1
|
Carter GG, Ripperger SP, Girbino V, Dixon MM, Razik I, Page RA, Hobson EA. Long-term cooperative relationships among vampire bats are not strongly predicted by their initial interactions. Ann N Y Acad Sci 2024; 1541:129-139. [PMID: 39462880 PMCID: PMC11580772 DOI: 10.1111/nyas.15241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In many group-living animals, survival and reproductive success depend on the formation of long-term social bonds, yet it remains largely unclear why particular pairs of groupmates form social bonds and not others. Can social bond formation be reliably predicted from each individual's immediately observable traits and behaviors at first encounter? Or is social bond formation hard to predict due to the impacts of shifting social preferences on social network dynamics? To begin to address these questions, we asked how well long-term cooperative relationships among vampire bats were predicted by how they interacted during their first encounter as introduced strangers. In Study 1, we found that the first 6 h of observed interactions among unfamiliar bats co-housed in small cages did not clearly predict the formation of allogrooming or food-sharing relationships over the next 10 months. In Study 2, we found that biologger-tracked first contacts during the first 4-24 h together in a flight cage did not strongly predict allogrooming rates over the next 4 months. These results corroborate past evidence that social bonding in vampire bats is not reducible to the individual traits or behaviors observed at first encounter. Put simply, first impressions are overshadowed by future social interactions.
Collapse
Affiliation(s)
- Gerald G. Carter
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
- Smithsonian Tropical Research InstituteBalboaAncónPanamá
| | - Simon P. Ripperger
- Museum für NaturkundeLeibniz‐Institut für Evolutions‐ und BiodiversitätsforschungBerlinGermany
| | - Vi Girbino
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
| | - M. May Dixon
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
- Smithsonian Tropical Research InstituteBalboaAncónPanamá
| | - Imran Razik
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
- Smithsonian Tropical Research InstituteBalboaAncónPanamá
| | - Rachel A. Page
- Smithsonian Tropical Research InstituteBalboaAncónPanamá
| | | |
Collapse
|
2
|
Hartman CRA, Wilkinson GS, Razik I, Hamilton IM, Hobson EA, Carter GG. Hierarchically embedded scales of movement shape the social networks of vampire bats. Proc Biol Sci 2024; 291:20232880. [PMID: 38654645 PMCID: PMC11040254 DOI: 10.1098/rspb.2023.2880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Social structure can emerge from hierarchically embedded scales of movement, where movement at one scale is constrained within a larger scale (e.g. among branches, trees, forests). In most studies of animal social networks, some scales of movement are not observed, and the relative importance of the observed scales of movement is unclear. Here, we asked: how does individual variation in movement, at multiple nested spatial scales, influence each individual's social connectedness? Using existing data from common vampire bats (Desmodus rotundus), we created an agent-based model of how three nested scales of movement-among roosts, clusters and grooming partners-each influence a bat's grooming network centrality. In each of 10 simulations, virtual bats lacking social and spatial preferences moved at each scale at empirically derived rates that were either fixed or individually variable and either independent or correlated across scales. We found that numbers of partners groomed per bat were driven more by within-roost movements than by roost switching, highlighting that co-roosting networks do not fully capture bat social structure. Simulations revealed how individual variation in movement at nested spatial scales can cause false discovery and misidentification of preferred social relationships. Our model provides several insights into how nonsocial factors shape social networks.
Collapse
Affiliation(s)
- C. Raven A. Hartman
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | - Imran Razik
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado Postal 0843-03092, Panama
| | - Ian M. Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA
| | - Elizabeth A. Hobson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Gerald G. Carter
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado Postal 0843-03092, Panama
| |
Collapse
|
3
|
Leimar O, Bshary R. Social bond dynamics and the evolution of helping. Proc Natl Acad Sci U S A 2024; 121:e2317736121. [PMID: 38451941 PMCID: PMC10945786 DOI: 10.1073/pnas.2317736121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Empiricists often struggle to apply game theory models to real-life cases of animal cooperation. One reason is that many examples of cooperation occur in stable groups, where individuals form social bonds that influence exchanges of help in ways that are not well described by previous models, including the extent of reciprocity and how relationships are initiated. We present a game theory model exploring the conditions under which social bonds between group members promote cooperation. In the model, bonds build up from exchanges of help in a similar way as the strength of association increases in learning, as in the Rescorla-Wagner rule. The bonds in turn affect partner choice and influence helping amounts. The model has a mechanism of reciprocity for bonded pairs, which can evolve toward either loose or strict reciprocation. Several aspects of the model are inspired by observations of food sharing in vampire bats. We find that small social neighborhoods are required for the evolutionary stability of helping, either as small group sizes, or if bonded members of larger groups can form temporary (daily) smaller groupings. The costs of helping need to be fairly low, while the benefits can be substantial. The form of reciprocity that evolves is neither immediate nor very strict. Individuals in need request help based on bond strength, but there is also an evolved preference for initiating bonds with new group members. In contrast, if different groups come into temporary contact, the evolved tendency is to avoid forming bonds between groups.
Collapse
Affiliation(s)
- Olof Leimar
- Department of Zoology, Stockholm University, Stockholm106 91, Sweden
| | - Redouan Bshary
- Institute of Biology, University of Neuchâtel, Neuchâtel2000, Switzerland
| |
Collapse
|
4
|
English HM, Börger L, Kane A, Ciuti S. Advances in biologging can identify nuanced energetic costs and gains in predators. MOVEMENT ECOLOGY 2024; 12:7. [PMID: 38254232 PMCID: PMC10802026 DOI: 10.1186/s40462-024-00448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Foraging is a key driver of animal movement patterns, with specific challenges for predators which must search for mobile prey. These patterns are increasingly impacted by global changes, principally in land use and climate. Understanding the degree of flexibility in predator foraging and social strategies is pertinent to wildlife conservation under global change, including potential top-down effects on wider ecosystems. Here we propose key future research directions to better understand foraging strategies and social flexibility in predators. In particular, rapid continued advances in biologging technology are helping to record and understand dynamic behavioural and movement responses of animals to environmental changes, and their energetic consequences. Data collection can be optimised by calibrating behavioural interpretation methods in captive settings and strategic tagging decisions within and between social groups. Importantly, many species' social systems are increasingly being found to be more flexible than originally described in the literature, which may be more readily detectable through biologging approaches than behavioural observation. Integrating the effects of the physical landscape and biotic interactions will be key to explaining and predicting animal movements and energetic balance in a changing world.
Collapse
Affiliation(s)
- Holly M English
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland.
| | - Luca Börger
- Department of Biosciences, Swansea University, Swansea, UK
| | - Adam Kane
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Simone Ciuti
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
5
|
Ribeiro R, Matthiopoulos J, Lindgren F, Tello C, Zariquiey CM, Valderrama W, Rocke TE, Streicker DG. Incorporating environmental heterogeneity and observation effort to predict host distribution and viral spillover from a bat reservoir. Proc Biol Sci 2023; 290:20231739. [PMID: 37989240 PMCID: PMC10688441 DOI: 10.1098/rspb.2023.1739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
Predicting the spatial occurrence of wildlife is a major challenge for ecology and management. In Latin America, limited knowledge of the number and locations of vampire bat roosts precludes informed allocation of measures intended to prevent rabies spillover to humans and livestock. We inferred the spatial distribution of vampire bat roosts while accounting for observation effort and environmental effects by fitting a log Gaussian Cox process model to the locations of 563 roosts in three regions of Peru. Our model explained 45% of the variance in the observed roost distribution and identified environmental drivers of roost establishment. When correcting for uneven observation effort, our model estimated a total of 2340 roosts, indicating that undetected roosts (76%) exceed known roosts (24%) by threefold. Predicted hotspots of undetected roosts in rabies-free areas revealed high-risk areas for future viral incursions. Using the predicted roost distribution to inform a spatial model of rabies spillover to livestock identified areas with disproportionate underreporting and indicated a higher rabies burden than previously recognized. We provide a transferrable approach to infer the distribution of a mostly unobserved bat reservoir that can inform strategies to prevent the re-emergence of an important zoonosis.
Collapse
Affiliation(s)
- Rita Ribeiro
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Jason Matthiopoulos
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Finn Lindgren
- School of Mathematics, University of Edinburgh, Edinburgh, UK
| | - Carlos Tello
- ILLARIY (Asociación para el Desarrollo y Conservación de los Recursos Naturales), Lima, Perú
- Yunkawasi, Lima, Perú
| | - Carlos M. Zariquiey
- ILLARIY (Asociación para el Desarrollo y Conservación de los Recursos Naturales), Lima, Perú
| | - William Valderrama
- ILLARIY (Asociación para el Desarrollo y Conservación de los Recursos Naturales), Lima, Perú
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Tonie E. Rocke
- National Wildlife Health Center, US Geological Survey, Madison, Wisconsin, USA
| | - Daniel G. Streicker
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Graham Kerr Building, Glasgow G12 8QQ, UK
- Medical Research Council—University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
6
|
Dunning J, Burke T, Hoi Hang Chan A, Ying Janet Chik H, Evans T, Schroeder J. Opposite-sex associations are linked with annual fitness, but sociality is stable over lifetime. Behav Ecol 2023; 34:315-324. [PMID: 37192923 PMCID: PMC10183206 DOI: 10.1093/beheco/arac124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 03/11/2023] Open
Abstract
Animal sociality, an individual's propensity to associate with others, has fitness consequences through mate choice, for example, directly, by increasing the pool of prospective partners, and indirectly through increased survival, and individuals benefit from both. Annually, fitness consequences are realized through increased mating success and subsequent fecundity. However, it remains unknown whether these consequences translate to lifetime fitness. Here, we quantified social associations and their link to fitness annually and over lifetime, using a multi-generational, genetic pedigree. We used social network analysis to calculate variables representing different aspects of an individual's sociality. Sociality showed high within-individual repeatability. We found that birds with more opposite-sex associates had higher annual fitness than those with fewer, but this did not translate to lifetime fitness. Instead, for lifetime fitness, we found evidence for stabilizing selection on opposite-sex sociality, and sociality in general, suggesting that reported benefits are only short-lived in a wild population, and that selection favors an average sociality.
Collapse
Affiliation(s)
- Jamie Dunning
- Department of Life Sciences, Imperial College London, UK
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, UK
| | - Alex Hoi Hang Chan
- Department of Life Sciences, Imperial College London, UK
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Germany
- Max Plank Institute of Animal Behaviour, Germany
| | - Heung Ying Janet Chik
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Netherlands
- School of Natural Sciences, Macquarie University, Australia
| | - Tim Evans
- Center for Complexity Science, Imperial College London, UK
| | | |
Collapse
|
7
|
Social consequences of rapid environmental change. Trends Ecol Evol 2023; 38:337-345. [PMID: 36473809 DOI: 10.1016/j.tree.2022.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
While direct influences of the environment on population growth and resilience are well studied, indirect routes linking environmental changes to population consequences are less explored. We suggest that social behavior is key for understanding how anthropogenic environmental changes affect the resilience of animal populations. Social structures of animal groups are evolved and emergent phenotypes that often have demographic consequences for group members. Importantly, environmental drivers may directly influence the consequences of social structure or indirectly influence them through modifications to social interactions, group composition, or group size. We have developed a framework to study these demographic consequences. Estimating the strength of direct and indirect pathways will give us tools to understand, and potentially manage, the effect of human-induced rapid environmental changes.
Collapse
|
8
|
Bordes CNM, Beukeboom R, Goll Y, Koren L, Ilany A. High-resolution tracking of hyrax social interactions highlights nighttime drivers of animal sociality. Commun Biol 2022; 5:1378. [PMID: 36522486 PMCID: PMC9755157 DOI: 10.1038/s42003-022-04317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Network structure is a key driver of animal fitness, pathogen transmission, information spread, and population demographics in the wild. Although a considerable body of research applied network analysis to animal societies, only little effort has been devoted to separate daytime and nighttime sociality and explicitly test working hypotheses on social structures emerging at night. Here, we investigated the nighttime sociality of a wild population of rock hyraxes (Procavia capensis) and its relation to daytime social structure. We recorded nearly 15,000 encounters over 27 consecutive days and nights using proximity loggers. Overall, we show that hyraxes are more selective of their social affiliates at night compared to daytime. We also show that hyraxes maintain their overall network topology while reallocating the weights of social relationships at the daily and monthly scales, which could help hyraxes maintain their social structure over long periods while adapting to local constraints and generate complex social dynamics. These results suggest that complex network dynamics can be a by-product of simple daily social tactics and do not require high cognitive abilities. Our work sheds light on the function of nighttime social interactions in diurnal social species.
Collapse
Affiliation(s)
- Camille N. M. Bordes
- grid.22098.310000 0004 1937 0503Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Rosanne Beukeboom
- grid.22098.310000 0004 1937 0503Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yael Goll
- grid.12136.370000 0004 1937 0546School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Lee Koren
- grid.22098.310000 0004 1937 0503Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Amiyaal Ilany
- grid.22098.310000 0004 1937 0503Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
9
|
Cárdenas-Canales EM, Stockmaier S, Cronin E, Rocke TE, Osorio JE, Carter GG. Social effects of rabies infection in male vampire bats ( Desmodus rotundus). Biol Lett 2022; 18:20220298. [PMID: 36069068 PMCID: PMC9449815 DOI: 10.1098/rsbl.2022.0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
Rabies virus (RABV) transmitted by the common vampire bat (Desmodus rotundus) poses a threat to agricultural development and public health throughout the Neotropics. The ecology and evolution of rabies host-pathogen dynamics are influenced by two infection-induced behavioural changes. RABV-infected hosts often exhibit increased aggression which facilitates transmission, and rabies also leads to reduced activity and paralysis prior to death. Although several studies document rabies-induced behavioural changes in rodents and other dead-end hosts, surprisingly few studies have measured these changes in vampire bats, the key natural reservoir throughout Latin America. Taking advantage of an experiment designed to test an oral rabies vaccine in captive male vampire bats, we quantify for the first time, to our knowledge, how rabies affects allogrooming and aggressive behaviours in this species. Compared to non-rabid vampire bats, rabid individuals reduced their allogrooming prior to death, but we did not detect increases in aggression among bats. To put our results in context, we review what is known and what remains unclear about behavioural changes of rabid vampire bats (resumen en español, electronic supplementary material, S1).
Collapse
Affiliation(s)
- Elsa M. Cárdenas-Canales
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sebastian Stockmaier
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Eleanor Cronin
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Tonie E. Rocke
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA
| | - Jorge E. Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gerald G. Carter
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
- Smithsonian Tropical Research Institute, Balboa Ancón, Panama
| |
Collapse
|
10
|
Kohles JE, O'Mara MT, Dechmann DKN. A conceptual framework to predict social information use based on food ephemerality and individual resource requirements. Biol Rev Camb Philos Soc 2022; 97:2039-2056. [PMID: 35932159 DOI: 10.1111/brv.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
Environmental variability poses a range of challenges to foraging animals trying to meet their energetic needs. Where food patches are unpredictable but shareable, animals can use social information to locate patches more efficiently or reliably. However, resource unpredictability can be heterogeneous and complex. The behavioural strategies animals employ to exploit such resources also vary, particularly if, when, and where animals use available social information. We reviewed the literature on social information use by foraging animals and developed a novel framework that integrates four elements - (1) food resource persistence; (2) the relative value of social information use; (3) behavioural context (opportunistic or coordinated); and (4) location of social information use - to predict and characterize four strategies of social information use - (1) local enhancement; (2) group facilitation; (3) following; and (4) recruitment. We validated our framework by systematically reviewing the growing empirical literature on social foraging in bats, an ideal model taxon because they exhibit extreme diversity in ecological niche and experience low predation risk while foraging but function at high energy expenditures, which selects for efficient foraging behaviours. Our framework's predictions agreed with the observed natural behaviour of bats and identified key knowledge gaps for future studies. Recent advancements in technology, methods, and analysis will facilitate additional studies in bats and other taxa to further test the framework and our conception of the ecological and evolutionary forces driving social information use. Understanding the links between food distribution, social information use, and foraging behaviour will help elucidate social interactions, group structure, and the evolution of sociality for species across the animal kingdom.
Collapse
Affiliation(s)
- Jenna E Kohles
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315, Radolfzell, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.,Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
| | - M Teague O'Mara
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315, Radolfzell, Germany.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama.,Department of Biological Sciences, Southeastern Louisiana University, 808 N. Pine Street, Hammond, LA, 70402, USA
| | - Dina K N Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315, Radolfzell, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.,Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
| |
Collapse
|