University of Hong Kong, ShatinHong Kong SAR, NT, China
| | - Huitang Qi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xingzhuo Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiaan Jiaotong University, Xian, 710061, China
| | - Tianxiang Liu
- School of Science, Dalian Maritime University, Dalian, 116026, China
| | - Yuting Fan
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- The Department of Medicine & Therapeutics, The Chinese University of Hong Kong, ShatinHong Kong SAR, NT, China
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiaan Jiaotong University, Xian, 710061, China.
| | - Cangzhi Jia
- School of Science, Dalian Maritime University, Dalian, 116026, China.
| | - Tian Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
5
|
Pei XJ, Schal C, Fan YL. Genetic Underpinnings of Cuticular Hydrocarbon Biosynthesis in the German Cockroach, Blattella germanica (L.): Progress and Perspectives. J Chem Ecol 2024; 50:955-968. [PMID: 38727793 DOI: 10.1007/s10886-024-01509-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/06/2024] [Accepted: 05/04/2024] [Indexed: 01/11/2025]
Abstract
Insect cuticular hydrocarbons (CHCs) serve as important waterproofing barriers and as signals and cues in chemical communication. Over the past 30 years, numerous studies on CHCs have been conducted in the German cockroach, Blattella germanica, leading to substantial progress in the field. However, there has not been a systematic review of CHC studies in this species in recent years. This review aims to provide a concise overview of the chemical composition, storage, transport, and physical properties of different CHCs in B. germanica. Additionally, we focus on the biosynthetic pathway and the genetic regulation of HC biosynthesis in this species. A considerable amount of biochemical evidence regarding the biosynthetic pathway of insect CHCs has been gathered from studies conducted in B. germanica. In recent years, there has also been an improved understanding of the molecular mechanisms that underlie CHC production in this insect. In this article, we summarize the biosynthesis of different classes of CHCs in B. germanica. Then, we review CHCs reaction to various environmental conditions and stressors and internal physiological states. Additionally, we review a body of work showing that in B. germanica, CHC profiles exhibit significant sexual dimorphism, specific CHCs act as essential precursors for female contact sex pheromone components, and we summarize the molecular regulatory mechanisms that underlie sexual dimorphism of CHC profiles. Finally, we highlight future directions and challenges in research on the biosynthesis and regulatory mechanisms of CHCs in B. germanica, and also identify potential applications of CHC studies in the pest control.
Collapse
Affiliation(s)
- Xiao-Jin Pei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of the Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yong-Liang Fan
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of the Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| |
Collapse
|
6
|
Toprak U, İnak E, Nauen R. Lipid Metabolism as a Target Site in Pest Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39466572 DOI: 10.1007/5584_2024_822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Lipid metabolism is essential to insect life as insects use lipids for their development, reproduction, flight, diapause, and a wide range of other functions. The central organ for insect lipid metabolism is the fat body, which is analogous to mammalian adipose tissue and liver, albeit less structured. Various other systems including the midgut, brain, and neural organs also contribute functionally to insect lipid metabolism. Lipid metabolism is under the control of core lipogenic [e.g. acetyl-CoA-carboxylase (ACC), fatty acid synthase (FAS), perilipin 2 (LSD2)], and lipolytic (lipases, perilipin 1) enzymes that are primarily expressed in the fat body, as well as hormones [insulin-like peptides (ILP), adipokinetic hormone (AKH)], transcription factors (SREBPs, foxO, and CREB), secondary messengers (calcium) and post-translational modifications (phosphorylation). Essential roles of the fat body, together with the fact that proper coordination of lipid metabolism is critical for insects, render lipid metabolism an attractive target site in pest control. In the current chapter, we focus on pest control tactics that target insect lipid metabolism. Various classes of traditional chemical insecticides [e.g. organophosphates, pyrethroids, neonicotinoids, and chitin synthesis inhibitors (Sects. 2.1 and 2.2)] have been shown to interfere with lipid metabolism, albeit it is not their primary site of action. However, the discovery of "lipid biosynthesis inhibitors", tetronic and tetramic acid derivatives commonly known as ketoenols (Sect. 2.3), was a milestone in applied entomology as they directly target lipid biosynthesis, particularly in sucking pests. Spirodiclofen, spiromesifen, and spirotetramat targeting ACC act against various insect and mite pests, while spiropidion and spidoxamat have been introduced to the market only recently. Efforts have concentrated on the development of chemical alternatives, such as hormone agonists and antagonists (Sect. 2.4), dsRNA-based pesticides that depend on RNA interference, which have great potential in pest control (Sect. 2.5) and other eco-friendly alternatives (Sect. 2.6).
Collapse
Affiliation(s)
- Umut Toprak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey.
| | - Emre İnak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Monheim, Germany.
| |
Collapse
|
7
|
Luo Y, Takau A, Li J, Fan T, Hopkins BR, Le Y, Ramirez SR, Matsuo T, Kopp A. Regulatory Changes in the Fatty Acid Elongase eloF Underlie the Evolution of Sex-specific Pheromone Profiles in Drosophila prolongata. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617394. [PMID: 39464098 PMCID: PMC11507777 DOI: 10.1101/2024.10.09.617394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Pheromones play a key role in regulating sexual behavior throughout the animal kingdom. In Drosophila and other insects, many cuticular hydrocarbons (CHCs) are sexually dimorphic, and some are known to perform pheromonal functions. However, the genetic control of sex-specific CHC production is not understood outside of the model species D. melanogaster. A recent evolutionary change is found in D. prolongata, which, compared to its closest relatives, shows greatly increased sexual dimorphism in both CHCs and the chemosensory system responsible for their perception. A key transition involves a male-specific increase in the proportion of long-chain CHCs. Perfuming D. prolongata females with the male-biased CHCs reduces copulation success, suggesting that these compounds function as sex pheromones. The evolutionary change in CHC profiles correlates with a male-specific increase in the expression of multiple genes involved in CHC biosynthesis, including fatty acid elongases and reductases and other key enzymes. In particular, elongase F, which is responsible for producing female-specific pheromones in D. melanogaster, is strongly upregulated in D. prolongata males compared both to females and to males of the sibling species. Induced mutations in eloF reduce the amount of long-chain CHCs, resulting in a partial feminization of pheromone profiles in D. prolongata males while having minimal effect in females. Transgenic experiments show that sex-biased expression of eloF is caused in part by a putative transposable element insertion in its regulatory region. These results reveal one of the genetic mechanisms responsible for a recent evolutionary change in sexual communication.
Collapse
Affiliation(s)
- Yige Luo
- Department of Evolution and Ecology, University of California, Davis
| | - Ayumi Takau
- Department of Agricultural and Environmental Biology, The University of Tokyo
| | - Jiaxun Li
- Department of Evolution and Ecology, University of California, Davis
| | - Tiezheng Fan
- Department of Evolution and Ecology, University of California, Davis
| | - Ben R Hopkins
- Department of Evolution and Ecology, University of California, Davis
| | - Yvonne Le
- Department of Evolution and Ecology, University of California, Davis
| | | | - Takashi Matsuo
- Department of Agricultural and Environmental Biology, The University of Tokyo
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis
| |
Collapse
|
8
|
Golian MJ, Friedman DA, Harrison M, McMahon DP, Buellesbach J. Chemical and transcriptomic diversity do not correlate with ascending levels of social complexity in the insect order Blattodea. Ecol Evol 2024; 14:e70063. [PMID: 39091327 PMCID: PMC11289792 DOI: 10.1002/ece3.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/21/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
Eusocial insects, such as ants and termites, are characterized by high levels of coordinated social organization. This is contrasted by solitary insects that display more limited forms of collective behavior. It has been hypothesized that this gradient in sociobehavioral sophistication is positively correlated with chemical profile complexity, due to a potentially increased demand for diversity in chemical communication mechanisms in insects with higher levels of social complexity. However, this claim has rarely been assessed empirically. Here, we compare different levels of chemical and transcriptomic complexity in selected species of the order Blattodea that represent different levels of social organization, from solitary to eusocial. We primarily focus on cuticular hydrocarbon (CHC) complexity, since it has repeatedly been demonstrated that CHCs are key signaling molecules conveying a wide variety of chemical information in solitary as well as eusocial insects. We assessed CHC complexity and divergence between our studied taxa of different social complexity levels as well as the differentiation of their respective repertoires of CHC biosynthesis gene transcripts. Surprisingly, we did not find any consistent pattern of chemical complexity correlating with social complexity, nor did the overall chemical divergence or transcriptomic repertoire of CHC biosynthesis genes reflect on the levels of social organization. Our results challenge the assumption that increasing social complexity is generally reflected in more complex chemical profiles and point toward the need for a more cautious and differentiated view on correlating complexity on a chemical, genetic, and social level.
Collapse
Affiliation(s)
- Marek J. Golian
- Institute for Evolution & BiodiversityUniversity of MünsterMünsterGermany
| | - Daniel A. Friedman
- Department of Entomology & NematologyUniversity of California – DavisDavisCaliforniaUSA
| | - Mark Harrison
- Institute for Evolution & BiodiversityUniversity of MünsterMünsterGermany
| | - Dino P. McMahon
- Institute of Biology – Zoology, Freie Universität BerlinBerlinGermany
- Department for Materials and EnvironmentBAM Federal Institute for Materials Research and TestingBerlinGermany
| | - Jan Buellesbach
- Institute for Evolution & BiodiversityUniversity of MünsterMünsterGermany
| |
Collapse
|
9
|
Pei X, Bai T, Luo Y, Zhang Z, Li S, Fan Y, Liu TX. Acetyl coenzyme A carboxylase modulates lipogenesis and sugar homeostasis in Blattella germanica. INSECT SCIENCE 2024; 31:387-404. [PMID: 37486126 DOI: 10.1111/1744-7917.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 07/25/2023]
Abstract
Lipid and sugar homeostasis is critical for insect development and survival. In this study, we characterized an acetyl coenzyme A carboxylase gene in Blattella germanica (BgACC) that is involved in both lipogenesis and sugar homeostasis. We found that BgACC was dominantly expressed in the fat body and integument, and was significantly upregulated after molting. Knockdown of BgACC in 5th-instar nymphs did not affect their normal molting to the next nymphal stage, but it caused a lethal phenotype during adult emergence. BgACC-RNA interference (RNAi) significantly downregulated total free fatty acid (FFA) and triacylglycerol (TAG) levels, and also caused a significant decrease of cuticular hydrocarbons (CHCs). Repression of BgACC in adult females affected the development of oocytes and resulted in sterile females, but BgACC-RNAi did not affect the reproductive ability of males. Interestingly, knockdown of BgACC also changed the expression of insulin-like peptide genes (BgILPs), which mimicked a physiological state of high sugar uptake. In addition, BgACC was upregulated when B. germanica were fed on a high sucrose diet, and repression of BgACC upregulated the expression of the glycogen synthase gene (BgGlyS). Moreover, BgACC-RNAi increased the circulating sugar levels and glycogen storage, and a longevity assay suggested that BgACC was important for the survival of B. germanica under conditions of high sucrose uptake. Our results confirm that BgACC is involved in multiple lipid biogenesis and sugar homeostasis processes, which further modulates insect reproduction and sugar tolerance. This study benefits our understanding of the crosstalk between lipid and sugar metabolism.
Collapse
Affiliation(s)
- Xiaojin Pei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Tiantian Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Zhanfeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Yongliang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
10
|
Chen Y, Zhang Y, Ai S, Xing S, Zhong G, Yi X. Female semiochemicals stimulate male courtship but dampen female sexual receptivity. Proc Natl Acad Sci U S A 2023; 120:e2311166120. [PMID: 38011549 PMCID: PMC10710021 DOI: 10.1073/pnas.2311166120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/21/2023] [Indexed: 11/29/2023] Open
Abstract
Chemical communication plays a vital role in mate attraction and discrimination among many insect species. Here, we document a unique example of semiochemical parsimony, where four chemicals act as both aphrodisiacs and anti-aphrodisiacs in different contexts in Bactrocera dorsalis. Specifically, we identified four female-specific semiochemicals, ethyl laurate, ethyl myristate, ethyl cis-9-hexadecenoate, and ethyl palmitate, which serve as aphrodisiacs to attract male flies and arouse male courtship. Interestingly, these semiochemicals, when sexually transferred to males during mating, can function as anti-aphrodisiacs, inhibiting the receptivity of subsequent female mates. We further showed that the expression of elongase11, a key enzyme involved in the biosynthesis of these semiochemicals, is under the control of doublesex, facilitating the exclusive biosynthesis of these four semiochemicals in females and guaranteeing effective chemical communication. The dual roles of these semiochemicals not only ensure the attractiveness of mature females but also provide a simple yet reliable mechanism for female mate discrimination. These findings provide insights into chemical communication in B. dorsalis and add elements for the design of pest control programs.
Collapse
Affiliation(s)
- Yaoyao Chen
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
| | - Yuhua Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
| | - Shupei Ai
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
| | - Shuyuan Xing
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
| | - Xin Yi
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
| |
Collapse
|
11
|
Buchinger TJ, Li W. Chemical communication and its role in sexual selection across Animalia. Commun Biol 2023; 6:1178. [PMID: 37985853 PMCID: PMC10662023 DOI: 10.1038/s42003-023-05572-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
Sexual selection has been studied as a major evolutionary driver of animal diversity for roughly 50 years. Much evidence indicates that competition for mates favors elaborate signaling traits. However, this evidence comes primarily from a few taxa, leaving sexual selection as a salient evolutionary force across Animalia largely untested. Here, we reviewed the evidence for sexual selection on communication across all animal phyla, classes, and orders with emphasis on chemoreception, the only sense shared across lifeforms. An exhaustive literature review documented evidence for sexual selection on chemosensory traits in 10 of 34 animal phyla and indications of sexual selection on chemosensory traits in an additional 13 phyla. Potential targets of sexual selection include structures and processes involved in production, delivery, and detection of chemical signals. Our review suggests sexual selection plays a widespread role in the evolution of communication and highlights the need for research that better reflects animal diversity.
Collapse
Affiliation(s)
- Tyler J Buchinger
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.
- Biology Department, Albion College, Albion, MI, USA.
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Sun J, Liu WK, Ellsworth C, Sun Q, Pan Y, Huang YC, Deng WM. Integrating lipid metabolism, pheromone production and perception by Fruitless and Hepatocyte Nuclear Factor 4. SCIENCE ADVANCES 2023; 9:eadf6254. [PMID: 37390217 PMCID: PMC10313179 DOI: 10.1126/sciadv.adf6254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/30/2023] [Indexed: 07/02/2023]
Abstract
Sexual attraction and perception are crucial for mating and reproductive success. In Drosophila melanogaster, the male-specific isoform of Fruitless (Fru), FruM, is a known master neuro-regulator of innate courtship behavior to control the perception of sex pheromones in sensory neurons. Here, we show that the non-sex-specific Fru isoform (FruCOM) is necessary for pheromone biosynthesis in hepatocyte-like oenocytes for sexual attraction. Loss of FruCOM in oenocytes resulted in adults with reduced levels of cuticular hydrocarbons (CHCs), including sex pheromones, and show altered sexual attraction and reduced cuticular hydrophobicity. We further identify Hepatocyte nuclear factor 4 (Hnf4) as a key target of FruCOM in directing fatty acid conversion to hydrocarbons. Fru or Hnf4 depletion in oenocytes disrupts lipid homeostasis, resulting in a sex-dimorphic CHC profile that differs from doublesex- and transformer-dependent CHC dimorphism. Thus, Fru couples pheromone perception and production in separate organs to regulate chemosensory communications and ensure efficient mating behavior.
Collapse
Affiliation(s)
- Jie Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Kan Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Calder Ellsworth
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Qian Sun
- Department of Entomology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
13
|
Peng X, Liu J, Li B, Wang S, Chen B, Zhang D. An Acyl Carrier Protein Gene Affects Fatty Acid Synthesis and Growth of Hermetia illucens. INSECTS 2023; 14:300. [PMID: 36975985 PMCID: PMC10052031 DOI: 10.3390/insects14030300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Acyl carrier protein (ACP) is an acyl carrier in fatty acid synthesis and is an important cofactor of fatty acid synthetase. Little is known about ACP in insects and how this protein may modulate the composition and storage of fatty acids. We used an RNAi-assisted strategy to study the potential function of ACP in Hermetia illucens (Diptera: Stratiomyidae). We identified a HiACP gene with a cDNA length of 501 bp and a classical conserved region of DSLD. This gene was highly expressed in the egg and late larval instars and was most abundant in the midgut and fat bodies of larvae. Injection of dsACP significantly inhibited the expression level of HiACP and further regulated the fatty acid synthesis in treated H. illucens larvae. The composition of saturated fatty acids was reduced, and the percentage of unsaturated fatty acids (UFAs) was increased. After interfering with HiACP, the cumulative mortality of H. illucens increased to 68.00% (p < 0.05). H. illucens growth was greatly influenced. The development duration increased to 5.5 days, the average final body weights of larvae and pupae were decreased by 44.85 mg and 14.59 mg, respectively, and the average body lengths of larvae and pupae were significantly shortened by 3.09 mm and 3.82 mm, respectively. The adult eclosion rate and the oviposition of adult females were also severely influenced. These results demonstrated that HiACP regulates fatty acid content and influences multiple biological processes of H. illucens.
Collapse
|
14
|
Sun J, Liu WK, Ellsworth C, Sun Q, Pan YF, Huang YC, Deng WM. Integrating lipid metabolism, pheromone production and perception by Fruitless and Hepatocyte nuclear factor 4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529767. [PMID: 36865119 PMCID: PMC9980076 DOI: 10.1101/2023.02.23.529767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Sexual attraction and perception, governed by separate genetic circuits in different organs, are crucial for mating and reproductive success, yet the mechanisms of how these two aspects are integrated remain unclear. In Drosophila , the male-specific isoform of Fruitless (Fru), Fru M , is known as a master neuro-regulator of innate courtship behavior to control perception of sex pheromones in sensory neurons. Here we show that the non-sex specific Fru isoform (Fru COM ) is necessary for pheromone biosynthesis in hepatocyte-like oenocytes for sexual attraction. Loss of Fru COM in oenocytes resulted in adults with reduced levels of the cuticular hydrocarbons (CHCs), including sex pheromones, and show altered sexual attraction and reduced cuticular hydrophobicity. We further identify Hepatocyte nuclear factor 4 ( Hnf4 ) as a key target of Fru COM in directing fatty acid conversion to hydrocarbons in adult oenocytes. fru - and Hnf4 -depletion disrupts lipid homeostasis, resulting in a novel sex-dimorphic CHC profile, which differs from doublesex - and transformer -dependent sexual dimorphism of the CHC profile. Thus, Fru couples pheromone perception and production in separate organs for precise coordination of chemosensory communication that ensures efficient mating behavior. Teaser Fruitless and lipid metabolism regulator HNF4 integrate pheromone biosynthesis and perception to ensure robust courtship behavior.
Collapse
Affiliation(s)
- Jie Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Kan Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Calder Ellsworth
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Qian Sun
- Department of Entomology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yu-Feng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
15
|
Moris VC, Podsiadlowski L, Martin S, Oeyen JP, Donath A, Petersen M, Wilbrandt J, Misof B, Liedtke D, Thamm M, Scheiner R, Schmitt T, Niehuis O. Intrasexual cuticular hydrocarbon dimorphism in a wasp sheds light on hydrocarbon biosynthesis genes in Hymenoptera. Commun Biol 2023; 6:147. [PMID: 36737661 PMCID: PMC9898505 DOI: 10.1038/s42003-022-04370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 12/13/2022] [Indexed: 02/05/2023] Open
Abstract
Cuticular hydrocarbons (CHCs) cover the cuticle of insects and serve as desiccation barrier and as semiochemicals. While the main enzymatic steps of CHC biosynthesis are well understood, few of the underlying genes have been identified. Here we show how exploitation of intrasexual CHC dimorphism in a mason wasp, Odynerus spinipes, in combination with whole-genome sequencing and comparative transcriptomics facilitated identification of such genes. RNAi-mediated knockdown of twelve candidate gene orthologs in the honey bee, Apis mellifera, confirmed nine genes impacting CHC profile composition. Most of them have predicted functions consistent with current knowledge of CHC metabolism. However, we found first-time evidence for a fatty acid amide hydrolase also influencing CHC profile composition. In situ hybridization experiments furthermore suggest trophocytes participating in CHC biosynthesis. Our results set the base for experimental CHC profile manipulation in Hymenoptera and imply that the evolutionary origin of CHC biosynthesis predates the arthropods' colonization of land.
Collapse
Affiliation(s)
- Victoria C. Moris
- grid.5963.9Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany ,grid.4989.c0000 0001 2348 0746Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Lars Podsiadlowski
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany ,grid.10388.320000 0001 2240 3300Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Sebastian Martin
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany ,grid.10388.320000 0001 2240 3300Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Jan Philip Oeyen
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany ,grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| | - Alexander Donath
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany
| | - Malte Petersen
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany ,grid.10388.320000 0001 2240 3300High Performance Computing & Analytics Lab, University of Bonn, Friedrich-Hirzebruch-Allee 8, 53115 Bonn, Germany
| | - Jeanne Wilbrandt
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany ,grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging — Fritz Lipmann Institute, Beutenbergstraße 11, 07745 Jena, Germany
| | - Bernhard Misof
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany
| | - Daniel Liedtke
- grid.8379.50000 0001 1958 8658Institute of Human Genetics, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Thamm
- grid.8379.50000 0001 1958 8658Department of Behavioral Physiology and Sociobiology, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ricarda Scheiner
- grid.8379.50000 0001 1958 8658Department of Behavioral Physiology and Sociobiology, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Thomas Schmitt
- grid.8379.50000 0001 1958 8658Department of Animal Ecology and Tropical Biology Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
16
|
Bai TT, Pei XJ, Liu TX, Fan YL, Zhang SZ. Melanin synthesis genes BgTH and BgDdc affect body color and cuticle permeability in Blattella germanica. INSECT SCIENCE 2022; 29:1552-1568. [PMID: 35191584 DOI: 10.1111/1744-7917.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 02/02/2022] [Indexed: 05/12/2023]
Abstract
Melanin is involved in cuticle pigmentation and sclerotization of insects, which is critical for maintaining structural integrity and functional completeness of insect cuticle. The 2 key enzymes of tyrosine hydroxylase (TH) and dopa decarboxylase (DDC) predicted in melanin biosynthesis are usually conserved in insects. However, it is unclear whether their function is related to epidermal permeability. In this study, we identified and cloned the gene sequences of BgTH and BgDdc from Blattella germanica, and revealed that they both showed a high expression at the molting, and BgTH was abundant in the head and integument while BgDdc was expressed highest in the fat body. Using RNA interference (RNAi), we found that knockdown of BgTH caused molting obstacles in some cockroaches, with the survivors showing pale color and softer integuments, while knockdown of BgDdc was viable and generated an abnormal light brown body color. Desiccation assay showed that the dsBgTH-injected adults died earlier than control groups under a dry atmosphere, but dsBgDdc-injected cockroaches did not. In contrast, when dsRNA-treated cockroaches were reared under a high humidity condition, almost no cockroaches died in all treatments. Furthermore, with eosin Y staining assay, we found that BgTH-RNAi resulted in a higher cuticular permeability, and BgDdc-RNAi also caused slight dye penetration. These results demonstrate that BgTH and BgDdc function in body pigmentation and affect the waterproofing ability of the cuticle, and the reduction of cuticular permeability may be achieved through cuticle melanization.
Collapse
Affiliation(s)
- Tian-Tian Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao-Jin Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Present address: Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Shi-Ze Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
17
|
Chen N, Liu YJ, Fan YL, Pei XJ, Yang Y, Liao MT, Zhong J, Li N, Liu TX, Wang G, Pan Y, Schal C, Li S. A single gene integrates sex and hormone regulators into sexual attractiveness. Nat Ecol Evol 2022; 6:1180-1190. [PMID: 35788705 DOI: 10.1038/s41559-022-01808-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022]
Abstract
Sex differentiation and hormones are essential for the development of sexual signals in animals, and the regulation of sexual signals involves complex gene networks. However, it is unknown whether a core gene is able to connect the upstream regulators for controlling sexual signal outputs and behavioural consequences. Here, we identify a single gene that integrates both sex differentiation and hormone signalling with sexual attractiveness in an insect model. CYP4PC1 in the German cockroach, Blattella germanica, controls the rate-limiting step in producing female-specific contact sex pheromone (CSP) that stimulates male courtship. As revealed by behavioural, biochemical, molecular, genetic and bioinformatic approaches, in sexually mature females, CYP4PC1 expression and CSP production are coordinately induced by sex differentiation genes and juvenile hormone (JH) signalling. In adult males, direct inhibition of CYP4PC1 expression by doublesexM binding in gene promoter and lack of the gonadotropic hormone JH prevent CSP production, thus avoiding male-male attraction. By manipulating the upstream regulators, we show that wild-type males prefer to court cockroaches with higher CYP4PC1 expression and CSP production in a dose-dependent manner, regardless of their sex. These findings shed light on how sex-specific and high sexual attractiveness is conferred in insects.
Collapse
Affiliation(s)
- Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Yong-Jun Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China.
| | - Xiao-Jin Pei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ming-Tao Liao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jiru Zhong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China.,Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Guirong Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China. .,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China.
| |
Collapse
|
18
|
Chikami Y, Okuno M, Toyoda A, Itoh T, Niimi T. Evolutionary History of Sexual Differentiation Mechanism in Insects. Mol Biol Evol 2022; 39:msac145. [PMID: 35820410 PMCID: PMC9290531 DOI: 10.1093/molbev/msac145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alternative splicing underpins functional diversity in proteins and the complexity and diversity of eukaryotes. An example is the doublesex gene, the key transcriptional factor in arthropod sexual differentiation. doublesex is controlled by sex-specific splicing and promotes both male and female differentiation in holometabolan insects, whereas in hemimetabolan species, doublesex has sex-specific isoforms but is not required for female differentiation. How doublesex evolved to be essential for female development remains largely unknown. Here, we investigate ancestral states of doublesex using Thermobia domestica belonging to Zygentoma, the sister group of Pterygota, that is, winged insects. We find that, in T. domestica, doublesex expresses sex-specific isoforms but is only necessary for male differentiation of sexual morphology. This result supports the hypothesis that doublesex initially promoted male differentiation during insect evolution. However, T. domestica doublesex has a short female-specific region and upregulates the expression of vitellogenin homologs in females, suggesting that doublesex may already play some role in female morphogenesis of the common ancestor of Pterygota. Reconstruction of the ancestral sequence and prediction of protein structures show that the female-specific isoform of doublesex has an extended C-terminal disordered region in holometabolan insects but not in nonholometabolan species. We propose that doublesex acquired its function in female morphogenesis through a change in the protein motif structure rather than the emergence of the female-specific exon.
Collapse
Affiliation(s)
- Yasuhiko Chikami
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, School of Medicine, Kurume University, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| |
Collapse
|
19
|
Golian M, Bien T, Schmelzle S, Esparza-Mora MA, McMahon DP, Dreisewerd K, Buellesbach J. Neglected Very Long-Chain Hydrocarbons and the Incorporation of Body Surface Area Metrics Reveal Novel Perspectives for Cuticular Profile Analysis in Insects. INSECTS 2022; 13:insects13010083. [PMID: 35055926 PMCID: PMC8778109 DOI: 10.3390/insects13010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary The waxy layer covering the surface of most terrestrial insects is mainly composed of non-polar lipids termed cuticular hydrocarbons (CHCs). These have a long research history as important dual traits for both desiccation prevention and chemical communication. We analyzed CHC profiles of seven species of the insect order Blattodea (termites and cockroaches) with the most commonly applied chromatographic method, gas-chromatography coupled with mass spectrometry (GC-MS), and the more novel approach of silver-assisted laser desorption/ionization mass spectrometry (Ag-LDI-MS). Comparing these two analytical methods, we demonstrated that the conventional GC-MS approach does not provide enough information on the entire CHC profile range in the tested species. Ag-LDI-MS was able to detect very long-chain CHCs ranging up to C58, which remained undetected when solely relying on standard GC-MS analysis. Additionally, we measured the body surface areas of each tested species applying 3D scanning technology to assess their respective CHC amounts per mm2. When adjusting for body surface areas, proportional CHC quantity distributions shifted considerably between our studied species, suggesting the importance of including this factor when conducting quantitative CHC comparisons, particularly in insects that vary substantially in body size. Abstract Most of our knowledge on insect cuticular hydrocarbons (CHCs) stems from analytical techniques based on gas-chromatography coupled with mass spectrometry (GC-MS). However, this method has its limits under standard conditions, particularly in detecting compounds beyond a chain length of around C40. Here, we compare the CHC chain length range detectable by GC-MS with the range assessed by silver-assisted laser desorption/ionization mass spectrometry (Ag-LDI-MS), a novel and rarely applied technique on insect CHCs, in seven species of the order Blattodea. For all tested species, we unveiled a considerable range of very long-chain CHCs up to C58, which are not detectable by standard GC-MS technology. This indicates that general studies on insect CHCs may frequently miss compounds in this range, and we encourage future studies to implement analytical techniques extending the conventionally accessed chain length range. Furthermore, we incorporate 3D scanned insect body surface areas as an additional factor for the comparative quantification of extracted CHC amounts between our study species. CHC quantity distributions differed considerably when adjusted for body surface areas as opposed to directly assessing extracted CHC amounts, suggesting that a more accurate evaluation of relative CHC quantities can be achieved by taking body surface areas into account.
Collapse
Affiliation(s)
- Marek Golian
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstr. 1, D-48149 Münster, Germany;
| | - Tanja Bien
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany; (T.B.); (K.D.)
| | - Sebastian Schmelzle
- Ecological Networks, Technical University of Darmstadt, Schnittspahnstr. 2, D-64287 Darmstadt, Germany;
| | - Margy Alejandra Esparza-Mora
- Institute of Biology—Zoology, Free University of Berlin, Unter den Eichen 87, D-12205 Berlin, Germany; (M.A.E.-M.); (D.P.M.)
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin, Germany
| | - Dino Peter McMahon
- Institute of Biology—Zoology, Free University of Berlin, Unter den Eichen 87, D-12205 Berlin, Germany; (M.A.E.-M.); (D.P.M.)
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany; (T.B.); (K.D.)
| | - Jan Buellesbach
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstr. 1, D-48149 Münster, Germany;
- Correspondence: ; Tel.: +49-(0)-251-83-21637
| |
Collapse
|
20
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
21
|
Zhu S, Liu Y, Liao M, Yang Y, Bai Y, Li N, Li S, Luan Y, Chen N. Evaluation of Reference Genes for Transcriptional Profiling in Two Cockroach Models. Genes (Basel) 2021; 12:genes12121880. [PMID: 34946836 PMCID: PMC8701133 DOI: 10.3390/genes12121880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 02/02/2023] Open
Abstract
The German cockroach, Blattella germanica, and the American cockroach, Periplaneta americana are the most common and synanthropic household pests of interest to public health. While they have increasingly served as model systems in hemimetabolous insects for studying many biological issues, there is still a lack of stable reference gene evaluation for reliable quantitative real-time PCR (qPCR) outputs and functional genomics. Here, we evaluated the expression variation of common insect reference genes, including the historically used actin, across various tissues and developmental stages, and also under experimental treatment conditions in these two species by using three individual algorithms (geNorm, BestKeeper, and NormFinder) and a comprehensive program (RefFinder). RPL32 in B. germanica and EF1α in P. americana showed the overall lowest variation among all examined samples. Based on the stability rankings by RefFinder, the optimal but varied reference genes under specific conditions were selected for qPCR normalization. In addition, the combination of RPL32 and EF1α was recommended for all the tested tissues and stages in B. germanica, whereas the combination of multiple reference genes was unfavorable in P. americana. This study provides a condition-specific resource of reference gene selection for accurate gene expression profiling and facilitating functional genomics in these two important cockroaches.
Collapse
Affiliation(s)
- Shen Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Yongjun Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Mingtao Liao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Yunxia Luan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
- Correspondence:
| |
Collapse
|